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Abstract   In the initial alignment of shaking base, Kalman filter is easy to diverge, and the alignment 

result is poor. Many scholars introduce various nonlinear filtering methods to solve this problem, but these 

filtering methods not only have large amount of calculation, but also are low accuracy. Based on the problem, an 

improved adaptive Kalman filter (IAKF) algorithm is proposed to complete the initial alignment of the shaking 

base. The experimental results show that the improved algorithm has high anti-interference and anti-divergence 

ability. Under the simulation conditions, pitch, roll and heading errors can be stabilized at about 10 degrees. The 

real measurement with Redmi K30Pro mobile phone shows that the alignment result of the improved algorithm 

is consistent, and the difference of multiple alignment results is stable within 5 degrees, while the difference of 

traditional method is more than 20 degrees. It can be applied in smart phone navigation with the strapdown 

inertial navigation system. 

Keywords  Moving Base · Initial Alignment · IAKF · Sequential Filter · Filter 

Divergence·Smartphone 

 

 

1 Introduction 

 

The strapdown inertial navigation system (SINS) uses the gyroscope and accelerometer data to calculate the 

attitude, speed and position of the carrier [1]. It can work independently without relying on external information, 

and it will not radiate any information to the outside world during work [2] [3]. Because of its low cost and 

portable equipment, it has developed rapidly once it is proposed, and has a very important position in the 

navigation field. 

Before SINS starts to work because the carrier coordinate system is completely unknown to the navigation 

reference coordinate system, the initial alignment is required [4] [5], that is, SINS needs to be determined before 

starting work. The spatial orientation of the carrier coordinate system relative to the navigation reference 

coordinate system (generally the geographic coordinate system with the three-axis pointing to the "North-East 

Sky") is essentially the process of finding the navigation reference coordinate system. The accuracy of the initial 

alignment is critical to the performance of the subsequent inertial navigation, and the poor alignment effect will 

cause the subsequent inertial navigation solution to quickly diverge and lose its meaning. At the same time, the 

time consumption of alignment is also an important criterion. In the military field, if the alignment time is too 
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long, even if the result is excellent, it is meaningless. Therefore, how to complete the initial alignment quickly 

and accurately has always been a hot topic. 

The initial alignment of SINS can usually be divided into two stages [6]: coarse alignment stage and fine 

alignment stage. In the coarse alignment stage, the measurement output of the inertial device is usually used to 

obtain a rough matrix of the initial attitude; in the alignment stage, an algorithm is used to estimate the 

misalignment angle of the coarse alignment result to further correct the error of the coarse alignment. 

At present, there are many methods used in the fine alignment stage. The most commonly used method is 

the Kalman filter method based on the "prediction + correction" idea [7] [8]. The error equation is established 

based on the dynamic model to determine the attitude parameters, and related error sources are estimated and 

compensated in real time. However, Kalman filter is usually only suitable for linear systems and is very sensitive 

to system parameters and noise parameters. Kalman filter can obtain the optimal state estimation only when the 

system's result parameters and noise statistics are known accurately. However, in actual SINS applications, due 

to the continuous changes in the surrounding environment, it is impossible to obtain accurate system result 

parameters and noise statistical characteristic parameters. Usually, the estimated measurement noise variance 

matrix parameters may be different from the empirical value. In this case, the accuracy of the Kalman filter will 

be severely limited, and even cause divergence. Using inaccurate measurement noise parameters for Kalman 

filter will decrease the accuracy and speed of the results. Based on this, many scholars have proposed different 

improved filtering methods. In [9], an improved CKF based on Bayesian theory and spherical diameter criterion 

is used to ensure the stability of the filtering process and further improve the calculation speed of traditional 

CKF. In [10], an algorithm based on the combination of innovation adaptive estimation and extended Kalman 

filter is proposed for alignment, but this method requires GPS information to assist in alignment, and the 

algorithm is complex to implement, the equipment structure is complex, and the use of scenarios is popularized. 

In [11], the iterative process of measuring noise covariance is re-derived, combined with the variational adaptive 

algorithm to improve the Kalman filter algorithm, which improves the computational efficiency. 

Up to now, many adaptive estimation algorithms [12] have been used to estimate the noise parameters in 

the Kalman filter process to suppress the divergence of the Kalman filter, such as innovation-based AKF [13], 

the expectation maximization- based AKF [14] etc. There are also many variants of Kalman filtering and fusion 

filtering algorithms to suppress divergence, such as Unscented Kalman Filter (UKF) [15], Extended Kalman 

Filter (EKF) [16], Elimination of Kalman filter [17], genetic filter algorithm, and so on. 

The improved adaptive Kalman filter algorithm proposed in the paper uses the update of the noise 

covariance matrix in the Kalman filter process as the entry point. In the update process, the sequential filtering 

idea is used for group update, and fault detection and judgment are performed for each update. According to the 

results of the evaluation, different update methods are selected to improve the stability of the filter, and then the 

control function is added to the gain matrix calculation of the Kalman filter to accelerate the speed of 

approximating the true value. 

The structure of this paper is as follows. Section 2 describes the establishment of the initial alignment 

model of SINS and the related work of filtering algorithm derivation. In section 3, the experimental simulation 

results and discussion are given. Finally, section 4 summarizes the conclusions. 

 

2 Initial Alignment Model Establishment and Filtering Algorithm Derivation 
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The flow chart of SINS is shown in Fig. 1. 

 

Fig. 1 Flow chart of SINS 

 

The system model in this paper is based on Yan Gongmin's simplified linear SINS error model [18], and the 

model is described as follows: 
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The above model is the fine alignment model used in this paper for initial alignment under shaking 

interference, and the subsequent alignment algorithm is based on this model. 

2.1 Standard Kalman filter 

Assuming a discrete linear system, its state equation and measurement equation are shown in (2): 
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where xk is the state vector, zk is the measurement vector, Φk|k-1 represents the state transition matrix, Гk is the 

noise allocation matrix, and Hk notes Measurement matrix, wk represents system noise, vk is measurement noise. 

And meet the following conditions: ,0][,][,0][  kkkj

T

jkk EEE vQwww   ,][ kkj

T

jkE Rvv   

0][ T

jkE vw , where δkj is the Dirac function. 

In a discrete linear system, the optimal estimated value of the state vector xk is kx̂ , and Kalman filter uses 

the measurement vector zk to pass the following five steps to obtain this optimal estimate: 
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(1) The one-step prediction calculation process of the state is as follows: 

11|1|
ˆˆ   kkkkk xΦx  

(2) Calculate the one-step prediction mean square error matrix: 

T

kkk

T

kkkkkkk 1111|11|1|   ΓQΓΦPΦP  

(3) Calculate the weighted value of the previous estimated value and the difference between the measured 

value and the estimated value, also called the filter gain matrix: 

  1

1|1|



  k

T

kkkk

T

kkkk RHPHHPK  

(4) The optimal state estimation can be calculated by the following equation: 

)ˆ(ˆˆ
1|1|   kkkkkkkk xHzKxx  

(5) Calculate the state estimation mean square error matrix: 

1|)(  kkkkk PHKIP  

Summarized as follows: 
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If the measurement prediction is 1|1|
ˆˆ   kkkkk xHz , the covariance between the state prediction error and 

the measurement prediction error is 1|1|,
ˆ[(   kkkkxy E xP  

T

kkkk )]ˆ)( 1| zzx   . Then there is (4): 

])ˆ)(ˆ[( 1|1|1|,
T

kkkkkkkkkkkxy E vxHxHxxP    
T
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Measure the mean square error of the prediction error as ])ˆ)(ˆ[( 1|1|1|,
T

kkkkkkkky E zzzzP   , then 

])ˆ)(ˆ[( 1|1|1|,
T

kkkkkkkkkkkkkky E vxHxHvxHxHP    

][])ˆ)(ˆ[( 1|1|
T

kk
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T
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Substituting (4) and (5) into the above filter gain calculation equation, we can get (6): 

1
1|,1|,


 kkykkxyk PPK                              (6) 

The state estimation mean square error matrix Pk can be written as (7): 

T

kkykkkk KPKPP 1,1|                              (7) 

In summary, the Kalman filter recurrence equation can also be written as following: 
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2.2 Combining sequential inertial filtering to improve adaptive Kalman filtering 

In Kalman filtering, the equation for measuring the prediction error (that is innovation) is (9): 

kkkkkkkkkkkkkkk VXHXHVXHZZZ   1|1|1|1|
ˆˆˆ~

              (9) 

When the state is initially selected unbiased, the state one-step prediction error 1|

~
kkX  s unbiased, and 

then the mean value of measurement noise Vk is zero. We know that the mean value of innovation 1|

~
kkZ  is also 

zero. Further considering that 1|

~
kkX  and Vk are uncorrelated with each other, the variance of both sides of (9) 

is calculated at the same time. We can get (10): 
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Shift the term to obtain the measurement noise variance matrix Rk in (11): 
T
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In (11), ]
~~

[ 1|1|
T

kkkkE  ZZ  theoretically represents the lumped average of random sequences. In this paper, 

time average is used instead, and the equal-weighted recursive estimation method of Rk is constructed in (12): 
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Among them, the initial value 0R̂ is the variance matrix that matches the reality. 

In (12), when k→∞, there is 1/k→0, that is, the adaptive ability will gradually weaken after a long period of 

filtering until the adaptive effect is almost lost. In order to always maintain an appropriate size of adaptive 

ability, this paper combines the adaptive filtering to change the equal weighted equation to the following 

exponential weighted average (13) and (14): 

)
~~

(ˆ)1(ˆ
1|1|1|1

T

kkkk

T

kkkkkkkk HPHZZRR                          (13) 

bk

k
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                                    (14) 

where, the paper sets the initial value β0=1, and the attenuation factor b is 0.95. Adjusting the size of the 

attenuation factor can control the algorithm's adaptive ability to the new measured noise changes. The smaller 

the value, the stronger the adaptive ability. 
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Observation (13), if the theoretical modeling value is greater than the measurement noise of the actual 

system,
T

kkkk 1|1|

~~
 ZZ  will be relatively small; if the initial state noise is too large, 

T

kkkk HPH 1|   will be 

relatively large. The above situations have a chance to cause 
T

kkkk

T

kkkk HPHZZ 1|1|1|

~~
  <0, so that it is easy to 

make kR̂  loses positive definiteness to cause abnormal filtering. This paper originals from the idea of fault 

detection and isolation, adopts the sequential filtering method to perform sequential measurement update on the 

noise matrix kR̂ , and adds a detection mechanism in the update process according to different. The detection 

results choose different update calculation methods to limit the size of each element of kR̂  diagonal. The 

specific implementation is as follows: 

Firstly, the measurement equation for sequential update of the i-th scalar is (15): 
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Through the above processing, the measurement noise 
)(ˆ i

kR  can always be limited to the interval 

[
)(

min
iR ,

)(
max
iR ], which has better adaptive ability and filtering reliability. In the paper, the initial value of Rmin is 

set to 0.01*R0, and the initial value of Rmax is set to 100*R0. 

Secondly, in order to add a large number of measurements to the state estimation, the paper combines the 

fading factor filtering algorithm to improve the process of gain matrix update in the Kalman filtering process. 

From (10), if the modeling is accurate, the variance matrix of the innovation sequence of the standard Kalman 

filter can be written as (18): 

k
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From the real filtered innovation time series, the following variance matrix is estimated (19): 

T
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  ZZCC                            (19) 

(18) and (17) should be consistent, therefore 
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If the system parameters 1| kkΦ , 
T

k 1Γ , Hk, Qk or Rk is not accurate enough, as the filtering progresses, 

the accuracy of the state estimation may deteriorate, leading to a mismatch of innovation. Therefore, the 

calculation method of the state estimation mean square error matrix Pk-1 needs to be adjusted. Modify the above 

(21) as follows (22): 

T

k

T

kkkkkkkk

T

k

T

kkkkk HΦPΦHRHΓQΓHC 1|11|111 )(ˆ
               (22) 

Perform matrix trace calculation on both ends of (22) at the same time, considering that the proportional 

coefficient λk should not be less than 1, we can get (23) 

)
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where, 

k

T
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kkkkkkN RHΓQΓHC   111
ˆ                     

T

k

T

kkkkkkkM HΦPΦH 1|11|                            (24) 

Therefore, the state estimation mean square error matrix Pk-1 can be calculated as follows (25): 

T

kkk

T

kkkkkkkk 1111|11|1| )(   ΓQΓΦPΦP                      (25) 

It can be seen that when the innovation is mismatched, λk >1, (25) will amplify Pk-1 so that the filter gain Kk 

becomes larger, and a large number of test pairs are added. The correction effect of the state estimation is to 

track the changes of the measurement more quickly; when there is no innovation mismatch λk =1, (25) is the 

same as before the improvement, and it also has the optimal state estimation. 

The IAKF process in this paper is following: 
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3. Experimental Verification 

3.1 Matlab simulation verification 
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The simulation data is generated by Matlab, IMU (inertial measure unit) data with swaying interference. 

The sloshing interference setting is shown in (28), the interference parameter setting and sensor parameters is 

shown in table 1 and 2 respectively. 
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              (28) 

 

Table 1 The parameters in oscillating base generator 

Parameters Values 

Amplitudes pitchm=5º, rollm=5º, yawm=5º 

Periods TP=14s, TR=16s, TY=18s  

Initial phase Pitch0=5º, roll0=5º, yaw0=5º 

Initial angles Pitch1=5º, roll1=5º, yaw1=5º 

Discrete time Ts=0.01s 

Simulation time T=600s 

 

Table 2 The sensor specifications of SINS 

Sensors Constant bias Random noise 

Three-axis gyro 10°/h 1°/h 

Three-axis accelerometer  1mg 0.1mg 

 

The simulation results are in Fig. 2. 

 

Fig. 2 Comparison chart of fine alignment angle under shaking base. 

 

Fig. 2 is a comparison diagram of the angle alignment results of the classic Kalman filter and IAKF in the 

paper. The yellow line REF in Fig. 2 represents the true value, and Fig. 3 is the error comparison. It can be seen 



 

9 

that the improved algorithm can estimate the attitude angle well, and the convergence accuracy is high after 

about 100s. The pitch, roll and heading error are basically kept within 10 divisions, while the Kalman filter has a 

large error in the estimation of the heading, and the result is poor. Moreover, it cannot converge to the true value 

well, and the work effect is not ideal. The reason is mainly because the Kalman filter has high requirements on 

the accuracy of model construction, and the sensitivity of noise parameters and system parameters is high so that 

it is easily affected by these uncertain parameters. IAKF reduces the effect of the Kalman filter. The dependence 

of these parameters has higher robustness and is more suitable for practical use. 

 

Fig. 3 Comparison chart of precision alignment error under shaking base. 

 

Then, this paper changed the shaking condition settings, increased the oscillation amplitude and period, set 

the oscillation amplitude to 6 degrees, and the period at 24s. The simulation results are in Fig. 4. 

It can be seen from Fig. 4 that after the shaking interference is increased, the Kalman filter leads to a 

divergence phenomenon, and the alignment result results to a malformed waveform, which can no longer reflect 

the alignment result. The result is not even as high as the coarse alignment accuracy, and the fine alignment is 

lost notably. 
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Fig. 4 Comparison of alignment errors with changing shaking conditions. 

In order to better illustrate the anti-jamming improvement effect of the proposed method in the paper, the 

paper changes the oscillation frequency on the basis of the same oscillation amplitude to do 2 sets of comparison 

simulations. The average value of 200s alignment results under the same conditions is selected as the result of 

each simulation. The result is shown in table 3 (min represents 1/60 degrees). 

Table 3 Comparison table of results of two filtering methods under different oscillation conditions 

 ΦE Mean ΦN Mean ΦU Mean 

KF /min IAKF/min KF/min IAKF/min KF/min IAKF/min 

The amplitude 

is 3°. 

Cycle 14s 10.02 -3.13 -2.56 1.65 -40.96 4.85 

Cycle 24s 50.64 -4.65 -98.65 -5.64 -519.65 2.68 

Cycle 34s -150.32 -8.76 90.68 -6.78 -915.62 2.46 

Oscillation 

period is 24s. 

Amplitude 2° 45.86 -4.89 -70.96 -5.14 -436.52 2.46 

Amplitude 4° 76.58 -12.62 -80.65 -11.34 -550.63 3.56 

Amplitude 6° -156.53 -15.62 -105.62 -12.65 -736.48 7.64 

 

It can be seen from table 3 that the alignment result of the classic KF changes with the interference, and 

fluctuates greatly, especially after the interference amplitude becomes larger and the interference frequency 

decreases. The alignment result has diverged and lost its reference. This is mainly because KF filtering is easily 

affected by the historical value. As the interference frequency decreases, the historical value changes slowly so 

that the historical value has a stronger and stronger interference effect on the result, resulting in a large deviation 

of the result. IAKF alignment results show little fluctuations, and the simulation results are basically stable 
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within 10 min. The improved algorithm has greatly improved the correction of large swings and historical 

values. The result is obviously better than the classic Kalman filter, and the anti-interference ability is very good. 

3.2 Real measurement verification 

The paper selects Redmi K30Pro mobile phone as the data acquisition hardware tool, and uses Matlab 

mobile phone version as the software tool to place the mobile phone horizontally on the horizontal cooling fan, 

and then adjust the fan's rotation rate as the main source of shaking. The placement method is shown in Fig. 5. 

From left to right and top to bottom, there are corresponding schematic diagrams of directions 1, 2, 3, and 4 

respectively. The base is an adjustable speed fan, and a Redmi phone is on the top of the fan. 

 

  
 

  
 

Fig. 5 Placement diagram. 

A total of four azimuth data were collected, and five sets of data were collected for each azimuth. We used 

IAKF in the paper and classic Kalman filter do initial alignment experiments. The coarse alignment stage uses 

the same method, and the same coarse alignment result is used as the fine alignment input. The results are shown 

in Fig. 6 ~ 8. 

 

Fig. 6 The result of five-time pitch alignment of azimuth three. 
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Fig. 7 The result of five-time roll alignment of azimuth three. 
 

 
Fig. 8 The result of five-time heading alignment of azimuth one. 

 

The pitch and roll of azimuth 2 to azimuth 4 are basically the same as the waveform of azimuth 1, and the 

comparison results of the two methods are also basically the same, which the convergence consistency is 

relatively good. The following mainly lists the heading comparison of the other three azimuths in Fig. 9 ~ 11. 

 

Fig. 9 The result of five-time heading alignment of azimuth two. 
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Fig. 10 The result of five-time heading alignment of azimuth three. 
 

 

Fig. 11 The result of five-time heading alignment of azimuth four. 
 

In order to further verify the effect of the improved algorithm, Monte Carlo simulation is carried out for the 

data collected from four directions. Each azimuth data is simulated for 1000 times, and the mean square error is 

calculated. The test results are shown in Fig. 12 ~ 15. 

 

Fig. 12 RMSE result of Monte Carlo simulation of Azimuth one. 
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Fig. 13 RMSE result of Monte Carlo simulation of Azimuth two. 
 

 

Fig. 14 RMSE result of Monte Carlo simulation of Azimuth three. 

 

Fig. 15 RMSE result of Monte Carlo simulation of Azimuth four. 
 

 

The inertial sensor of the mobile phone is a MEMS series sensor with a slightly lower accuracy, and the 

estimation of the heading has a large deviation and inaccuracy, but it can be used to judge the stability of the 

algorithm. The two algorithms use the same data, the same precise input, and judge the pros and cons based on 

the consistency of the final results. It can be seen that the improved algorithm results have higher convergence 

consistency and relatively stable results, while the traditional Kalman filtering algorithm has poor convergence 
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consistency. Although the final result of each curve has become smooth and stable, there is a difference between 

the curves. The difference is large, it cannot reflect the alignment result well, and the credibility is low. 

The improved algorithm can detect the stability of the filtering, and when the filtering abnormality is 

detected, the noise parameters in the filtering process can be adjusted to avoid filtering divergence. Moreover, 

the improved algorithm increases the correction effect of the measurement on the state estimation, and can 

quickly reduce the influence of the historical value with low credibility, and further increase the reliability of the 

result. 

 

4. Conclusion 

This paper proposes an improved Kalman filter algorithm (IAKF) based on the initial alignment under the 

shaking base. The traditional Kalman filter is prone to divergence anomalies due to inaccurate modeling. To 

solve this problem, this paper combines the sequence inertial filtering algorithm to improve the filter noise 

parameter update process, and adds a filter anomaly detection mechanism based on the detection results. The 

update mode corresponding to different selections suppresses the filtering divergence to a certain extent and 

reduces the dependence on the accuracy of the model parameters. In addition, the Kalman filter gain matrix 

update method was improved by combining the fading factor filtering, which increased the correction effect of 

the measurement on the state estimation. The results of experiments show that the improved method can 

approximate the true value faster and reduce the alignment time. The proposed method can be applied in smart 

phone navigation with the strapdown inertial navigation system, such as vehicle-mounted inertial navigation, 

unmanned aerial vehicle, person navigation, and so on. 
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