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Abstract—The analysis of human sperm as part of infertility
investigations or assisted conception treatments is a labor inten-
sive process reliant upon the skill of the observer and as such
prone to human error. Therefore, there is a need to develop
automated systems that can adequately assess the concentration,
motility and morphology of live sperm. This paper presents
an algorithm for analyzing the morphology of motile sperm.
Techniques for eliminating the background, segmentation of the
cells and template matching techniques are used to analyze the
morphology in two stages: first stage eliminates the immotile
cells and at the second stage the morphology of the motile
cells is analyzed. Results are presented with real sperm samples
recorded in the andrology lab at the University of Sheffield. The
performance of the proposed algorithm is analyzed in terms of
accuracy and complexity. The proposed algorithm demonstrates
high accuracy under variable conditions.

Index Terms—template matching, structural similarity mea-
sure, motility grading, sperm morphology

I. INTRODUCTION

The assessment of sperm concentration, motility and mor-

phology play an important role in the analysis of human semen

[1]. The semen analysis can give an indication of fertility

potential in males when appropriate quality-control measures

are followed [2]. It has been found that the analyzing the

percentage of sperm with normal morphology has great impor-

tance in male fertility diagnosis [3]. Compared to the sperm

with abnormal morphology, sperm with normal morphology

has greater ability to fertilize eggs [4]. However, a reliable,

accurate and repeatable assessment of morphology analysis

has not been achieved yet. Assessment of sperm morphology

is a challenging task [5] and the World Health Organization

requires it to be done by a trained scientist observing dead

sperm which have been stained using histological dyes. This

way of examining semen is prone to high variability [6] and

the subjectivity of the laboratory staff [7]. The manual method

to analyze semen depends on the natural ocular tiredness, the

limits of visual perception and the experience of the health

care professional.

The World Health Organization (WHO) has published

guidelines and recommendation about how sperm morphology

assessment must be conducted. However, following these

guidelines to manually analyze the sperm morphology is diffi-

cult and therefore these guidelines are followed by only a few

laboratories [8]. Moreover, because the sperm observed in the

laboratory are dead the results obtained are not representative

of what might be seen of live sperm observed in semen if that

measurement were technically possible.

A sperm has a head, a middle piece and tail. Measures

such as stain content, length, width, perimeter, area, and

arithmetically derived combinations had been considered in

the literature in order to classify sperm according to their

morphology. A human sperm may contain different kinds of

malformations. Areas of defects stated by WHO are: head

defects, neck and mid piece defects, principal piece defects

and excess residual cytoplasm (ERC) [1]. Nevertheless, there

are only two classification groups: normal and abnormal.

Sperm is difficult to recognize using a computer system over

video due to its fast movement and partial or full occlusion by

other sperm cells. Besides sperm, a semen sample has other

cells such as bacteria, epithelial cells, leukocytes, isolated

sperm heads and tails which makes the analysis process even

harder. Other challenges related to the manual sperm analysis

are:

∙ repeatability of sperm analysis results.

∙ workload of the counting operators.

In order to get precision in sperm morphology assessment

computer-assisted sperm morphometry analysis (CASMA)

systems have been developed. However, currently used

CASMA method are time consuming and require individual

selection of each sperm [9]. Automated sperm analysis over-

comes issues such as variability of the assessment results [7],

subjectivity, precision and reproducibility [1].

This paper proposes an image processing algorithm for an

automated morphology analysis of motile sperm. Morphology

of the motile cells only is analyzed with the help of video

frames from a recorded video of sperm samples.

Template matching techniques are developed that rely on

several performance measures such as: the Bhattacharyya

distance [10], the Structural Similarity Measure [11], and the

correlation coefficients. Templates are formed for both normal

an abnormal cells by using well established template shapes,

from the World Health Organization [12]. These preliminary

formed templates use image features such as intensity and

edges and are compared with the current video frame, based



Fig. 1. Templates of non-sperm cells.

Fig. 2. Templates of immotile sperm.

on the template matching. Inference is performed based on the

similarity between the templates and the current video frames.

The remainder of the paper is organized as follows: Section

II describes the proposed algorithm, Section III presents the

extensive experimental results and finally, conclusions are

presented in Section IV.

II. PROPOSED ALGORITHM

This paper proposes an image processing algorithm for an

automated morphology analysis of motile sperm. The proposed

method first distinguishes sperm from non-sperm cells (e.g.

epithelial cells and isolated sperm heads or tails) present in

semen. Three non-sperm cell templates are used, shown in

Figure 1. Aim of the algorithm is to detect and classify

motile and immotile cells. Four immotile cell templates are

used for this distinction, shown in Figure 2. Finally, the

morphology of motile cells is analyzed. The output of the

proposed algorithm is a count of the number of motile cells

with normal morphology.A. Eliminating Immotile cells

The first stage of the algorithm eliminates the immotile

cells and keeps only the motile cells for morphology analysis.

Fig. 3. Flowchart cells detection, where one blob represents one cell.

Figure 3 shows the flowchart of this stage of the algorithm.

At this stage we select a frame from a recorded video for

morphology analysis. The image is first converted to a gray

scale format. To eliminate the background from the foreground

Otsu’s threshold [13] is used. After separating the background

pixels we get foreground pixels which consist of multiple blobs

(connected pixels). One detected blob is considered as one cell.

Finally we measure the following properties of the detected

blob:
∙ Area which is the number of pixels in the blob.
∙ Bounding box which is the smallest rectangle which can

define the blob.
∙ Filled image which gives the binary image of the bound-

ing box.
∙ Major axis length which calculates the length of the major

axis of the ellipse around the blob.
∙ Minor axis length which calculates the length of the

minor axis of the ellipse around the blob.
∙ Pixel List which gives a vector with pixel values of the

blob.
Properties of the detected blobs are used to compare them

with the templates of both motile and immotile cells. The

library in Figure 2 represents the four cell templates that

are used to match and classify cells in sample video frame.

After getting the blobs of target cells and template cells we

remove the background noise to improve the results. Each blob

having area smaller than 25 pixels (based on experiments)

is removed from the original frame. Properties of the each

blob in the video frame are compared with the properties

of motile, immotile and non-sperm cells. Figure 4 shows the

flowchart of the cell classification procedure for classifying the

cells into motile, immotile and non-sperm cells. We consider

five different criteria to compare the target blobs with the

template blobs. First we compare the areas, if the area of the

selected blob is within ±10% of the area of the template, it is

considered as a match and labeled as 1. If it does not satisfy

the criterion it is not considered as a match and labeled as 0.

The second criterion consists in the major and minor axes of

the blob. The same principle is applied to the major and minor

axes as in the case of the area.

Next, the following three criteria are used: the correlation

(CORR) coefficient, the structural similarity measure (SSIM)

and the Bhattacharyya distance (BHAT). These measures are

used in binary classifiers in the literature to compare images

[14], [15], [16], [17]. The CORR coefficient measures how two

images resemble between −1 and 1, with 1 highly correlated



Fig. 4. Flowchart of the cell classification procedure.

and −1 non-correlated. Equation (1) shows the formula to

calculate how two images are correlated:
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∑

𝑚

∑

𝑛

(𝐴𝑚𝑛 − 𝜇𝐴)(𝐵𝑚𝑛 − 𝜇𝐵)

√

(
∑

𝑚

∑

𝑛

(𝐴𝑚𝑛 − 𝜇𝐴)
2)(

∑

𝑚

∑

𝑛

(𝐵𝑚𝑛 − 𝜇𝐵)
2)

(1)

where 𝐴𝑚𝑛 represents one pixel of the template blob of size

(m x n) and 𝜇𝐴 is the mean of the blob, similarly, 𝐵𝑚𝑛 is

pixel of the target blob of size (m x n) and 𝜇𝐵 is its mean. The

SSIM index measures how similar or dissimilar two images

are based on the mean 𝜇𝑎, the standard deviation 𝜎𝑎 and the

covariance 𝜎𝑎,𝑏. Equation (2) shows the formula [17] how to

calculate the SSIM index
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with L pixels. The BHAT distance [15] measures the simi-

larity between the normalized histograms of a template and a

target between 0 and 1. Equation (3) shows the formula for

calculating the Bhattacharyya distance 𝑑(ℎ𝑡𝑒𝑚𝑝, ℎ𝑡𝑎𝑟𝑔):

𝑑(ℎ𝑡𝑒𝑚𝑝, ℎ𝑡𝑎𝑟𝑔) =
√

1− 𝜌(ℎ𝑡𝑒𝑚𝑝, ℎ𝑡𝑎𝑟𝑔) (3)

where 𝜌(ℎ𝑡𝑒𝑚𝑝, ℎ𝑡𝑎𝑟𝑔) is the Bhattacharyya measure [15]. The

larger the value 𝜌 (≈ 1) or the smaller 𝑑 (≈ 0) gets, the more

similar are the histograms of the template and target.

The measured CORR and SSIM values are both between

−1 and 1 and for the BHAT distance between 0 and 1. Next

in the flowchart (Figure 4) is defining a threshold parameter to

distinguish if a template matches the target or not. Each binary

classifier is tested with a low (= 0.50), medium (= 0.65) and

high (= 0.79) threshold parameter. Based on the experimental

results (Table I) the best performing threshold parameter, equal

to 0.65, is chosen for each binary classifier. If the measured

classifier has a value above the threshold it is considered as

a match and gets label 1, if it is below the threshold it is

considered as a mismatch and gets label 0.

TABLE I
THE CLASSIFICATION METRIC RESULTS WITH VARYING THRESHOLD

PARAMETERS FOR THREE CROPPED VIDEOS (𝜇± 𝜎).

Low Threshold Parameter = 0.50

Metrics Immotile Motile

ACC (%) 90± 1.6 89± 2.8 88± 2.6 96± 1.6 95± 4.2 97± 0.8
𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (%) 81± 0.8 82± 0.8 82± 0.7 78± 12 78± 13 79± 18
PRE (%) 75± 1.0 75± 0.8 75± 0.8 65± 18 65± 18 67± 23
Recall (%) 89± 2.1 88± 2.3 90± 2.7 97± 1.4 97± 1.2 97± 1.3
SENS (%) 89± 2.1 88± 2.3 90± 2.7 97± 1.4 97± 1.2 97± 1.3
SPEC (%) 89± 1.4 88± 1.9 87± 1.3 95± 2.3 93± 1.9 96± 1.4

Medium Threshold Parameter = 0.65

Metrics Immotile Motile

ACC (%) 91± 0.8 91± 0.7 91± 0.9 99± 0.2 99± 0.2 99± 0.3
𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (%) 81± 1.2 81± 1.4 82± 1.0 79± 11 81± 13 79± 15
PRE (%) 76± 1.5 75± 1.6 76± 1.4 66± 15 69± 17 67± 16
Recall (%) 88± 2.0 89± 1.9 89± 1.3 97± 0.5 97± 0.6 97± 0.4
SENS (%) 88± 2.0 89± 1.9 89± 1.3 96± 1.0 96± 1.7 96± 1.6
SPEC (%) 90± 0.8 91± 1.0 90± 1.6 99± 0.2 99± 0.2 99± 0.3

High Threshold Parameter = 0.79

Metrics Immotile Motile

ACC (%) 75± 14 72± 9.5 67± 11 96± 1.2 97± 1.3 97± 1.0
𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (%) 81± 5.5 81± 2.4 82± 1.7 78± 15 83± 19 80± 17
PRE (%) 77± 3.5 76± 3.4 77± 2.1 66± 19 73± 21 69± 20
Recall (%) 86± 6.4 86± 3.0 87± 2.7 96± 1.7 96± 2.1 95± 2.3
SENS (%) 86± 6.4 86± 3.0 87± 2.7 96± 1.7 96± 2.1 95± 2.3
SPEC (%) 89± 1.6 89± 1.6 87± 3.5 99± 0.2 99± 0.9 99± 0.2

The blobs in the original image are now labeled with 1 or

0 and the number of motile, immotile and non-sperm cells are

determined. Before analyzing the morphology of the sperm

cells, only the motile cells are kept and all immotile and non-

sperm cells are eliminated.

B. Cell Morphology Detection

Once the motile cells are selected, the shape of these cells

is analyzed to classify them into normal and abnormal cells.

A similar criterion which was used by WHO for classification

of cells into motile and immotile is used. Again templates

of normal and abnormal cells are manually selected and the

properties of target and template blobs are compared to decide

whether the cell is normal or abnormal. Seven motile cell

templates are used, which are shown in Figure 5.



Fig. 5. Templates of motile sperm.

The same five criteria as explained in previous subsection

are used here. To make the proposed algorithm more user

friendly a graphical user interface in matlab is developed

whose image is shown below in Figure 6.

III. EXPERIMENTAL RESULTS

The proposed algorithm is tested on video frames taken

from a recorded video which were recorded in the andrology

lab of the Academic Unit of Reproductive and Developmental

Medicine (University of Sheffield). The sample was obtained

from a healthy volunteer who gave informed consent for

his sample to be used for research purposes. All procedures

had been approved by the University Research Ethics Com-

mittee (Ref: SMBRER293). The image resolution is set to

2040 × 1086. Results in Figure 7 show the classification

of the cells into motile, immotile and non-sperm cells. For

each classification the accuracy, precision, recall, 𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒,

sensitivity and specificity are calculated.

A. Classification Metrics

By labeling the blobs in the image, the cells are converted

in binary format and classified. To analyze the performance of

the classification, metrics such as accuracy, precision, recall,

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒, sensitivity and specificity are calculated. Those

classification metrics are based on true positives (TP), true

negatives (TN), false positives (FP) and false negatives (FN).

The TP is identified as the cells that are correctly labeled as

1 and TN is identified as the cells that are correctly labeled

as 0. FP and FN are respectively identified as the cells that

are incorrectly labeled as 1 and incorrectly labeled as 0. The

accuracy of a measurement is the degree of closeness of the

measurement of a quantity to that quantity’s true value. The

accuracy is calculated as [18]

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
=

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
. (4)

where 𝑃 = 𝑇𝑃 +𝐹𝑃 and 𝑁 = 𝑇𝑁 +𝐹𝑁 . Sensitivity is also

known as the true positive rate (TPR) or recall. It measures the

proportion of TP which are correctly identified as positives.

The positives (P) are determined by FN and TP. The sensitivity

is calculated as [18]

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑃
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
= 𝑅𝑒𝑐𝑎𝑙𝑙. (5)

The false negative rate (FNR) is defined as 1− 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦,

that is the miss rate or the false alarm. The closer TPR to 1, the

better it is and the closer FNR to 0, the better it is. Specificity

is also known as the true negative rate (TNR). It measures the

proportion of TN which are correctly identified as negatives.

The negatives (N) are determined by the FP and TN. The

formula to calculate the specificity is given in Equation (6)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑁
=

𝑇𝑁

𝐹𝑃 + 𝑇𝑁
(6)

The false positive rate (FPR) is defined as 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦,

the fall-out or fail to detect. The closer TNR to 1, the better it

is and the closer FPR to 0, the better it is. The precision of a

measurement is the degree of repeatability of a measurement.

The precision is calculated as [19]

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(7)

The 𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 combines the recall and the precision [19]

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(8)

B. Classification Metric Results

Accuracy, precision, recall, 𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒, sensitivity and speci-

ficity are calculated for each cell classification. The classifica-

tion metrics are determined based on how well the classified

sperm match the template. Three videos with around 130

frames are analyzed. The results are shown in Table II. The

mean and standard deviation, 𝜇 ± 𝜎, are given in percentage

for each classification metric and the total number of sperm

that are classified as immotile, motile or non-sperm cells.

TABLE II
THE CLASSIFICATION METRIC RESULTS AND TOTAL NUMBER OF CELLS

FOR THREE DIFFERENT VIDEOS (𝜇± 𝜎).

Metrics Immotile Non-sperm Cells Motile

ACC (%) 91± 0.8 91± 0.7 91± 0.9 85± 2.3 84± 2.2 83± 2.1 99± 0.2 99± 0.2 99± 0.3
𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (%) 81± 1.2 81± 1.4 82± 1.0 77± 2.9 76± 3.0 77± 2.3 79± 11 81± 13 79± 15
PRE (%) 76± 1.5 75± 1.6 76± 1.4 87± 2.8 86± 3.6 88± 1.9 66± 15 69± 17 67± 16
Recall (%) 88± 2.0 89± 1.9 89± 1.3 69± 3.5 69± 3.2 69± 2.6 97± 0.5 97± 0.6 97± 0.4
SENS (%) 88± 2.0 89± 1.9 89± 1.3 69± 3.5 69± 3.2 69± 2.6 97± 0.5 97± 0.6 97± 0.4
SPEC (%) 90± 0.8 91± 1.0 90± 1.6 92± 1.6 92± 1.4 91± 1.4 99± 0.2 99± 0.2 99± 0.3
TOTAL 113± 19 128± 22 130± 19 28± 5 37± 5 40± 5 255± 21 260± 22 260± 20

The closer the metric values to 100%, the better the discrim-
ination of the cells. An arbitrary subdivision for interpreting
the classification metric values is proposed:

Classification Metric =

⎧











⎨











⎩

50%− 60% No Discrimination

60%− 70% Poor Discrimination

70%− 80% Acceptable Discrimination

80%− 90% Good Discrimination

90%− 100% Excellent Discrimination

1) Immotile Sperm: Table II shows that the classification

metric results can be considered as good - excellent for accu-

racy, 𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒, recall, sensitivity and specificity of immotile

sperm. For the precision the result is around 76% which is an

acceptable discrimination. This was expected looking at the

results of the binary classifiers for immotile sperm in Table I.



Fig. 6. Graphical user interface for the morphology analysis of motile sperm.

These results can be interpreted as; the template of immotile

sperm has a high ability to match the actual immotile sperm

cells in the image, which refers to the accuracy. However, the

template of immotile sperm has a lower ability to consistently

match those actual immotile sperm cells. This refers to a lower

reproducibility and precision. Discriminating immotile sperm

just based on their morphology is hard.

2) Non-sperm Cells: Classifying non-sperm cells is based

on matching the area and axis lengths of the templates and thus

not on binary classifiers. Table II shows that the classification

metric results can be considered as good - excellent for

accuracy, precision and specificity of non-sperm cells. For

the recall and sensitivity it is rather considered as a poor

discrimination. This means that 69% of the non-sperm cells

are correctly labeled as non-sperm cells, thus 31% of the non-

sperm cells are not detected. The specificity is around 91%,

which means that 91% of the cells are correctly identified as

not non-sperm cells, while 9% of those cells are incorrectly

labeled as non-sperm cells. The library template exists of three

non-sperm cells, by extending this library the results may

improve.

3) Motile Sperm: Table II shows that the classification met-

ric results can be considered as excellent, except for precision,

which influences the 𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒. The mean percentage of preci-

sion for the three videos is around 67% with a larger standard

deviation compared to other metric results in the table. The

larger standard deviation can be explained by the use of seven

templates to classify motile sperm into normal and abnormal.

Depending on the image the classification within normal and

abnormal sperm differs. As mentioned earlier in the paper,

the borders are not included in the classification morphology

algorithm. As the classification in this case is based on motile

cells, it is possible that in one frame motile sperm cells are

located in the center of the image and the next frame it is

located at the border. This influences the reproducibility of the

experiment, thus a lower precision and 𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒. Therefore,

the template of motile sperm has a bad ability to consistently

match the actual motile sperm cells. However, the closeness

of the measured value to the true value is high an accuracy of

99%.

IV. CONCLUSIONS

A computer assisted sperm analysis algorithm is proposed

for accurately and efficiently analyzing the morphology of

sperm. Techniques for eliminating the background, segmen-

tation of the cells and template matching techniques are

successfully used to first classify the cells into motile and

immotile cells and secondly the motile cells are classified into

normal and abnormal cells. The performance of the proposed

algorithm is evaluated and accurate classification of cells is

shown.



(a) Original (b) Motile Sperm

(c) Immotile Sperm (d) Non-sperm cells

Fig. 7. Classification of cells into motile, immotile and non-sperm categories.
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