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Abstract—Deep learning methods have proven their potential
in semantic segmentation. However, they depend on the data
quality and training process. Often, the data corresponding to
the objects to be segmented are of different sizes and this creates
difficulties for the segmentation method. Objects are segmented
and associated with categories during the training process. Data
imbalance is a challenging problem, which often results in
unsatisfactory segmentation performance. This paper proposes
a solution to this task based on a novel cross dropout focal loss
(CDFL) function, which represents well the change between the
cross-entropy and other state-of-the-art loss functions providing a
balance between the precision and accuracy of segmentation. The
performance of the considered fully convolutional network (FCN)
with different loss functions is considered and carefully evaluated.
The proposed loss function improves efficiently the semantic
segmentation performance over other well-known loss functions.
It is demonstrated on Cityscapes and PASCAL VOC 2010
publicly available datasets. The implementation is over relatively
large data sets. The achieved mean accuracy of the proposed
CDFL network on Cityscapes dataset is 76.41% and on PASCAL
VOC 2010 dataset is 79.63% which is with approximately 2.5%
improvement compared with the same network implemented with
the cross-entropy loss function.

Keywords—Deep learning, Semantic segmentation, Loss func-
tion, Imbalanced class dataset.

I. INTRODUCTION

Semantic segmentation is defined as the pixel-level classi-
fication [1]–[3]. The results depend to a large extent on the
dataset balance. When one label data is in the minority cate-
gory while millions of labels are in the majority category, it can
lead to a slight bias or severe imbalance in the predictive results
[4]. This means data imbalance is a fundamental problem
in semantic segmentation tasks, which restricts the accuracy
and precision of the image segmentation. The imbalanced
dataset poses a challenge for prediction since many semantic
segmentation algorithms assume an equal number of each
category. However, in semantic segmentation datasets, the
category imbalance is inevitable. For instance, in Cityscapes
datasets [5], a traffic sign and a person are considered as
the minority of the segmentation categories, while a large
number of categories correspond to buildings, roads and the
sky. Commonly, models need to pay sufficient attention to the

minority of categories for safety reasons. However, models
naturally have a bias towards the majority categories in the
training process, which leads to low accuracy and precision
results, especially on a small number of categories. The
choice of the loss function and how it is linked to the labels
plays an important role in improving the image segmentation
performance.

A series of significant works show how to alleviate the
impact of the data imbalance on the segmentation results [2],
[6]. The majority of the methods focus on the design of loss
functions that consider well both the minority and major-
ity classes. There are three types of loss functions [7]–[9].
Firstly, the region-based loss function directly optimizes the
intersection-over-union (IoU) [10]. This type of loss func-
tion mainly applies to medical segmentation. Secondly, the
statistics-balanced loss function adjusts the weight of category
distribution based on its margin or size, i.e. class-balanced
loss [11] and a label-distribution-aware margin (LDAM) loss
function [12]. It encourages overfull false positives in the
small number of categories. However, this approach could
undermine the learning capability in feature extraction [13].
Thirdly, the performance-balanced loss function adds factors
to weight the distribution of each category, i.e. as it is in
the focal loss function [14]. However, its applications face
challenges sometimes [11] since it cannot balance between
the small and large number of categories that up-weight the
minority category [13].

This work develops a novel data-balanced driven semantic
segmentation solution consisting of a fully connected con-
volutional neural network and a cross dropout focal loss
function. The cross dropout focal loss function down-weights,
respectively up-weighs a category based on the output for
this category. Unlike the statistics-balanced losses, the cross
dropout focal loss has dynamic weight components based
on per-category network outputs, compared to the statistics-
balanced losses. In our experiments, the cross dropout focal
loss can effectively address data imbalance and improves the
accuracy and IoU.

The main contributions of this work are as following.

• A novel loss function is introduced. The cross dropout



focal loss not only depends on the weights to adjust
the loss but keeps the statistic capability of the cross-
entropy loss function.

• The cross dropout focal loss updates weights based on
the segmentation output per category after T dropout
times.

• The proposed loss function with FCN improves the
segmentation performance, which is demonstrated
over two popular semantic segmentation datasets,
Cityscapes [5] and PASCAL [15]. The results show
that the cross dropout focal loss achieves better per-
formance than the well-known loss functions such as
entropy and the focal loss.

The rest of this paper is organized as follows. Section II
summarizes the related works, Section III describes the main
proposed methodology. Section IV shows the performance
validation and evaluation of the proposed algorithm. Finally,
Section V concludes this work and summarizes future direc-
tions.

II. RELATED WORK

Deep learning methods have become increasingly popu-
lar for semantic segmentation tasks [2], [16], [17] but still
challenges in pixel-level image segmentation remain due to
imbalanced datasets. The fully convolutional network [16] as
a generic forerunner of the state-of-the-art algorithms and
is often chosen to be in the heart of many deep learning
approaches [18], [19]. Fully convolutional networks [16] learn
their representations by using skip layers. Fully convolutional
networks provide efficient inference and learning which can
be extended to other well-known networks, such as the U-
Net [20], and SegNet [21], [22]. These architectures [23], [24]
have a number of attractive properties. They provide smooth
predictions and easy visualisations of the feature activation in
the pixel label space. Thus, we choose the fully convolutional
network architecture as the deep learning backbone to balance
the computational time and accuracy. Despite the power of the
described networks, they still cannot solve the data imbalance
problem.

The quality of the data sets is of significant importance
when it trains semantic segmentation models. Deep learning
semantic segmentation methods such as the FCN [16], U-Net
[20], and recently developed methods, such as Deeplab [17]
face the category imbalance problem. When training of neural
networks is based on easy examples this could lead to insuffi-
cient learning and as a whole to inefficiently accurate results.
A common solution is to increase the hard examples [25]–[27].
In contrast to these works, we propose the cross dropout focal
loss function that solves the imbalance issue without complex
computation and huge sampling.

Different loss functions have been used. The cross-entropy
[28] is one of them and it is defined to measure the difference
between two probability distributions. The cross-entropy has
been widely applied to semantic segmentation. The weighted
cross-entropy [29] proposes to weight positive and nega-
tive examples, which leads to better results than with the
cross-entropy in an imbalanced class. The balanced cross
entropy [30] is motivated by the weighted cross-entropy which

leads to an efficient use of the number of samples in each class.
The focal loss function [14] affords training on a sparse set of
hard examples and can improve the accuracy when applied to
object detection tasks.

These loss functions were proposed, driven by the motiva-
tion of improving the weighting of the class labels [4], [31].
However, these could introduce excessive false positives and
adversarial results [7]. The Intersection over Union (IoU) is
the most commonly used evaluation indicator in segmentation
networks. Lovasz Softmax [32] directly optimizes the IoU on
the Lovasz convex extension. In [33] the Dice similarity coeffi-
cient is leveraged and the trade-off between false positives and
negatives in image segmentation is controlled. In contrast, the
proposed cross dropout focal loss function does not rely fully
on label weights and considers the balance between different
classes.

III. METHODOLOGY

This section describes the known cross entropy and focal
loss functions and the proposed cross dropout focal loss
(CDFL) function for multi-category segmentation. Their per-
formance is compared next in Section IV.

A. Cross Entropy for Multi-category Segmentation

The cross-entropy [4] has been widely applied in many
semantic segmentation tasks [4], [34]. It uses the number
of pixels for each category to optimize the geometric mean
confidence of each weighted category. The formula for the
cross-entropy CE is the following:

CE = −

M
∑

c=1

yc log (pc) , (1)

where M denotes the category number, pc represents the
corresponding value of the c-th category in the output of
the softmax activation function, yc denotes the value of true
predictions in the category c. If the category of prediction and
label are the same, then the value of 1 is assigned, otherwise
it is 0. However, this approach with the cross-entropy has an
obvious drawback that it applies to a balanced dataset. When
the number of pixels in the minority category is much smaller
than the number of pixels in the majority category for the
same image, the yc = 0 in the function will dominate. Thus,
the number of pixels influences on the value of yc. In other
words, if the number of yc = 0 is much larger than the number
of yc = 1, this situation will make the model heavily biased
towards the main label which results in poor results.

The balanced cross entropy (BCE) [4] adds a weight
parameter for each category to solve data imbalance problem.
The balanced cross entropy BCE for muti-segmentation is
represented with the equation:

BCE = −

M
∑

c=1

wcyc log (pc) . (2)

The weight parameter wc calculation formula is wc =
N−Nc

N
, where N denotes the total number of pixels, and Nc

shows the number of pixels in the ground truth per category.



The variable yc still has the same meaning as in the cross-
entropy expression. In this way, the balanced cross entropy can
represent well the different categories with different weights
for small or large categories. However, it did not consider
the easy-hard imbalance in per category. The balanced cross
entropy cannot address the data imbalance issue effectively
when facing a big semantic segmentation dataset.

B. Focal loss for Multi-category Segmentation

In [14] the focal loss function is proposed for binary
segmentation. The idea for the focal loss is inspired by the
cross-entropy. The focal loss has two hyperparameters, γ and
α that are introduced for balancing between the easy and
hard examples. In this paper, we extend the focal loss to the
multi-segmentation task. The activation function can only be
the softmax [14], [35] function. The multi-focal loss with the
softmax function FLsoftmax is defined as:

FLsoftmax = −

M
∑

c=1

αc (1− pc)
γ
log (pc) , (3)

where αc indicates the weight of the c-th category label, pc
denotes the output of the c-th category after softmax function.
The value of pc can reflect the degree of difficulty of the
sample in segmentation. When pc > 0.5, it belongs to easy-
segmented region, otherwise is a hard-segmented region. If the
value of pc is big, the prediction results will be more accurate.
The parameter γ adjusts the rate of easy label down-weighted
labels. The parameter α represents the adjustment weight of
the corresponding positive sample. However, this loss function
only considers the easy-hard imbalance, without considering
the imbalance category.

C. Cross Dropout Focal Loss Function

The proposed dropout cross focal loss function aims to
improve the model performance and weight well the balance
per category for easy-hard segmentation. In the proposed
approach the input data are considered with T dropout times
into the segmentation architecture. Thanks to the Monte Carlo
dropout procedure [36], deep neural network output ŷt will be
different after dropout at each time. Then an indicator variable
u(ŷ is introduced which depends on the network predicted
output ŷt and can be expressed by the following equation:

u(ŷ) ≈
1

T

T
∑

t=1

(ŷt)
2
−

(

1

T

T
∑

t=1

ŷt

)2

. (4)

The value of the indicator variable u(ŷ) represents the easy-
hard degree of segmentation from the dropout output per
category perspective. Motivated by the focal loss, the value of
the indicator variable u(ŷ) can replace the modulating factor
(1− pt) from equation (3). Thus, we update the focal loss to
the dropout focal (DF) loss shown in the following equation:

DF = −

1

N

N
∑

i=1

αi (ui(ŷ))
γ
log (ŷi) . (5)

When the value of u(ŷ) is close to 0, the value of the
dropout focal loss function will reduce. That means the easy-
segmented labels are down-weighted. In this paper, the T value
was set equal to 5 to keep an efficient computational time and
sufficient accuracy.

The cross-entropy and focal loss functions face challenges
with the imbalanced dataset. Thus, we propose a novel loss
function, the cross dropout focal loss (CDFL). Based on the
cross-entropy we add the dropout focal loss with a weighted
index ω as a modulating factor to solve the data imbalance
problem. The cross dropout focal loss CDFL is represented
with the following equation:

CDFL = CE + ωDF

= −

N
∑

i=1

yi log (pi)− ω[
1

N

N
∑

i=1

αi (ui(ŷ))
γ
log (ŷi)].

(6)

We set up the values of the γ and α parameters respectively
equal to 2 and 0.75, which is the same choice as in [14]. The
weight factor ω balances the impact of the cross-entropy and
of the dropout focal loss. For the purposes of performance
validation, different values of ω are used and these are 0.1, 0.01
and 0.001. The best performance has been obtained with
the 0.01 value of ω. As a result, the cross dropout focal
loss function avoids excessive weighting of hard-segmented
examples or of the minority categories which could cause
undesirable results. Meanwhile, the CDFL provides a suitable
training weight for the different inputs. Therefore, the cross
dropout focal loss achieves a higher balancing ability than
the cross-entropy. It can handle both category and easy-hard
segmentation imbalance situations.

IV. EXPERIMENTS AND ANALYSIS

The experiments are performed with the Ubuntu 20.04
system. The server environment uses Python 3.7, Pytorch
1.12.1 and CUDA 10.1.

A. Datasets and Implementation Details

In order to evaluate the proposed loss function, the per-
formance of a FCN with different loss functions is evaluated
over two popular semantic segmentation datasets, Cityscapes
for outdoor driving and PASCAL VOC 2010.

1) Cityscapes: Cityscapes [5] is a popular data set for
semantic segmentation, which comprises urban street scenes.
It is a large-scale driving database that contains fine annotated
data and coarse annotated data of around 25000. There are 8
groups with 30 categories. Data was captured from 50 cities
under different environmental conditions. In this paper, the
dataset adopts 3475 fine annotations images for train and
validation sets and 1525 dummy annotations for the test set.
It has 19 classes shown in Fig. 2.

2) PASCAL VOC 2010: Pattern Analysis, Statical Mod-
eling and Computational Learning (PASCAL) Visual Object
Classes (VOC) [15] is a computer vision challenge for five
different competitions and provides ground truth annotated
datasets. This paper only focuses on the PASCAL VOC



Fig. 1: Visualization of segmentation results on Cityscapes with FCN.

2010, which is a two dimensional (2D) segmentation dataset.
Especially, the dataset supports pixel-level segmentation. It
contains 540 classes grouped into 3 categories (objects, stuff,
and hybrids). The dataset contains 4998 images for training
and 1550 for validation. It has 20 classes: aeroplane, bag, bed,
bedclothes, bench, bicycle, bird, boat, book, bottle, building,
bus, cabinet, car, cat, ceiling, chair, cloth, computer, cow and
others.

3) Evaluation metrics: The cross dropout focal loss based
on FCN [16] is implemented for the segmentation task on
the two above mentioned datasets. In semantic segmentation,
the mean accuracy (mACC) and the mean IoU (mIoU) [12],
[13], [37], [38] are important metrics. Here we apply them to
evaluate the image semantic segmentation performance.

The mean Intersection over Union (IoU) [39] character-
izes the balance between precision and recall performance
measures. We also show both precision and recall results
and demonstrate that the performance of the FCN with the
cross dropout focal loss function gives very good segmentation
results.

• Mean Intersection over Union (mIoU), mIoU : In
semantic segmentation, this evaluation metric calcu-
lates the intersection ratio of two sets. These two
sets are annotated data and predicted outputs [2]. It
is computed by

mIoU =
1

k + 1

k
∑

i=0

pii
∑k

j=0
pij +

∑k

j=0
pji − pii

,

(7)
where pij and pji represents false positive and false
negatives for category i and category j respectively.
The value of pii is the number of true positives. The
value of k is the total number of categories.

• Mean Accuracy: It computes two sets, which are the
number of the correct pixels pii and the total number

of pixels per category [2]. After getting per-category
accuracy, the mean accuracy mAcc averages the total
k + 1 categories:

mAcc =
1

k + 1

k
∑

i=0

pii
∑k

j=0
pij

. (8)

• Precision It [34] refers to the proportion of the total
number of true positives (TPs) divided by the sum of
all TPs and false positives (FPs):

Precision =
TP

TP + FP
. (9)

• Recall It [34] defines the number of correct positive
predictions, which are achieved from all the positive
predictions. False negatives and true positives denote
total samples:

Recall =
TP

TP + FN
. (10)

The next subsection presents results over the considered
public data and evaluates the segmentation results.

B. Validation Results and Analysis

We compare the fully convolutional network with three
well-known loss functions for imbalanced semantic segmen-
tation, namely the cross-entropy, focal loss [14] and Lovasz
Softmax loss function [32]. Our novel loss function shows the
best results compared with the other loss functions over the
two datasets.

The segmentation results of the Cityscapes outdoor driving
dataset are presented in Table I. The cross-entropy, focal
loss and cross dropout focal loss all improved the mean
accuracy and IoU compared to the Lovasz softmax loss. The
performance of the cross dropout focal loss (CDFL) is very
similar to the performance of the cross-entropy. However, the



Fig. 2: Mean IoU per category on Cityscapes with FCN

TABLE I: Quantitative FCN performance with different
losses on Cityscapes

loss mIoU (%) mAcc (%) mPre (%) mRec (%)

Cross-entropy 66.51 76.33 80.78 77.86

Focal loss 62.1 74.47 79.25 72.75

Lovasz softmax loss 57.14 70.51 75.22 70.51

CDFL 66.62 76.41 81.23 78.11

cross dropout focal loss achieves distinguishable performance
with respect to precision 81.23% and recall 78.11%. The cross
dropout focal loss function outperforms the other loss functions
while keeping a good mean IoU and accuracy. The mean
IoU of separate categories are shown in Fig. 2. Specifically,
the cross dropout focal loss improves the weight of small
categories such as trains and building and maintains good
precision and recall performance. The segmentation results are
visualized in Fig. 1. The cross-entropy and focal loss give
incorrect results about the black class as the blue category
at the bottom. The focal loss and cross dropout focal loss
can predict traffic signs precisely and this is shown in the
second row of Fig. 1. Fig. 2 shows the histogram graph that
demonstrates that the cross dropout focal loss encourages a
correct prediction of the small categories, i.e. trains.

TABLE II: Quantitative FCN performance with different
losses on PASCAL VOC 2010

loss mIoU (%) mAcc (%) mPre (%) mRec (%)

Cross-entropy 66.72 76.85 80.32 76.23

Focal loss 62.45 75.74 76.45 70.57

Lovasz 59.43 64.16 69.56 63.24

CDFL 67.74 79.63 81.85 79.63

We further show the performance of the proposed loss func-

tion and of other state-of-the-art loss functions on the PASCAL
VOC 2010 segmentation dataset. Table II demonstrates that the
cross dropout focal loss still achieves the best performance.

V. CONCLUSIONS

This paper presents a novel data-balanced cross dropout
focal loss algorithm for semantic image segmentation. The
proposed loss function with a FCN alleviates the category
dataset imbalance problem and improves model performance.
Specifically, this loss function is designed from an output
perspective. It has dynamic weights to reflect relative cate-
gories and segments the corresponding objects in images. We
demonstrated several advantages of the cross dropout focal loss
function: 1) It addresses effectively the data imbalance problem
and weights the dropout output per category dynamically. 2) It
updates weights based on the result of dropout T times. The
dropout results can reflect the easy-hard degree of segmenta-
tion and help generate suitable weights. 3) The performance
validation on both Cityscapes and PASCAL datasets shows its
outperformance compared with state-of-the-art loss functions
with approximately 2.5% accuracy improvement. That also
demonstrates the increased robustness of the proposed loss.
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