
A SDN Solution for System-on-Chip World
Soultana Ellinidou∗‡, Gaurav Sharma†‡, Jean-Michel Dricot∗‡ and Olivier Markowitch†‡

∗Wireless Communications Group – OPERA Department
† QualSec Group – Computer Science Department

‡Cyber Security Research Center
Université Libre de Bruxelles, Belgium

{soultana.ellinidou, gsharma, jdricot, olivier.markowitch}@ulb.ac.be

Abstract—System on chips (SoCs) are all around us in today’s
world. Therefore, in this paper we propose a flexible, technology-
aware SoC design, named as Cloud-of-Chips (CoC), which is able
to change its characteristics, such as routing logic, transmission
paths, priorities, IC clustering, etc. We focus particularly on
inside communication of CoC architecture. The basic idea of CoC
is the creation of an architecture, which will be able to support
all the requirements of a vast number of todays applications by
adopting and changing its characteristics according to them. The
valorization perspectives are of importance since the outcomes
of this research will be applicable for embedded systems, real-
time systems, communication systems, as well as for mainstream
systems such as Internet-of-Things and Internet-of-Everything.
As far as the inside communication of our CoC platform is
concerned, we leverage on algorithms and strategies developed
within the field of Software Defined Networking (SDN), which
was introduced to deal with hardware redesign and ultimately
provide cloud-like flexibility. At the end, we describe registration
and authentication of every entity in our network.

Index Terms—SDN, SoC, P2P communication, ID-based Cryp-
tosystem

I. INTRODUCTION

The rise of new computing paradigms such as Internet-
of-Things (IoT) and Internet-of-Everything (IoE) (billions of
devices foreseen in 2020) requires extremely versatile IC
(Integrated Circuit) solutions. The IoT and the IoE have been
proposed as the next revolution of digital systems application
[2]. However IoT/IoE paradigms will bring a wide variety of
applications, with highly variable volumes, for which tradi-
tional System-on-Chips (SoCs) are not capable of supporting
them.

A SoC is an integrated circuit that integrates all components
of an electronic system [6]. The SoCs provide the designers
an opportunity to optimise the system design metrics, such as:
performance, cost, size, power, and run-time. On a SoC, it is
important to efficiently and optimally address the application
requirements with respect to the system components. Further-
more the SoCs provide scalability and higher throughput for
heterogeneous multi-core systems.

Network-on-chip (NoC) is a scalable solution to address
communication problems for Multi-Processor Systems-on-
Chips (MPSoC). NoC was introduced in order to scale down
the concepts of computer networks, and be adaptable directly
on the design process of a multi-core integrated circuits.

As of today, general designs of SoC platforms for multi-core
Network-on-Chip (NoC) are usually not capable of supporting

different processing requirements such as performance, power,
reliability and response time due to the fact that most of them
are designed for specific applications. The need of a versatile
architecture, supporting a wide variety of applications (such
as Internet of Things), leads to the design of an extremely
configurable system both at design time and at run time.

The CoC refers to a large amount of interconnected ICs
(Integrated Circuits) and IC cores, which can have differ-
ent communication speeds and hierarchy levels. One of the
key challenges in the CoC paradigm is the communication
between the clusters of cores and ICs. For that reason an
interesting approach could be to adopt the algorithms and
strategies developed within the field of SDN. SDN emerged
to support the dynamic nature of future network functions
and intelligent applications while lowering operating costs
through simplified hardware, software and management [12].
The approach proposed by the SDN paradigm is that the data
travels across multiple nodes of the network and efficient and
effective data transfer is supported by a centralized controller.
The forwarding decisions are done first in the controller and
then moved down to the overseen switches which simply ex-
ecute these decisions. In the SDN paradigm, switches provide
vendor-agnostic protocols for remote controllers, one of the
most common communication protocol is OpenFlow [7]. This
protocol provides to the controllers a way to discover the
OpenFlow-compatible switches, defines the matching rules for
the switching hardware and collects statistics from switching
devices.

As far as the communication over the CoC is concerned,
SDN turns the embedded system susceptible to security
breaches. Among others, cryptographic protocols and schemes
aim at proving confidentiality and integrity of exchanged infor-
mation. Specifically, as far as the inside CoC communication,
the fact that we have Point to Point (P2P) communication lead
us to use identity-based cryptography to assist in the security
and performance critical assignment of user identities in P2P
systems.

The rest of the paper is organised as follows: In Section II,
we refer to the related work about SoC platforms and the
main challenges about proposed approach. In Section III, we
introduce our three-levels architecture: Printed Circuit Board
(PCB) Level, IC Level, Processing Cluster (PC) Level. In
Section IV, we analyse the networking aspects of our platform
introducing a new communication protocol called SoC-Flow.

1

2018 Fifth International Conference on Software Defined Systems (SDS)

978-1-5386-5899-4/18/$31.00 ©2018 IEEE

In Section V we describe the security aspects of our platform
and it follows, the conclusion and future work in the last
Section.

II. RELATED WORK

A number of architectures and implementations for SoC
platforms is presented in literature. Nomadik is a SoC platform
aims to provide video-coding algorithms and chip implemen-
tation schemes for the mobile industry [1]. Another interested
architecture presented on OMAP-2 platform, derives from
the TI OMAP architecture, which is designed to address
mobile entertainment and communications such as all-in-one
smartphones or converged portable multimedia devices [8],
[5]. Moreover, the PNX8550 (Viper2) set-top box SoC, based
on the Philips Nexperia platform [6], is a highly integrated
multimedia SOC targeted at advanced set-top box available on
the market. Last but not least, Amazon Elastic Compute Cloud
(Amazon EC2) [11] is a web service that provides secure,
resizable computing capacity in the cloud. Amazon EC2 is a
programmable instance with Field Programmable Gate Arrays
(FPGAs) that creates custom hardware accelerations for your
applications.

The [1] and [8] focus on the mobile and smart phone
industry. However, the design in [6] is pertaining to set-top
boxes SoC. The last platform, that is presented, is a new tool
available from Amazon able to customize FPGAs for hardware
acceleration. They are all heterogeneous multi-processor plat-
forms and they use a central Reduced Instruction Set Computer
(RISC) host processor to control the system: a MIPS for Viper-
II and ARM processors for the OMAP-2 and Nomadik. As far
as the inside communication of platforms, they use different
approaches, however there are some notable similarities. All
systems depart from the classic shared-bus architecture and
use forms of interconnects that can be assimilated to partial
cross-bars. The AMBA multi-layer of the Nomadik is one
of the most known and used forms of a partial cross-bar.
Much attention has been given in the design of the Viper-II
interconnect to accommodate the different types of traffic on
the SoC and thus address the issue of the latency predictability.
The OMAP-2 interconnection takes a different approach to the
same issue. Latency predictability is obtained by allocating
pre-determined time-slices to the various connections in the
system. Finally, all three chips use combinations of caches
and of DMAs to hide the latency of the interconnect and of
the memory sub-systems.

As far as the current state of the involvement of SDN
in SoC is limited to a research state. Specifically The first
research paper found in literature is [4], where the authors
propose Software Defined Network on Chip (SDNoC) which
splits the network into control and data plane and control
logic is performed through the chip hardware design. The
authors use the SDN approach as a routing method and they
made a comparison between SDNoC and static XY routing
and dynamic DyAD routing with traditional NoC architecture.
Afterwards in [9], the authors applied SDN principles in
order to propose a SDNoC architecture. This architecture is

focused on abstraction layers and interfaces that permit its
deployment in a modular fashion and it has the potential
to overcome the NoC management problems in the many-
Core era. However the authors propose an architecture without
providing enough details about the security aspects or the
communication protocols. Another interesting contribution of
the same authors is presented on [10], where they evaluate the
SDNoC architecture among the Processing Elements(PEs) in
a many-Core system with System C simulator, focusing on the
configuration time, delay, and throughput of their architecture.

III. OUR ARCHITECTURE

The CoC architecture consists of an embedded SoC con-
nected with soft-multicore processors with the purpose of
creating an MPSoC of many-cores imported on PCB. In
order to design a heterogeneous system architecture, High
Performance (HP) cores and Low Performance (LP) cores will
be chosen to present the different perspectives. Specifically the
different cores categorized according to their performance into
Processing Clusters (PCs). Our CoC platform is comprised of a
PCB of ICs where each IC contains scalable PCs of Cores [Fig.
1]. For the communication on a PCB, on-board SDN switches
are placed on the boundaries of all ICs, in order to provide
quick communication among the ICs and corresponding PCs.
In order to provide communication among the PCs, hardware
switches with SDN functionalities are adopted. Specifically,
a SDN switch consists of Data Plane, which carries packet
traffic and Control Plane, which handles the communication
between switches and controllers. The network as a whole
will follow a mesh topology where the path of each packet is
dynamically mapped. As far as the controller we are planing
to include one controller ion IC level, running on a dedicated
PC and one central controller on PCB level, in order to carry
the traffic between ICs.

Our work is to create an automated framework which
provides a wrapping of the existing IPs (cores, processors) and
complimentary hardware services, to create efficient hardware
templates for CoC, according applications requirements. Using
a flexible interconnection for each many-core template, we
will achieve better on chip and CoC communication. With
the FPGA dynamic partial reconfiguration our system will be
able to use multiple hardware templates, at run-time according
to the application requirements. From Networking side, we
propose a new SDN protocol that supports a secure com-
munication between multiple PCs. Moreover, we consider to
use hardware on-chip SDN switches at PC level and SDN
switches which communicate with a centralised controller,
hence we will be able to apply forwarding rules for packet
switching. About the security of our system, we propose to
integrate atomic security primitives like encryption schemes,
hash functions, random bit generators and implement them in
the light of secure universal composability theory. For the sake
of clarity, we investigate now each level of our architecture
separately.

As far as the PCB Level, we consider to use the Paral-
lella FPGA board, which is a high performance, credit card

2

2018 Fifth International Conference on Software Defined Systems (SDS)

978-1-5386-5899-4/18/$31.00 ©2018 IEEE

Fig. 1. CoC architecture

sized computer based on the Epiphany multi-core chips from
Adapteva. The Parallella can be used as a standalone computer,
an embedded device or as a component in a scaled out parallel
server cluster. The Parallella includes a low power dual core
ARM A9 processor and runs several of the popular Linux
distributions, including Ubuntu.

An IC consists of multiple Processing Clusters and hard-
ware switches. That hardware switches provide high speed
inter-processor communication among PCs. It is important
to mention that there is no local shared memory and the
communication between different ICs (or clusters) is achieved
through main memory and through a SDN switch, which is
placed in the boundary of IC. As far as the hardware switches
on PC level, which connect the on-chip processor nodes, they
follow a mesh network topology and they efficiently handle
traffic patterns in high-throughput real-time applications. The
network takes advantage of spatial locality and an abundance
of short point-to-point on-chip wires to send complete trans-
actions consisting of source address, destination address, and
data in a single clock cycle. Each routing link can transfer up
to 8 bytes of data on every clock cycle, allowing 64 bytes of
data to flow through every routing node on every clock cycle,
supporting an effective bandwidth of 64 GB/sec at a mesh
operating frequency of 1GHz.

IV. SDN APPROACH

The SDN model has three layers: Application, Control, and
Networking. The three layers with some appropriate changes
are presenting in our approach in order to be adaptable in
our CoC platform . The main difference between a simple
SDN architecture and our architecture is that we are con-
sidering both network entities: switches(Network Layer) and
controllers(Control Layer) to have a session and long term key
for the registration and authentication process. Furthermore,
the fact that the switches are involved in different layers about

the hardware lead us to the creation of different controllers to
support the traffic in different hardware layers. The layers are
the following;
• Control Layer- Responsible for making decisions on how

packets should be forwarded by one or more network
devices and pushing such decisions down to the network
devices for execution. The primary job of the control
plane is to fine-tune the forwarding tables that reside in
the forwarding plane, based on the network topology or
external service requests.

• Network Layer - Responsible for monitoring, configuring,
and maintaining network devices, e.g., making decisions
regarding the state of a network device.

• Application Layer - The layer where applications and
services that define network behavior reside. Applications
that directly (or primarily) support the operation of the
forwarding are not considered part of the application
plane.

A. Openflow Protocol

OpenFlow (OF) is one of the first SDN standards. This
communication protocol provides the ability to the SDN con-
troller to interact with the forwarding plane of network devices
(switches and routers), both physical and virtual, to adapt
according to the requirements. The OF architecture consists of
three basic concepts: (1) The network is built up by OpenFlow-
compliant switches that compose the data plane; (2) the control
plane consists of one or more OpenFlow controllers; (3) a
secure control channel connects the switches with the control
plane.

An OpenFlow-compliant switch is a device which mainly
forwards packets according to flow tables. Each flow table
includes a set of flow table entries. Each flow entry consists of
match fields, counters and instructions. In our SDN network
we are going to use Open vSwitches (OvS), which are an

3

2018 Fifth International Conference on Software Defined Systems (SDS)

978-1-5386-5899-4/18/$31.00 ©2018 IEEE

9876543210 9876543210 9876543210 10

0 1 2 3

Net_ID

2 3 654 7 8 9

Entity_ID
PCB IC PC

Switch_addr
Core_addr

Fig. 2. Address format

open-source implementation of a distributed virtual multilayer
switch. The main purpose of OvS is to provide a switching
stack for hardware virtualization environments, while sup-
porting multiple protocols and standards used in computer
networks. OvS is designed to enable massive network automa-
tion through programmatic extension, while still supporting
standard management interfaces and protocols. In our case
OvS is suitable for our platform because it is the first entry
point for all the Virtual Machines (VMs) sending traffic to the
network and is the ingress point into overlay networks running
on top of physical networks in the data center. Moreover OvS
for virtual networking is considered the core element of many
datacenter SDN deployments and the main use case is multi-
tenant network virtualization. It is highly important to use
network virtualization in our platform because it solves a lot
of the networking challenges in todays data centers, helping
organizations centrally program and provision the network, on-
demand, without having to physically touch the underlying
infrastructure.

B. SoC-Flow Protocol

In order to design our new communication protocol, named
as SoC-Flow protocol, which is based on OpenFlow protocol,
some major changes should be considered. However the OF
architecture will remain the same since we are going to follow
the three basic concepts that we have already mentioned.
Moreover our main idea is to launch a more lightweight
version of OpenFlow, capable of carrying the packet traffic
in our network.

The SoC-Flow Protocol supports a secure communication
between multiple PCs and multiple ICs, which is presented in
the following section. Moreover, we consider to use harware
SDN switches inside on an IC and SDN switches in the
boundaries if and IC, which communicate with a centralised
controller, hence we will be able to apply forwarding rules for
packet switching. For that reason we took into account a new
way to address all network entities. Our addressing format is
shown at [Fig. 2]. Specifically it consists of two main fields:
the Network ID, which is 32-bits and the Entity ID, which
is 8-bits. With our approach, we can support 256 different
entities in one network. The Network ID field is comprised
of the PCB and IC fields, which are 8-bits each and the PC
field which are 16-bits. Consequently our system can support
256 different PCB and IC networks and 65.536 different PC
networks.

Source_ID

9876543210 9876543210 9876543210 10

0 1 2 3

header

Destinan_ID

Padding…..

Data

prio type padding

Fig. 3. Message format

The message layer is the core of the protocol stack. It
defines valid structure and semantics for all messages. Every
message starts with the same header structure, which is 32-
bits long [Fig. 3]. The header message format consists of
three main fields. Firstly, the version field indicates the version
of communication protocol which this message belongs. Sec-
ondly, the length field indicates where this message will end
in the byte stream starting from the first byte of the header.
Thirdly, the xid, or transaction identifier, is a unique value
used to match requests to responses. The type field which
indicates what type of message is present and how to interpret
the payload, is version dependent and we can see the messages
that it is including above. Furthermore every message that
travels across our network is consisted of the same header
of 32-bits. However the payload size depends on the length
field that is provided through header message and it can vary
according to the type of the message. Afterwords it includes
the source and destination ID following the addressing format
that we previously presented. Another field is the type of the
packet, for example it could be opcodes for a given processor,
following by some padding and the Data.

As far as the messaging layer, we are considering to use less
messages than OpenFlow Protocol, in order to have a simple
and lightweight protocol but also a simple network that would
be able to carry the traffic of our platform. The messages
that will be used in our network are shown in the pseudocode
above, our protocol contains 23 messages in contrast to the last
version of OpenFlow, which contains 35 messages. Further-
more we did not follow the last version of OpenFlow, since it
was necessary to include some messages from previous version
of OpenFlow according to our platform needs. Consequently,
there are three classes of communication in the our protocol:
controller-to-switch, asynchronous and symmetric communi-
cation. The controller-to-switch communication is responsible
for feature detection, configuration, programming the switch
and information retrieval. Asynchronous communication is
initiated by the switch and it used to inform the controller
about packet arrivals, state changes at the switch and errors.
Finally, symmetric messages are sent without solicitation from

4

2018 Fifth International Conference on Software Defined Systems (SDS)

978-1-5386-5899-4/18/$31.00 ©2018 IEEE

either side, i.e., the switch or the controller are free to initiate
the communication without solicitation from the other side.

1 enum c o c t y p e {
2

3 / * Immutable messages . * /
4 HELLO = 0 , / * Symmetr i c msg * /
5 ERROR = 1 , / * Symmetr i c msg * /
6 OFPT ECHO REQUEST = 2 , / * Symmetr i c msg * /
7 ECHO REPLY = 3 , / * Symmetr i c msg * /
8 EXPERIMENTER = 4 , / * Symmetr i c msg * /
9

10 / * S w i t c h c o n f i g u r a t i o n messages . * /
11 FEATURES REQUEST = 5 , / * C o n t r o l l e r / s w i t c h msg * /
12 FEATURES REPLY = 6 , / * C o n t r o l l e r / s w i t c h msg * /
13 GET CONFIG REQUEST = 7 , / * C o n t r o l l e r / s w i t c h msg * /
14 GET CONFIG REPLY = 8 , / * C o n t r o l l e r / s w i t c h msg * /
15 SET CONFIG = 9 , / * C o n t r o l l e r / s w i t c h msg * /
16

17 / * Asynchronous messages . * /
18 PACKET IN = 10 , / * Async msg * /
19 FLOW REMOVED = 11 , / * Async msg * /
20 PORT STATUS = 12 , / * Async msg * /
21

22 / * C o n t r o l l e r command messages . * /
23 PACKET OUT = 13 , / * C o n t r o l l e r / s w i t c h msg * /
24 FLOW MOD = 14 , / * C o n t r o l l e r / s w i t c h msg * /
25 GROUP MOD = 15 , / * C o n t r o l l e r / s w i t c h msg * /
26 PORT MOD = 16 , / * C o n t r o l l e r / s w i t c h msg * /
27 TABLE MOD = 17 , / * C o n t r o l l e r / s w i t c h msg * /
28

29 / * Queue C o n f i g u r a t i o n messages . * /
30 QUEUE GET CONFIG REQUEST= 18 , / * C o n t r o l l e r / s w i t c h msg * /
31 QUEUE GET CONFIG REPLY = 19 , / * C o n t r o l l e r / s w i t c h msg * /
32

33 / * Asynchronous message c o n f i g u r a t i o n . * /
34 GET ASYNC REQUEST = 20 , / * C o n t r o l l e r / s w i t c h msg * /
35 GET ASYNC REPLY = 21 , / * C o n t r o l l e r / s w i t c h msg * /
36 SET ASYNC = 22 , / * C o n t r o l l e r / s w i t c h msg * /
37

38 } ;

The first set is symmetric basic messages that every SDN
Protocol contains, it follows the switch configuration mes-
sages, which are messages between switch and controllers
every time that a new switch join the network or when a switch
is configured. Afterwards, there are asynchronous messages
about the packets, flows and ingress ports. Additionally, the
controller command messages contain main commands in
order to achieve a successful routing of the packets. There-
after we have the queue configuration messages, controller
role change request messages and asynchronous configuration
messages. The queue configuration messages are not included
on the last version of OpenFlow but we consider to use
them in our communication protocol. Also, the controller role
change request messages are introduced by the last versions
of OpenFlow and they are a set of messages used by the
controller to modify its role among multiple controllers on
a switch.

The main routing actions that are available through our
network are: add, forward, drop, modify. By applying these
actions in our network, we will be able to guide every
packet through our SDN network and at the same time
we will be able to transfer the packets through hardware
entities in an easy and safe way by using our SDN network.

V. SECURITY ASPECTS

As far as the security is concerned, this paper explicitly
mentions the registration and authentication of involved enti-

ties. Other security issues such as boot security (verification
and validation of hardware and software binaries), sharing and
protection of memory and, further any side channel attacks
are outside the scope of this discussion. Moreover, during the
execution of a secure application, the inside communication
among PCs needs to be encrypted and is a separate issue to
address.

Following the secure booting process, the first step is regis-
tration and the authentication of every entity in our network.
Moreover, we are planning to have the same approach for
every entity that wants to join the existing runtime cluster
of processors. In this paper, we have adopted the identity
based framework in the structured peer to peer system. The
assignment of node IDs is therefore critically important to
the efficiency and security of the P2P system. Malicious
entities that can control ID assignment can probabilistically or
deterministically assert themselves as the source of selected
content or routing messages, and can therefore subvert the
routing protocols, pollute the delivered content, or prevent
placement of legitimate content. Our idea comes from [3],
where the authors presented a P2P protocol with identity based
setting.

The communication setting in CoC framework is P2P au-
thentication whenever there is a need to expand the runtime
cluster size. The following table includes some notations used
in registration and authentication process:

TABLE I
NOTATIONS USED FOR THE SECURITY

RE: registering entity requesting for node ID and private key
NE: new entity which wants to join the cluster
EE: existed entities already part of the cluster

AddressA: address of an entity
IDA: ID of an entity
KA: private key of an entity

Signk (m): signature of the messages m with the key k
Ek(m) encryption of message m with the key k

A. Scenario: Set-up and Registration

In the setup phase, prior to operation, the trusted author-
ity (PKG-Private Key Generator, in identity based settings)
takes some input parameter (to decide the security level) and
publishes the corresponding system parameters. These system
parameters allow the entities to compute the public key from
the identifying string (e.g., IP address) of other entities.

The registration of all the entities in ID based cryptosystem,
is itself a challenging task. The PKG generates the private
keys for all the entities involved (all the processing units,
switch, controller) and deliver them securely. In the presented
CoC model, the PKG will be a tamper resistant secure core
equipped with True Random Number Generator (TRNG),
crypto accelerator and secure memory. For the sake of simpler
design, we can consider PKG inside the switch.

Recall that, as per the SDN consideration, all the PCs are
directly connected to the switch. At the time of bootstrapping,
either we have to assume there is no malicious entity

5

2018 Fifth International Conference on Software Defined Systems (SDS)

978-1-5386-5899-4/18/$31.00 ©2018 IEEE

installed on the system or a common session key has been
already exchanged between the requesting entity and PKG.
The common session key can be exchanged using some
authenticated Diffie-Hellman key exchange protocol. The
PKG generates a master secret key for himself and this
master secret key is used to derive the private key for all the
requesting entities. All the PCs will send their addresses with
some node information, to the PKG and PKG provides them
the node identity and corresponding private key. Additionally,
the PKG will send a token with a timestamp. This token can
be a signature to ensure the authenticity of the PKG. The
registration process will be as follows:

1) RE → PKG : AddressRE

2) PKG→ RE : IDRE , TS1, E(KRE ,KPKG.RE),
Sign((IDRE ‖ TS1) ,KPKG)

Note that the session key KPKG.RE is used to encrypt
the communication between PKG and Registering Entity
(RE).
Thereafter, to run an application, the operating system will
allocate some PCs to run the tasks in parallel. All the PCs
will verify the tokens received from PKG as all of them
have the public key of PKG. PCs will only be allowed to
participate in the cluster if the above token verification is
successful.

B. Scenario: When a new PC wants to join the cluster.

In the initial bootstrapping phase, a PC transmits its IP
address to a trusted entity PKG and receives the node ID,
private key and a token as proof of authentication. For the
cluster formation, all the required PCs will verify the tokens
of one another. Further, during the application running, some
more processors may be required to already running cluster.
The addition of new processors is only possible after the
token verification which is originally provided by the PKG.
More formally, we can say:
Suppose a New Entity (NE) attempts to join the cluster,
any of the neighboring Existing Entity (EE) unit, which is
already a part of the cluster, can verify the authenticity of NE.
The first two steps of the presented protocol are necessary
only when private key renewal needs to be performed. The
message exchange is as follows:

1) NE → PKG : AddressNE

2) PKG→ NE : IDNE , TS1, E(KNE ,KPKG.NE),
Sign((IDNE ‖ TS1) ,KPKG)

3) NE → EE : IDNE , TS1, Sign((IDNE ‖ TS1) ,KPKG)

VI. CONCLUSION AND FUTURE WORK

This paper introduced a new CoC platform, which consists
of interconnected ICs and IC cores. The ICs can have different
communication speeds and hierarchy levels. Furthermore, we
focused on the networking aspects of our platform by present-
ing our approach using SDN in order to provide cloud-like
flexibility but also to have a secure communication inside the

platform. At the end, we proposed a security protocol which
will be applicable for the registration and authentication of
every entity in our network.

From the networking perspective, we plan to focus on the
addressing format of every entity in order to have an efficient
and lightweight communication between the entities of our
network. Furthermore it is important to focus on the design
process of our platform before we move to the implementation
part. As an initial step we are planing to simulate an NoC-
based MPSoC platform with the help of SDN approach.
Our main idea is not only to adopt the SDN approach
but the creation of a full SDN communication protocol
that will be adaptable for the communication inside a NoC
but also for the communication of the proposed CoC platform.

ACKNOWLEDGMENT

The research has done in the context of Self-Organising
circuits For Interconnected, Secure and Template computing
(SOFIST) project, which is supported by Project ARC (Con-
certed Research Action) of Federation Wallonie-Bruxelles.

REFERENCES

[1] A Artieri, V Dalto, R Chesson, M Hopkins, and C Marco Rossi. No-
madiktm open multimedia platform for next generation mobile devices,
2003.

[2] Robert E Balfour. Building the internet of everything (ioe) for first re-
sponders. In Systems, Applications and Technology Conference (LISAT),
2015 IEEE Long Island, pages 1–6. IEEE, 2015.

[3] Kevin RB Butler, Sunam Ryu, Patrick Traynor, and Patrick D McDaniel.
Leveraging identity-based cryptography for node id assignment in struc-
tured p2p systems. IEEE Transactions on Parallel and Distributed
Systems, 20(12):1803–1815, 2009.

[4] Liu Cong, Wang Wen, and Wang Zhiying. A configurable, pro-
grammable and software-defined network on chip. In Advanced Re-
search and Technology in Industry Applications (WARTIA), 2014 IEEE
Workshop on, pages 813–816. IEEE, 2014.

[5] Peter Cumming. The ti omap? platform approach to soc. In Winning
the SOC Revolution, pages 97–118. Springer, 2003.

[6] Santanu Dutta, Rune Jensen, and Alf Rieckmann. Viper: A multiproces-
sor soc for advanced set-top box and digital tv systems. IEEE Design
Test of Computers, 18(5):21–31, 2001.

[7] Open Networking Foundation. Openflow switch specification version
1.5.0 (protocol version 0x06), 2014.

[8] Justin Helmig. Developing core software technologies for ti?s omap
platform. Texas Instruments, 2002.

[9] R Sandoval-Arechiga, JL Vazquez-Avila, R Parra-Michel, J Flores-
Troncoso, and S Ibarra-Delgado. Shifting the network-on-chip paradigm
towards a software defined network architecture. In Computational
Science and Computational Intelligence (CSCI), 2015 International
Conference on, pages 869–870. IEEE, 2015.

[10] Remberto Sandoval-Arechiga, Ramón Parra-Michel, JL Vazquez-Avila,
Jorge Flores-Troncoso, and Salvador Ibarra-Delgado. Software defined
networks-on-chip for multi/many-core systems: A performance evalu-
ation. In Architectures for Networking and Communications Systems
(ANCS), 2016 ACM/IEEE Symposium on, pages 129–130. IEEE, 2016.

[11] Amazon Web Services. Amazon ec2 f1 instances, 2017.
[12] Sakir Sezer, Sandra Scott-Hayward, Pushpinder Kaur Chouhan, Barbara

Fraser, David Lake, Jim Finnegan, Niel Viljoen, Marc Miller, and
Navneet Rao. Are we ready for sdn? implementation challenges for
software-defined networks. IEEE Communications Magazine, 51(7):36–
43, 2013.

6

2018 Fifth International Conference on Software Defined Systems (SDS)

978-1-5386-5899-4/18/$31.00 ©2018 IEEE

