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Abstract—In this paper, we present a hybrid quantum/classical
algorithm to solve an NP-hard combinatorial problem called the
multiple target data association (MTDA) and tracking problem.
We use diabatic quantum annealing (DQA) to enumerate the low
energy, or high probability, feasible assignments, and we use
a classical computer to find the Bayesian expected mean track
estimate by summing over these assignments. We demonstrate
our hybrid quantum/classical approach on a simple example.
This may be the first demonstration of a Bayesian hybrid
quantum-classical multiple target tracking filter. We contrast
our DQA method with the adiabatic quantum computing (AQC)
approach to MTDA. We give a theoretical overview of DQA and
characterize some of the technical limitations of using quantum
annealers in this novel diabatic modality.
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1. INTRODUCTION
To compute the (Bayesian) posterior distribution in multi-
target tracking and data association (MTDA) problems, we
need to evaluate a probabilistic sum, each term of which is
conditioned on exactly one feasible assignment of measure-
ments to targets. Enumerating the feasible assignments is an
NP-hard combinatorial problem.

The fundamental quantity of interest in Bayesian inference is
the posterior distribution. Point estimates, when needed, are
“extracted” from the posterior by Bayesian decision theoretic
methods (e.g., minimum risk). Two common point estimators
are the MAP (maximum a posteriori) and the mean of the
posterior distribution, both of which are used in tracking.

Adiabatic quantum computing (AQC) methods are used in
[1], [4], [5] to find the optimal assignment. Conditioned
on this assignment, target tracks are computed by classical
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methods. In contrast, Bayesian methods do not select the best
assignment, but instead sum over all the assignments. Thus,
Bayesian methods are better suited to real world problems
that often have high false alarm rates and low target detection
probabilities.

This paper shows that diabatic quantum annealers (DQA) can
be used to compute the Bayesian mean target state estimator.
DQA finds a collection of low-energy configurations that are
near but not necessarily in the ground state. Thus, in sharp
contrast to AQC, DQA deliberately violates the adiabatic con-
dition in order to anneal to a set of low-energy configurations.
The DQA-generated collection of low-energy states is then
passed to a classical computer to compute the mean state
estimator.

Finding the low-energy configurations is a high computa-
tional complexity problem on a classical computer, but com-
puting the mean state given the low-energy configurations
is not. This is consistent with the over-arching strategy of
exploiting QC methods to solve the NP-hard part(s) of a
problem, which are often combinatorial, and then coupling
the QC output with a classical computer to calculate the target
tracks.

Section 2 deals with the mathematical details of the JPDA
tracking filter. Section 3 discusses the transformation of the
MTDA problem into an Ising model suitable for calculating
on a QC such as D-Wave’s 2000Q. Section 4 discusses
using DQA to find low-energy non-ground states. Section 5
presents results. Section 6 gives results of using DQA to find
feasible configurations, i.e., assignments. To our knowledge,
this is the first demonstration of a Bayesian hybrid quantum-
classical multiple target tracking filter. Section 7 summarizes
our findings about the utility of DQA for Bayesian inference.

2. DATA ASSOCIATION AND TRACKING
The joint probabilistic data association (JPDA) filter [6]
is a classical Bayesian target filter that estimates the joint
posterior PDF for a known number of targets, N , by fus-
ing multiple target-measurement assignment hypotheses in a
principled manner. The JPDA filter is NP-hard because the
number of assignments grows rapidly with problem size.

In the JPDA model, targets are assumed to be independent
of one another and causally independent of the measurement
process. At each scan k, a sensor produces a set of Mk ≥ 0
point measurements, each of which is either target-induced
or the result of an independent clutter (false alarm) process.
A given target generates at most one sensor measurement per
scan, and any given measurement is assigned to exactly one of
the targets or to the clutter process. All point measurements
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are superposed in a common measurement space Y .

The JPDA model is inherently flexible and is amenable to
particle filter (sequential Monte Carlo) methods. As the
primary focus of this paper is target-measurement assign-
ments, the JPDA model employed will adopt all of the
original/standard JPDA assumptions. These simplifying as-
sumptions, described below for a specific scenario, allow
for an analytical solution of the posterior PDF, namely, a
multivariate Gaussian.

In the tracking example in this paper, units of length are in
meters, and time units are in seconds. Scans occur at one
second intervals, beginning at time t1 = 1; i.e., ∆t = 1. The
k-th scan occurs at time tk = k (the scan time is defined as
the end time of the scan interval). There are N = 4 targets,
with identical state spaces: Xn ≡ X ⊂ R4, n = 1, . . . , N .
The state vector for target n at scan k comprises two spatial
components, x and y , and two velocity components, ẋ and ẏ ,
and is denoted xnk = (x n

k , ẋ n
k , ynk , ẏnk ).

At the reference time, t0 = 0, no measurements are avail-
able and target n is assumed to have prior PDF µn

0 (xn0 ) =
N
(
xn0 ; x̂n0|0, P

n
0|0
)
, where N (x;µ,Σ) represents the PDF of

a multivariate Gaussian with mean vector µ and covariance
matrix Σ evaluated at x. Due to the assumption of target
independence, the joint prior PDF for all target states is the
product over n of the marginals µ0(xn0 ), that is,

p0(x1
0, . . . , x

N
0 ) =

N∏
n=1

µn
0 (xn0 ) =

N∏
n=1

N
(
xn0 ; x̂n0|0, P

n
0|0

)
.

(1)
As will be seen, the JPDA filter imposes this factored form
at each step k of the recursion. This is an approximation,
and it ensures the posterior distribution has the exact same
mathematical form as the prior distribution. In other words,
the approximation closes the Bayesian recursion.

Targets move according to the linear-Gaussian motion model

p(xnk |xnk−1) = N
(
xnk ;Fxnk−1, Qproc

)
, (2)

where the process (motion) matrix F and the process noise
covariance matrix Qproc are given by

F =

1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1

 , Qproc = σ2
p


∆t3

3
∆t2

2 0 0
∆t2

2 ∆t 0 0

0 0 ∆t3

3
∆t2

2

0 0 ∆t2

2 ∆t

 .

We take σp = 3. These matrices are independent of scan
index k.

At each scan, target n generates a sensor measurement
with (constant) probability of detection pd = 0.9. The
(bounded) measurement space Y = [−600m, 600m] ×
[−600m, 600m] ⊂ R2 comprises the two spatial components
x and y . Given a measurement y = (x , y) induced by target
n at scan k, the measurement likelihood has the following
linear-Gaussian form:

p(y |xnk ) = N (y;Hxnk , R) , (3)

where the measurement matrixH =

(
1 0 0 0
0 0 1 0

)
extracts the

two spatial components of xnk , and R = σ2
M

(
1 0
0 1

)
, σM =

25 m2, is the measurement covariance.

The clutter model employed is a homogeneous Poisson point
process (PPP) with mean λ = 1. That is, at each scan the
number, nc, of clutter points is generated according to a Pois-
son probability mass function (PMF) with mean λ. If nc >
0, the clutter points are then uniformly and independently
distributed over the the entire measurement space (field of
view) Y , the area of which is denoted |FoV| = 1.44×106 m2.

Let yk = {y1
k, . . . , y

Mk

k } be the measurement set at scan k. If
the target-measurement assignment is known, then the exact
Bayesian posterior distribution is obtained viaN independent
Kalman filter updates (see [6]) and is of the same form as the
prior given in Eqn. (1), namely, the product ofN independent
Gaussians. However, since the assignments are unknown, the
exact Bayesian posterior is a weighted sum over all feasible
assignment matrices S (see Eqn. (7) in Ref. [4]), i.e., a (large)
Gaussian mixture of the form

pk(x1
k, . . . , x

N
k |yk) =

∑
S

Prk{S|yk}
∏N

n=1
pnk (xnk |S, yk),

(4)
where pnk (xnk |S, yk) is the Kalman updated posterior Gaus-
sian for target n under assignment S, and Prk{S|yk} is the
posterior probability of assignment S; see Sect. 6. To
close the Bayesian recursion, the multitarget posterior PDF is
approximated as the product of N independent Gaussians in
the same form as (1). In JPDA, this is done by replacing each
posterior marginal, which is a Gaussian mixture, with a single
multivariate Gaussian with the same mean and covariance.

3. THE ISING MODEL FOR MTDA
Optimization Variables as Qubits

Following Refs. [1], [2], we may write each entry of the
association matrix Sij of Eqn. (7) in Ref. [4] as the state of
a two-level quantum system |φij〉 ∈ {|0〉 , |1〉}. The presence
or absence of an association is represented as one of the basis
states of the two-dimensional complex Hilbert space given by

|0〉 =

(
1
0

)
, |1〉 =

(
0
1

)
, (5)

which are eigenvectors (with eigenvalues 1 and −1, respec-
tively) of the Pauli matrix σ3, which in this basis is given by

σ3 =

(
1 0
0 −1

)
. The full state for the system in Eqn. (7) in

Ref. [4] is the Kronecker product

|Φj〉 = |φ00〉 ⊗ · · · ⊗ |φMN 〉 , (6)

where j is the integer corresponding to the binary string of
association matrix entries:

j ←→ (S00, S01, . . . , SMN ). (7)

In this way, all possible (feasible and infeasible) associations
can be written as D = 2(M+1)(N+1) dimension quantum
states formed from Kronecker products of σ3 eigenstates.

Optimization Problems as Ising Models

Determining high-likelihood configurations of association
variables is a manifestly classical problem. Valid configura-
tions are given only by tensor products of Eqn. (5) and hence
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the cost of a particular configuration of association variables
can be written only in terms of powers of mutually commut-
ing σ3 operators. We restrict our discussion to configuration
costs that are at most quadratic in the association variables
such that all possible costs are given by eigenvalues of the
Hamiltonian

HP =
∑Ns

i,j=1
Qijσ

i
3σ

j
3 +

∑Ns

i=1
qiσ

i
3 . (8)

In Eqn. (8), Qij captures interaction costs while qi captures
“biases” on all Ns individual variables. The operator σi

3 is

σi
3 = σ0 ⊗ · · · ⊗ σ0︸ ︷︷ ︸

i−1 terms

⊗σ3 ⊗ σ0 ⊗ · · · ⊗ σ0︸ ︷︷ ︸
Ns−i terms

, (9)

where σ0 is the 2× 2 identity matrix.

The Hamiltonian in Eqn. (8) is that of an Ising model, and
it can be thought of as a finite-dimensional matrix whose
entries are energies in the quantum mechanical sense that
correspond exactly with the cost of association in the opti-
mization problem of interest. However, finding the equivalent
optimal configurations exhaustively would require a number
of trials that scales exponentially as 2Ns . In the next section,
we describe a quantum method to efficiently solve for low-
cost configurations using a quantum annealer. In Sections 5
and 6 we describe precise forms of Qij and qi for two related
problems of interest.

4. DIABATIC QUANTUM ANNEALING
The Instantaneous Hamiltonian

In quantum annealing, the system at the instantaneous time t
is governed by the Hamiltonian

H(t) = A(t)HB +B(t)HP , t0 ≤ t ≤ tf , (10)

where A(t) and B(t) are real-valued time-dependent coeffi-
cients. The functional form of these coefficients comprise an
annealing schedule. In the simplest case, which we refer to
as forward annealing, A(t) monotonically decreases to 0 and
B(t) monotonically increases to 1.

Throughout this work, we will only consider HB of the form

HB = −
∑Ns

i=1
σi

1 , (11)

where, in analogy with Eqn. (9),

σi
1 = σ0 ⊗ · · · ⊗ σ0︸ ︷︷ ︸

i−1 terms

⊗σ1 ⊗ σ0 ⊗ · · · ⊗ σ0︸ ︷︷ ︸
Ns−i terms

. (12)

Here σ1 is the Pauli matrix σ1 =

(
0 1
1 0

)
. Since σ1 and

σ3 do not commute, it is clear that, in general, HB and
HP do not commute. Therefore, H(t) is not diagonal in
the computational basis given by Eqn. (5), except when
A(t) = 0. The off-diagonal elements induce transitions be-
tween configurations in the computational basis.

Time Evolution in Quantum Annealing

At t = 0, the system is prepared in an initial state that we
denote |ψ(0)〉. During the course of the quantum annealing

process, physical parameters of the device are modified fol-
lowing an annealing schedule {A(t), B(t)} such that at any
point in time t the system evolves according to

|ψ(t)〉 = U(t, 0) |ψ(0)〉 . (13)

The solution of this system of time-dependent ordinary dif-
ferential equations is the quantum time-evolution operator
U(t, 0). It is written

U(t, 0) = T exp
(
−i
∫ t

0
dt′H(t′)

)
, (14)

where H(t′) is the quantum Hamiltonian and T exp(·) de-
notes the time-ordered exponential function which, expanded
as a power series, is

T exp
(
−i
∫ t

0
dt′H(t′)

)
=

∞∑
n=0

(−i)n
∫ t

0

dt′n · · ·
∫ t′2

0

dt′1H(t′n) · · ·H(t′1), (15)

where t > tn > tn−1 > ... > t1. Only in the specific case
when the Hamiltonian commutes at different times, i.e.,[

H(t1), H(t2)
]

= 0, ∀ t1, t2, (16)

does the time-ordered exponential reduce to the more familiar
form U(t, 0) = exp

(
− i
∫ t

0
dt′H(t′)

)
.

Diabatic Transitions

We write the Hamiltonian in Eqn. (10) as H(s) ≡ H(stf ),
where tf is the final evolution time and s ≡ t/tf ∈ [0, 1] is di-
mensionless. The paradigm of adiabatic quantum annealing
is to begin in a known and simple-to-prepare state |ψ0(0)〉,
often taken to be the ground state of HB , and evolve the
system slowly. The evolution of the system with Hamiltonian
(10) is adiabatic if the “energy gap” |En(s)−Em(s)| between
any two instantaneous eigenstates ofH(s) (with labels n and
m) is sufficiently large compared to the rate of evolution [7]:

1

tf
max
s∈[0,1]

| 〈n(s)| ∂sH(s) |m(s)〉 |
|En(s)− Em(s)|

� 1,∀m 6= n. (17)

Under this condition, the time evolution given by Eqn. (14)
simplifies such that the system remains in the ground state at
all times and thus |ψ0(tf )〉 is the ground state of HP .

For the purposes of tracking and multi-target data association,
the lowest cost “optimal” configuration (the ground state)
may be a relatively low probability configuration due to
a large number of other configurations that have slightly
higher energies. (This abundance of low-energy but non-
ground state configurations is related to the fact that the
difficulty of the MTDA problem increases rapidly as function
of the number of targets and the false alarm density.) The
Bayesian paradigm addresses this difficulty head-on by as-
serting, boldly, that the fundamental quantity of interest is the
posterior distribution. Point estimators are ancillary statistics
derived from the posterior.

Target state estimates used in this paper are expected values of
the posterior distributions. The expectations are estimated by
summing over the feasible configurations, weighted by their
likelihoods. We use DQA to find the “low-energy” states to
use in the Bayesian filter. Consequently, for our purposes, it
is actually desirable to violate the condition in Eqn. (17) in
order to anneal to states which are higher in energy than the
ground state.
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Figure 1: Final annealing probabilities for biased k = 3
rooks problem obtained by classical numeric computation
QuTiP. Units of anneal time are inverse energy. A broad
interval is observed for tf where the feasible excited states
are annealed to.

Annealing to Excited States

When a violation of adiabaticity occurs, quantum transitions
are induced from the ground state into excited states. In
practice, since any annealing on a physical device must
occur with a finite tf , these transitions occur with relatively
high probability. This was noted in previous work on the
application of quantum annealing to the MTDA problem [4].
Too high an annealing rate, however, leads to a sequence
of scatterings to high-energy states throughout the annealing
process. Consequently, for sufficiently small anneal times
tf , excited states not relevant to the tracking and association
process (due to their infeasibility) are populated with high
probability. Hence, we seek an intermediate range of values
for tf such that only the ground state and low-energy feasible
excited states are populated with high probability.

The eigenstates of the final Hamiltonian HP form a complete
basis which we may use to expand any arbitrary state. We
may thus expand the final state after annealing

|ψ(t)〉 =
∑D−1

j=0
cj(t) |Φj〉 , (18)

where D = 2Ns and |Φj〉 for our problems of interest are
given by Eqn. (6). The transition probability amplitudes from
the initial state |ψ(0)〉 to one of the states in the computational
product space |Φj〉 (after an annealing time tf ) are given by

〈Φj |U(tf , 0) |ψ(0)〉 = 〈Φj |ψ(tf )〉 . (19)

From orthogonality of the eigenstates, the probability of
annealing from |ψ(0)〉 to a state |Φj〉 is given by

pj = | 〈Φj |ψ(tf )〉 |2 = |cj(tf )|2. (20)

A direct calculation of the transition amplitudes through
solution of Eqns. (13-14) depends on the precise form of the
initial state |ψ(0)〉, the final problem Hamiltonian HP , and
the anneal schedule {A(t), B(t)}. Obtaining a closed form
solution is impossible in all but the simplest cases. How-
ever, for small system sizes, we can numerically calculate
the spectrum exactly by diagonalizing the Hamiltonian on

a classical computer. Using the exact eigenspectrum, we
numerically calculate the time evolution of the dynamics of
a simple system using the GKSL master equation [8], [9],
[10], [11] in QuTiP [12], [13].

In Fig. 1 we show annealed occupation probabilities for the
ground state, the feasible excited states, and the infeasible
excited states as a function of the final anneal time tf for
a biased k = 3 rooks problem. We take the parameters
of the final problem Hamiltonian HP to be given by Eqns.
(24) and (30). We take the bias term to be drawn from a
normal distribution qb ∼ N (0, 0.01). We see that for very
small anneal times, the final annealed states are dominated by
higher-energy infeasible states (black curve). Conversely, for
very large values of tf , the ground state probability is largest,
as predicted by Eqn. (17). For an intermediate range of tf ,
we see that the final annealed states comprise both the ground
state as well as feasible excited states while the probability
of annealing to one of the infeasible states becomes small,
despite their large number (2k

2 − k!).

5. DIABATIC QUANTUM ANNEALING FOR
FEASIBLE CONFIGURATIONS

In the previous section, by solving the GKSL master equation
we showed that we theoretically expect diabatic quantum an-
nealing to obtain feasible, low-energy states corresponding to
low-cost combinatorial assignments in the k-rooks problem.
In this section, we validate this theoretical prediction using
a D-Wave 2000Q QPU and study the how the fraction of
feasible states that we obtain for a given number of quantum
anneals depends on the system size. We also show that the
performance of diabatic quantum annealing depends strongly
on the details of the anneal schedule itself.

The Biased k-rooks Hamiltonian

In the absence of false alarms and missed detections, the
MTDA problem can be modeled as a k-rooks problem [3].
In the k-rooks problem, a k× k chessboard is populated with
k mutually non-threatening rooks. We wish to represent the
Ising form HP of the k-rooks problem in order to energeti-
cally impose the constraint of one rook per column and row.
Following the notation of [3] and [4], we define the following

1(k) ≡ k × 1 column vector of ones

= (1 1 1 · · · 1)
T (21)

I(k) ≡ k × k identity matrix (22)

J(k) ≡ 1(k)1(k)T − I(k)

= k × k matrix of ones, with zero diagonal

=


0 1 1 · · · 1
1 0 1 · · · 1
1 1 0 · · · 1
...

...
...

. . .
...

1 1 1 · · · 0

 . (23)

The matrix of the quadratic term in the Ising Hamiltonian in
Eqn. (8) for the k-rooks problem is given by

QkR = Wr +Wc , (24)

and the linear term is given by

qkR = θr + θc . (25)
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Figure 2: Unique feasible states found in 106 shots on D-Wave 2000Q for different k-rooks variations

The k2 × k2 matrix

Wr ≡ I(k)⊗ J(k) (26)

and the k2 × 1 column vector

θr ≡ (2k − 4)1(k2) (27)

constrain the rows to have one rook each. Similarly,

Wc ≡ J(k)⊗ I(k) (28)

and
θc ≡ (2k − 4)1(k2) (29)

constrain the columns to have one rook each.

The Ising Hamiltonian for the k-rooks problem described
by Eqns. (24)-(25) has k! degenerate ground states corre-
sponding to the k! different feasible configurations of rooks.
Previous work [4] demonstrated that these ground states
can be obtained by a quantum annealer. The high ground
state degeneracy of the k-rooks Hamiltonian reflects the high
degree of symmetry of the underlying problem.

This degeneracy can be broken by the addition of a bias to the
linear term. We define

qkRB = qkR + qb, (30)

where qb is a k2 × 1 column vector whose elements corre-
spond to costs for each space on the chess board (or equiv-
alently to an on-site bias in the Ising Hamiltonian HP ). We
find that the addition of this bias term leads to a structured
low-energy manifold of feasible states.

Feasible configurations for the k-rooks problem

In this section, we obtain the low-energy costs and con-
figurations of the k-rooks and MTDA systems using a D-
Wave 2000Q QPU. For the k-rooks experiments we specify
a chain strength of 8. To stimulate more rapid mixing to
low-energy configurations, we use reverse annealing with an
initial configuration of rooks along the diagonal and a pause-
and-quench [14], [15] annealing schedule. Specifically, we
anneal to the pause point at s = 0.45 in 5 µs, pause at that
point for 93 µs, and then quench to the final Hamiltonian in
1 µs (for a total anneal time of 99 µs). Fig. 4 demonstrates
the potential utility of reverse annealing and different pause
points for a small number of shots (104). See the last
paragraph of this section for further discussion.

In Fig. 2, we show the the distribution of unique feasible
states that D-Wave finds in 106 shots for different variations
of the k-rooks problem. These histograms show the density
of annealed states. As the number of shots is increased,
the probability of obtaining all feasible states empirically
is found to approach unity (see Fig. 3). The counts in
Fig. 2 correspond to the total unique feasible states found.
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Figure 3: Unique feasible states accumulated over shots for
different configurations of k-rooks (r = random bias, c =
clustered)

Figure 4: Dependence on anneal schedule of the number of
unique feasible states found in 104 shots for k = 6 rooks and
random Gaussian bias.

Generating a good solution to the MTDA problem relies
on finding as many of the feasible states as possible, but
the frequency with which each of those states occur in the
returned shots is not relevant.

In Figs. 2 and 3, we call certain k-rooks variations “random”
(“r”) or “clustered” (“c”). This refers to the on-site bias (qb
in Eqn. 30) applied to each square of the kxk board. In the
random variations, the bias is drawn from a Gaussian distribu-
tion qb ∼ N (0, 0.1) homogeneously across the entire board.
For the clustered variations, the signs of the randomly drawn
biases are adjusted so that certain blocks along the diagonal
have considerably smaller bias (i.e., contribute lower energy)
than squares outside those blocks. Since the k-rooks system
is equivalent to the MTDA problem with no misses or false
alarms, this biased variation models a system where there are
several clusters of targets and measurements which are harder
to disambiguate than those from cluster to cluster. Feasible
states that respect the block structure have lower energy than
others, as reflected in the longer left-tail in the (b) and (d)
histograms of Fig. 2. For the 6-rooks case the block sizes are
[1, 2, 3] and for the 7-rooks case they are [2, 2, 3].

Fig. 3 shows, for the k-rooks problem, the fraction of
feasible states found by quantum annealing as a function
of the number of shots ns for several different values of k

and for different bias variations. Although the proportion of
total states that are feasible (k!/2k

2

) decreases rapidly as k
increases, we find a remarkably large fraction of the possible
feasible states: for 6-rooks, feasible states represent about
10−8 of the total states; for 7-rooks, the fraction drops to
9× 10−12. For both k = 6 and k = 7, the number of shots
required for each bias variation (random vs. clustered) is very
similar. Fig. 3 demonstrates for the k-rooks problem that
DQA will find the feasible configurations even when they are
like needles “lost” in a haystack of infeasible configurations.

As noted in the previous section, anneal parameter selection
plays a critical role in obtaining as large a fraction of feasible
states as possible. Using a reverse anneal pause-and-quench
schedule, we found that the fraction of feasible states found
depended strongly on the pause point (Fig. 4). Fig. 4 shows
a slow rise as s increases to a sharp peak at s = .45 and an
immediate fall-off afterwards in the fraction of feasible states
found. In Fig. 4, we run anneals of 10,000 shots on a D-
Wave 2000Q for a 6-rooks problem with random on-site bias,
for every pause point in a grid of resolution 0.025.

6. MULTISTEP BAYESIAN RECURSION WITH
QUANTUM ANNEALING

In this section the DQA algorithm discussed in Sec. 4 is used
recursively to find feasible assignments. The DQA generated
assignments are passed to a classical computer to find the
track estimates via the JPDA recursion given in Sec. 2. The
recursion is closed by passing the estimated tracks back to
the DQA algorithm to find feasible assignments for the next
scan. To our knowledge, this is the first demonstration of
a Bayesian hybrid quantum-classical multiple target tracking
filter.

The MTDA Hamiltonian

The Ising formulation of the MTDA problem comprises two
different components in the problem Hamiltonian HP . The
first is a quadratic term that constrains the association of at
most one target to each detection and at most one detection to
each target. The second is a linear term that accounts for the
cost of target-detection misassignment based on the negative
log-likelihood. The linear term also contains the linear part
of the association constraints, similar to Eqn. (25). Let
γ = vec(Γ) be as defined by Eqn. (9) from our previous
work [4], and let c > 0 be given. Then the quadratic term
that constrains the association of at most one target to each
detection and at most one detection to each target leads to a
modified form of the k-rooks cost matrix

QMTDA = c (W ′r +W ′c), (31)

and the second term gives

qMTDA = c (θ′r + θ′c) + γ , (32)

where W ′r, W ′c, θ′r, and θ′c (defined below) are similar to
the corresponding k-rooks constraints but are modified to
allow for missed detections and false alarms. The cost
constraint coefficient c sets the overall energy scale of the
constraint terms; higher values correspond to more stringent
enforcement of the feasibility constraints.

With minor changes to Eqns. (21) and (22), we define the

6



Figure 5: Assignments from Multi-Step MTDA performed using DQA. � = target, ∗ = measurement, • = clutter. (a) Scan 1,
Assignment 1, weight = 0.49596. (b) Scan 1, Assignment 2, weight = 0.42746. (c) Scan 1, Assignment 3, weight = 0.02806.
(d) Scan 1, Assignment 4, weight = 0.02418. (e) Scan 2, Assignment 1, weight = 0.73170. (f) Scan 2, Assignment 2, weight =
0.12453. (g) Scan 2, Assignment 3, weight = 0.10950. (h) Scan 2, Assignment 4, weight = 0.02210.

following matrices:

10(k) ≡ k × 1 col vector of ones with zero in first entry

= (0 1 1 · · · 1)
T (33)

I0(k) ≡ k × k identity matrix with zero in (1, 1) entry

=


0 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1

 (34)

For N ≥ 1 targets and M ≥ 0 measurements,

W ′r = I0(M + 1)⊗ J(N + 1)

W ′c = J(M + 1)⊗ I0(N + 1)

θ′r = (2N − 2)
[
10(M + 1)⊗ 1(N + 1)

]
θ′c = (2M − 2)

[
1(M + 1)⊗ 10(N + 1)

]
. (35)

We note that the MTDA constraint matrices in Eqn. (35)
provide the correct expression of the matrices given in [1].

Results for Hybrid Quantum/Classical DQA/JPDA

We consider an N = 4 target tracking problem over multiple
time scans. We take the PPP clutter model described in
Sec. 2 with λ = 1 mean clutter measurements per scan.
The prior object state for each target n is instantiated at
reference time t1 = 1 rather than t0 = 0. The prior PDF
is assumed to be normally distributed with mean x̂n1|1 equal

to the corresponding ground truth at time t1 and diagonal
covariance Pn

1|1 = diag(252, 52, 252, 52); see Eqn. (1). At
each time scan, a cost matrix Γ is derived from the posterior
assignment Prk{S|yk} in Eqn. (4) and converted into a linear
bias γ in Eqn. (32). The related MTDA model (with c = 2) is
then solved on a D-Wave 2000Q QPU using ns = 104 shots.
All feasible configurations (those satisfying Drummond’s “at
most one measurement per target per scan rule”) that are
returned by the DQA are then passed back to the classical
JPDA tracker. They are then assigned weights according to
Prk{S|yk} and used to generate the prior PDF for the next
scan.

In Fig. 5 we show the measurements and ground truth
locations for the top four assignments (rank-ordered by their
posterior weight) for two consecutive scans. Square icons
show the ground truth locations, stars show the measurement
locations for targets, and filled circles correspond to the
locations of clutter measurements. Colored lines connecting
ground truth and targets show the assignments returned by the
DQA algorithm. The best scoring assignment for both scans
assigns all of the targets and measurements properly.

In Fig. 6, we show tracks of all 4 targets over 19 consecutive
time scans. Targets begin clustered tightly nearly the origin
and move outward (ground truth shown as dashed lines). It is
difficult to see in the figure, but the black and magenta targets
cross roughly a quarter of the way through the simulation,
making this a difficult tracking problem. Given the measure-
ment errors, the JPDA tracker is not able to disambiguate
these targets and assigns improper custody by the end of the
scenario. The DQA generated assignments correctly reflect
this reality in the data. Tracks on the blue and red targets are
assigned properly.
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Figure 6: Hybrid DQA/classical track estimates for four
targets by over 19 time steps. Target state estimates are
the expected values obtained by summing over the DQA
generated assignments. Targets are initialized near the origin
and move outward. Pd = 0.9. False alarms are uniformly
distributed and Poisson (λ = 1). (dashed lines = ground truth)

7. CONCLUDING REMARKS
In this paper we have demonstrated that diabatic quantum
annealing can be used to efficiently explore the space of low-
energy states for a wide range of Ising model Hamiltonians
that are relevant for multi-target data association problems.
These low-energy states correspond to nearly-optimal fea-
sible assignments, and thus they can be summed over to
compute Bayesian mean state estimators. Moreover, as seen
in Fig. 6, this can yield accurate results for a non-trivial
tracking problem, thereby concretely establishing the utility
of our novel hybrid quantum/classical approach to a wide
class of tracking problems.

One crucial point worth emphasizing is that the feasible low-
energy states comprise only a tiny fraction of the full state
space in the models explored in this work. In particular, for
the k-rooks problem with k ≥ 6, fewer than one in every 108

states represent feasible data associations, which makes clas-
sical approaches for finding such associations prohibitively
expensive. Our DQA-based approach, however, yields almost
all of these feasible associations for the k = 6 and k = 7
problems. Our approach to DQA-based feasible state iden-
tification will naturally extend to other models relevant for
tracking problems, and we look forward to exploring these
possibilities in upcoming work.

The efficiency of using DQA to find feasible states hinges
on the selection of annealing schedules and annealing times
that break adiabaticity “softly” enough to avoid annealing
to high-energy states. As such, it would be worthwhile to
develop a systematic and rigorous approach for determining
how best to select the annealing parameters for any given
MTDA problem. This can be done via a path integral Monte
Carlo approach, wherein the full quantum time evolution of
the Ising model is simulated by doing classical annealing on
a large number of “replica” copies of the original model [16].
We leave such an analysis to future work.
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