
Implementing Energy Saving Algorithms for
Ethernet Link Aggregates with ONOS

Pablo Fondo-Ferreiro, Miguel Rodrı́guez-Pérez, Manuel Fernández-Veiga
atlanTTic Research Center

University of Vigo
36310 Vigo, Spain

Tel.:+34 986 813459; fax:+34 986 812116; email: pfondo@det.uvigo.es

©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1109/SDS.2018.8370432

Abstract—During the last few years, there has been plenty of
research for reducing energy consumption in telecommunication
infrastructure. However, many of the proposals remain unim-
plemented due to the lack of flexibility in legacy networks. In
this paper we demonstrate how the software defined networking
(SDN) capabilities of current networking equipment can be
used to implement some of these energy saving algorithms. In
particular, we developed an ONOS application to realize an
energy-aware traffic scheduler to a bundle link made up of
Energy Efficient Ethernet (EEE) links between two SDN switches.
We show how our application is able to dynamically adapt to the
traffic characteristics and save energy by concentrating the traffic
on as few ports as possible. This way, unused ports remain in
Low Power Idle (LPI) state most of the time, saving energy.

Index Terms—SDN, ONOS, IEEE 802.3az, Energy Efficiency

I. INTRODUCTION

Two recent trends have been shaking the networking land-
scape during the last few years. On the one hand, the seemingly
unstoppable deployment of SDN equipment and solutions in
datacenters, has provided network operators with unprecedented
flexibility. On the other hand, growing concerns about both
environmental and monetary costs of ICT infrastructure has
led to the proposal of a plethora of solutions to augment the
energy efficiency of networking equipment.

However, a great deal of interesting proposals for reducing
energy usage remain unimplemented because they either require
significant changes to fundamental networking protocols or to
the actual networking equipment, cf. [1]–[4]. We believe that
software defined networking (SDN) can be used to overcome
these limitations. In particular, having a comprehensive view
of the network status and the ability to precisely control
individual flow forwarding, can be used to define energy-
optimum paths for traversing flows, either through the whole
network domain [1]–[3] or when crossing a bundle link between
two directly connected switches [4].

Open Network Operating System (ONOS) [5] is an open
source project, designed for high availability, performance
and scalability. ONOS abstracts the particular details of the
actual SDN forwarding devices in the network, permitting
the development of technology-agnostic network applications.
These applications can obtain a global view of the network
and they can also modify the actual flow tables in real time.

In this paper, we describe an ONOS application for the
optimal distribution of network traffic among a bundle of
energy efficient Ethernet (EEE) [6] links managed by a SDN
network so that energy savings are maximized. Our application
dynamically identifies the network flows traversing the bundle
and adjusts the forwarding tables to achieve the energy optimal
share of traffic.

Although there exists an optimal way to share the traffic as
a whole among the links [4], that is the theoretical base of our
implementation, the actual assignment of individual flows to
the EEE links remains an open problem. Thus, in this paper
we have compared three different flow scheduling algorithms.
All three algorithms produce a similar share of traffic among
the links, so they achieve energy saving results very near
those predicted by the model. However, as the particular flows
assigned to the links are different, their characteristics regarding
traffic delay and loss rate differ.

The rest of this paper is structured as follows: Section II
presents the related work. Then, we proceed with the problem
statement in Section III. Section IV describes our SDN
implementation, while Section V describes some alternatives
for the implementation. Section VI summarizes the results
obtained and finally Section VII exposes the conclusions.

II. RELATED WORK

The usage of SDN networks to diminish energy usage
in computer networks has already been explored by several
authors.

A survey on energy efficiency in SDNs is presented in [7].
This survey analyzes the different components of the SDN
structure which can be dynamically configured to reduce power
consumption. The approaches analyzed include reorganizing
the flows in the network to have a small number of active
devices in the network so that the unused devices can be put
into sleep mode. When there is a low traffic load, they also
mention the possibility of putting certain ports rather than
whole devices into sleep mode. Those kind of approaches
which set devices in a low-power mode based on the current
load of the system, are usually referred to as traffic-aware.

GreenSDN, a SDN emulation environment based on Mininet
and the python based POX SDN controller, has been proposed
in [8], where they report on the difficulties they faced building
a SDN environment with capabilities of emulating the energy

ar
X

iv
:1

81
2.

01
30

5v
1

 [
cs

.N
I]

 4
 D

ec
 2

01
8

pfondo@det.uvigo.es
https://doi.org/10.1109/SDS.2018.8370432

saving protocols operating at different levels of the network.
They propose a mechanism which operates at the node
level, exploiting the Low Power Idle (LPI) mode defined by
IEEE 802.3az that is especially relevant to this paper. However,
they only consider turning on and off whole switches and not
individual interfaces when the traffic load is behind a bundle.

Another contributions in the literature about energy-efficiency
leveraging the power of OpenFlow include ElasticTree [9] and
ECODANE [10] which are data-center based proposals. Both
proposals traffic-aware mechanisms consistent in dynamically
turning links and devices on and off based on the current traffic
load of the system.

The authors in [4] have shown that, under suitable conditions,
the traffic load allocation that minimizes the energy consump-
tion in a bundle of EEE links is achieved using a water filling
algorithm. However, the proposed algorithm cannot be directly
ported to SDN. First, the proposed water filling algorithm
operates at the packet level, that is, when a switch receives
a new packet that must be sent through the bundle, it has
to decide the port used to transmit the packet based on the
current backlog of the port. However, SDN operates at the
flow level, therefore, all packets belonging to the same flow
will be forwarded via the same port. Secondly, the algorithm
needs to obtain the queue occupation of each port to classify
incoming packets, but unfortunately SDN does not provide
access to such information, to the best of our knowledge.

III. PROBLEM STATEMENT

This section describes the algorithm that minimizes the
energy consumption in a bundle of EEE links. We will briefly
summarize the results from [4] describing the optimum traffic
allocation in bundled EEE links. The authors there demonstrate
that, for certain common class of functions that characterize
the energy-consumption profile of the links, the solution to the
optimum allocation for a given offered traffic load is a simple
sequential water-filling algorithm: each link capacity is fully
used before sending traffic through a new otherwise idle link.

Luckily, the energy-consumption profile of both major modes
used to govern the use of the LPI mode (namely the frame
transmission and packet coalescing algorithms) belong to this
class of functions. In summary, to achieve the optimum energy
savings links will be in the following states: some links used
to its full capacity, some links completely idle and at most one
link transmitting packets at less than its full capacity.

Nevertheless, the optimum allocation in terms of maximum
energy savings can easily lead to packet delays growing
uncontrolled, if proper care is not taken. This issue has also
been carefully analyzed in [4], where the authors propose
modifications of the simple water-filling algorithm to control
the average delay of the packets with a bounded cost in the
energy savings.

IV. SDN BASED IMPLEMENTATION

We now proceed to describe the implementation of the
algorithm using the facilities provided by SDN switches.

The first challenge resides in the fact that while the
theoretical solution described in [4] assumes a packet level
operation our implementation will have to operate at the flow
level.

A. Flow Selection

Recall that SDN works at the flow level (e.g., OpenFlow [11]
switches are composed of flow tables), where a flow is defined
by a set of fields of the incoming packets. Therefore, the first
step is to define which fields will identify our flows. SDN allows
us to define very different levels of flow granularity: a very
coarse level of granularity will only match on the destination
MAC address or the physical input port of the packets, for
example. However, this kind of definition of the flows does
not seem to be suitable for our purpose because if deployed
in a transit network, flows will share a common small set of
exiting routers, thus limiting the variability of MAC addresses.

Since such a coarse granularity does not seem to be suitable
for our algorithm, we have to identify a finer level of granularity
that may allow us to split the traffic among the links. Moreover,
we strive to aggregate non correlated flows, so their aggregated
behavior is more stable. We have explored several levels of
granularity to identify different flows among the packets so
that we can send some flows to one port and another flows to
other port, and as a result we will be able to utilize the full
capacity of the bundle. We have explored two alternatives to
achieve this: flow tagging and field matching.

First, we have considered the possibility of having a process
at the input of our SDN network which smartly tags the packets
with a flow label, imposing the tag assigned to each packet
in a field directly matchable by ONOS (e.g., the DSCP field
in the IP header). This way we could have the packets evenly
distributed into a fixed number of flows, which would ease
the allocation of the flows to the bundle. The main drawback
of this approach is that it needs a dedicated tagger at input
nodes in the network, so we have also tried to select flows in
a distributed manner.

We would like the aggregated flows to be later assigned to a
given port to show a predictable, ideally constant, demand. To
this end, we try to aggregate independent end-to-end network
layer flows, thus defined by the source and destination IP
addresses pair of each packet. Note that, at layer 2 we could
have an insufficient number of identifiable flows (e.g., in a
transit network). On the contrary, the number of transport layer
flows can be excessively high. Consequently, the aggregation
of layer 3 flows is expected to result in a low variance in the
rate of the aggregated flows, hence being the rate of these
flows more predictable.

However, a direct mapping between a pair of source and
destination IP addresses to a flow will produce 264 different
flows, which is clearly an unacceptable huge number of
flows and obviously not scalable. Even considering only the
destination address will produce 232 different flows, which is
also unacceptably large. Thus we have chosen use only some
bits of the destination IP address to identify subflows inside
the packets destined to the same MAC address.

0 50 100 150 200 250
Flow identifier

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Or
ig

in
al

 fl
ow

s(
%

)

Figure 1. Flow distribution for the 8 first bits of the destination address.

0 50 100 150 200 250
Flow identifier

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

Or
ig

in
al

 fl
ow

s(
%

)

Figure 2. Flow distribution for the 8 last bits of the destination address.

Since we want to have a flatter distribution of the original
flows (pair of source and destination IP addresses) to the
aggregated flows, we have explored the usage of arbitrary
bitmasks over IP addresses and analyzed how the flows were
distributed.1 Specifically, we have counted how many of the
original layer 3 end-to-end flows of our trace will be contained
in each aggregated flow. The flatter results were obtained for
the last bits of the destination IP address, as shown in the
histograms of Figs. 1 and 2 (other combinations have been
tested and show similar results, thus they are omitted for the
sake of brevity).

However, although the current version of OpenFlow allows
arbitrarily bitmasking IP addresses, the ONOS controller does
not, and restricts us to mask the first bits of the IP address.
Although using the largest number of bits yields to lower
variance in the distribution of the original end-to-end flows as
shown in Fig. 3 and Tab. I, it also implies a too large number
of aggregated flows being handled by the switch. Consequently,
we will use just the 8 first bits of the destination IP address to

1The traffic traces analyzed come from the publicly available passive
monitoring CAIDA dataset [12].

Table I
VARIANCE IN THE NUMBER OF ORIGINAL FLOWS PER AGGREGATED USING

THE LAST BITS OF THE DESTINATION IP AS FLOW IDENTIFIER.

Number of bits Variance

4 7985223
6 954055
8 210447

10 26446
12 4207

define subflows inside the packets destined to a given MAC
address, yielding a maximum of 256 flows. We see this value
as a good trade-off between a small number of flows to be
manageable by the switches and a minimum value of granularity
to be able to spread the traffic among the links.

B. ONOS Application

Once we have clearly specified how the flows are defined,
we proceed to describe the SDN application that we developed.
This application has been implemented using ONOS due to it
being one of the most supported open source network operating
systems. Besides, thanks to the usage of ONOS, our algorithm
is agnostic of the SDN forwarding devices and can be directly
deployed on any SDN network.

We would like to recall that the application does not work
at the packet level but at the flow level. Consequently, when a
packet is received in a switch it will first look up the installed
flow rules and it will execute its associated functions whenever
a match is found: i.e., the specific forwarding port will be
selected. Only in the case where a packet does not yet match
any rule among those installed (because it does not belong to an
active flow) it will be sent to the controller. The controller will
then be responsible for installing the corresponding flow rule
in the switch. This behavior is the classical reactive forwarding
application. Indeed, in our application switches are initialized
without flow rules and the first packet of each flow is sent to
the controller, which knows how to forward that packet and
instructs the switch to install a flow rule for that flow, so that
the following packets of that flow are forwarded directly by
the switch at line rate, without being sent to the controller.

When a new packet which is to be forwarded by a bundle of
EEE links is received at the controller, the application selects
a random port of the bundle. This is done since the controller
lacks any previous information about the rate of this flow.2

To overcome the limitation of not being able to individually
send each packet to the adequate port as we could do with a
water-filling algorithm implemented at the packet level, our
application queries periodically the flow rules installed in the
switches and reorganizes them attempting to minimize the
energy consumption. The flow rules that send traffic to a bundle
are carefully analyzed by our algorithm. First, the application
attempts to estimate the load that each flow will transmit in the

2Note that if a packet is received at the controller necessarily this is the first
packet of a new flow, hence the controller does not have previous information
about the traffic load of this flow.

0 2 4 6 8 10 12 14 16
Flow identifier

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Or

ig
in

al
 fl

ow
s(

%
)

(a) Last 4 bits

0 10 20 30 40 50 60
Flow identifier

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

Or
ig

in
al

 fl
ow

s(
%

)

(b) Last 6 bits

0 200 400 600 800 1000
Flow identifier

0.000

0.001

0.002

0.003

0.004

Or
ig

in
al

 fl
ow

s(
%

)

(c) Last 10 bits

0 500 1000 1500 2000 2500 3000 3500 4000
Flow identifier

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

Or
ig

in
al

 fl
ow

s(
%

)

(d) Last 12 bits

Figure 3. Flow distribution for the last bits of the destination address.

next interval. Clearly, without any other source of information,
this prediction must be performed using the information of the
bytes transmitted by this flow in the previous intervals. This
information is provided by the counters that the switch stores
along with each flow rule.3 If our application stores the number
of bytes that each flow has transmitted up to that point, in the
next sampling interval we can calculate the number of bytes
transmitted in that interval as the difference between the total
number of bytes at this point and the previous stored value
for that flow. This value of bytes will be our measure of the
traffic of each flow in that interval. A scaling factor is used for
newborn flows (i.e., flows that were not present in the previous
interval) considering the fraction of the interval that each flow
has been active.

Using this information, the algorithm decides which flows
will be assigned to each port, attempting to minimize the
overall energy consumption of each switch, hence minimizing
the energy consumption of the whole network. Finally, this
modifications are instructed to the switch, which updates the

3Actually, SDN devices store counters with the number of bytes that have
matched with each flow.

flow rules in accordance.
Accordingly, the main tasks of the algorithm are two-fold:

first, estimate the load that each flow will request and secondly,
compute an energy-efficient assignation of the flows to the ports.
We will now describe the algorithms that we have implemented.

V. ASSIGNMENT ALGORITHMS

Once the application has selected the flows, the next task is
to decide the best criteria to assign the identified flows to the
set of ports belonging to the bundle.

In every interval, this algorithm estimates the traffic that
each flow will transmit in the next interval strictly based on the
bytes that have been transmitted by this flow in the previous
interval.

A. Greedy Algorithm

A straightforward way to assign the flows consists on
assigning them in order of decreasing demand, using a new
port if the flow does not fit in any of the already used flows.
The main advantage of such a simple approach is that it draws
few computation resources at the controller. This algorithm is

1 a l l o c a t e g r e e d y(f lows , p o r t s , bound=0) {
2 // Hold assigned port for each flow
3 f l o w a l l o c a t i o n[1.. | f l o w s |] = ∅
4
5 /* Sort flows by decreasing load value */
6 o r d e r e d f l o w s = s o r t(l o a d(f l o w s), DECREASING)
7
8 // Initialize occupation of the ports to 0
9 p o r t l o a d[1.. | p o r t s |] = 0

10 p o r t f l o w s[1.. | p o r t s |] = 0
11
12 for f low ∈ o r d e r e d f l o w s {
13 for p o r t ∈ p o r t s {
14 if ((p o r t f l o w s[p o r t] == 0) ||
15 (p o r t l o a d[p o r t] + l o a d(f l o w s)[f low]
16 ≤ 1 - bound/ p o r t f l o w s[p o r t])) {
17 // Update port with the load of this flow
18 p o r t l o a d[p o r t] += l o a d(f l o w s)[f low]
19 p o r t f l o w s[p o r t] += 1
20 f l o w a l l o c a t i o n[f low] = p o r t
21 break
22 }
23 }
24 }
25
26 return f l o w a l l o c a t i o n

Figure 4. Pseudocode for the Greedy Algorithms.

reminiscent of the classical water-filling approach but the unit
of filling is the flow rather than the packet.

In detail, the flows that forward packets to the bundle
are sorted in a decreasing order based on this estimation
of the traffic that will be transmitted. Then, these flows
are sequentially allocated to the ports maximizing the port
occupation: if a flow can be allocated on the port with the
highest occupation (i.e., if the sum of the estimated load of
that flow plus the estimated load of the flows already assigned
to that port is less than the capacity of the port) the flow is
assigned to that port; otherwise, the next ports are analogously
evaluated until a port where this flow can be allocated is found.
The pseudo-code for the algorithm is shown in Fig. 4.

This algorithm is expected to have a good behavior in terms
of energy consumption. Nevertheless, the algorithm does not
perform any kind of control over the amount of packets that
need to be queued on each port, requiring very great buffers
(consequently introducing a considerable delay) in order to
have a low percentage of packet losses.

B. Bounded-Greedy Algorithm

This algorithm is a variation of the previous one with the
goal of reducing the size of the buffer needed on each port for
a given packet loss ratio. The basic operation of the algorithm
is the same as in the previous, but instead of filling the ports
to their maximum capacity, we have constrained the maximum
traffic load on any link to a function of the number of flows
already allocated to it.

This way, we allow to reach higher aggregated loads on
ports with a high number of allocated flows, as the aggregated
variance of their demand is, in general, lower than that of ports
with only a few flows. The pseudo-code is also shown in Fig. 4,

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1

e
n
e
rg

y
 c

o
n
su

m
p

ti
o
n
 (

%
)

link load

Figure 5. Individual consumption of a 10 Gbit/s IEEE 802.3az interface.

where bound is the maximum amount of reserved space that
must be left in a port with just one flow allocated to it.

C. Conservative Algorithm

Unfortunately, the previous algorithms cannot obtain accept-
able results in terms of packet loss for a given buffer size. We
have implemented another energy-efficient algorithm which,
as an added benefit, minimizes the length of the transmission
queues.

This algorithm, computes the total estimated traffic load that
will be transmitted through the bundle in the next interval. This
value puts a lower bound on the number of active ports for the
next interval. Then, flows are spread evenly among all the active
links. This clearly minimizes individual link occupation, but
does not follow the water-filling algorithm. However, this does
not matter much, as will be shown later in the results section.
For a port governed by the frame transmission algorithm, the
energy usage raises very rapidly with traffic load, see Fig. 5.
So, it does not matter that much the load transmitted by each
link once it is higher than about 20 % of its nominal capacity.

To further avoid packet losses, we do not directly use the
estimated load to calculate the number of used ports, but we
first add a safety margin load 20 % to avoid cases where all
ports would be used too close to their nominal capacity.

Once we have calculated the number of ports of the bundle
that we will be using, we proceed to minimize the occupation
of each port in order to obtain an homogeneous occupation
of all the used ports: not only similar rate but also similar
number of flows. This is easily achieved sorting the flows
in a decreasing order based on the rate estimation and then
sequentially assigning each flow to the port with the lowest
occupation among the ones that will be used for this interval.
The algorithm is shown in detail in Fig. 6.

VI. EXPERIMENTAL RESULTS

The validation of the previous algorithms has been carried
out on a scenario composed of two switches interconnected
by a 5-link bundle of 10 GBASE-T interfaces. Fig. 7 shows a
snapshot of the ONOS Web GUI with the analyzed scenario,
which has been deployed with Mininet [13].

1 s a f e t y m a r g i n = 20%
2
3 a l l o c a t e c o n s e r v a t i v e(f lows , p o r t s) {
4 // Hold assigned port for each flow
5 f l o w a l l o c a t i o n[1.. | f l o w s |] = ∅
6
7 e x p e c t e d l o a d = sum(l o a d(f l o w s)) + s a f e t y m a r g i n
8 minimum ports = c e i l (e x p e c t e d l o a d)
9

10 // Only use the minimum number of ports
11 u s e d p o r t s = p o r t s[1..minimum ports]
12
13 /* Sort flows by decreasing load value */
14 o r d e r e d f l o w s = s o r t(l o a d(f l o w s), DECREASING)
15
16 // Initialize occupation of the ports to 0
17 p o r t o c c u p a t i o n[1.. | u s e d p o r t s |] = 0
18
19 for f low ∈ o r d e r e d f l o w s {
20 p o r t = g e t p o r t m i n o c c u p a t i o n(p o r t o c c u p a t i o n)
21 // Update port with the load of this flow
22 p o r t o c c u p a t i o n[p o r t] += l o a d(f l o w s)[f low]
23 f l o w a l l o c a t i o n[f low] = p o r t
24 }
25
26 return f l o w a l l o c a t i o n

Figure 6. Pseudocode for the Conservative Algorithm.

Figure 7. ONOS Web GUI with the setup of the experiment.

We have employed real traffic traces retrieved from the
publicly available passive monitoring CAIDA dataset [12],
feeding the data to the first switch so that it had to traverse
the link bundle as shown in Fig. 7. The trace we have chosen
has an average demand of about 3 Gbit/s, which is relatively
low for our bundle of 50 Gbit/s,4 so we increased the rate
tenfold to about 30 Gbit/s by reducing the inter-arrival times
by a constant factor of ten.

To obtain the energy consumption results, we have pro-
ceeded in two complementary ways. The first one consisted
on analytically calculating the expected consumption as the
average expected consumption of its constituting ports. Then,
the individual consumption of each port is calculated as the time
average of its instantaneous consumption. As our algorithms
already divide the time in constant intervals, we average

4The available traces provided by CAIDA are captured on a 10 Gbit/s
interface.

over the consumption in each interval. Finally, the energy
consumption on each interval can be calculated with several
well tested models already known in the literature [14], [15].
In particular, we have employed (1), from the model presented
in [14].

σ(ρi) = 1 − (1 − σoff)(1 − ρi)
E [Toff(ρi)]

E [Toff(ρi)] + TS + TW
, (1)

where σ(·) is the normalized energy usage, ρi is the normalized
traffic load on link i. We have set σoff = 0.1 according to several
estimates provided by different manufacturers, and TS = 2.28 µs
and TW = 4.48 µs as per the standard [16]. Besides, assuming
frame transmission mode is used in the IEEE 802.3az interfaces,
for Poisson arrivals, we have

E [Toff(ρ)] =
e−µρTS

µρ
(2)

where µ−1 is the average packet transmission duration.
We have further verified the results with a IEEE 802.3az

simulator, available for download at [17]. To this end we have
fed the exact same traffic that we sent via each port to five
instances of the simulator, to then average the results, obtaining
the global consumption. This later result is the one used in the
following figures, as it does not depend on the veracity of the
mathematical models. In any case, the differences were very
minor, further confirming the validity of the models.

Using the above formulas, the theoretical lower bound for
the energy consumption is 78.5 % when considering a packet
size of 1500 bytes. This is achieved when the traffic in the trace,
which has an average rate of 32.5 Gbit/s, is split in the bundle
as follows: 3 ports with 10 Gbit/s, one with 2.5 Gbit/s and the
remaining one completely idle, which yield 3 ports consuming
the 100 %, one consuming 83.25 % and another consuming
10 %, respectively. We obtain the global consumption of 78.5 %
as the average of these five values.

A. Experimental Setup

Although there exist several simulators such as ns-2 network
simulator, we have decided to implement our custom network
simulator in Java, available for download at [18], so that we
can share most of the relevant code with the ONOS application.

We are interested mainly in two performance metrics. Firstly,
the overall normalized energy consumption is the main metric
that we have used to validate our algorithms. On the other
hand, we have also measured the packet losses induced by our
algorithm for a given buffer size (in number of packets), i.e.,
when a buffer in a port is full of packets, new packets forwarded
to that port are discarded. Moreover, since our algorithm takes
effect after the first interval (during the first interval flows
are allocated randomly since we do not have any a priori
information about the flows) we have decided not to consider
the values of consumption and packet losses of this first interval,
which can be considered as a brief transient state.

To use as a baseline of performance to compare the results
of our algorithms with, we have implemented an equitable

 75

 80

 85

 90

 95

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

e
n
e
rg

y
 c

o
n
su

m
p

ti
o
n
 (

%
)

sampling period (seconds)

Greedy
Bounded-Greedy

Conservative
Equitable

Figure 8. Energy consumption variation with the duration of the sampling
period.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p
a
ck

e
t

lo
ss

 (
%

)

sampling period (seconds)

Greedy
Bounded-Greedy

Conservative
Equitable

Figure 9. Packet loss percentage variation with the duration of the sampling
period.

algorithm, which just homogeneously spreads the traffic among
all the ports in the bundle.

Our first experiment evaluates how the energy consumption
of our proposed algorithms varies with the duration of sampling
period. Fig. 8 shows the results of that experiment for a buffer
size of 10 000 packets.

As expected, the three algorithms outperform the equitable
algorithm in terms of energy savings, consuming almost 20 %
less. Besides, we can appreciate that the algorithms results are
very close to the analytical minimum bound for the energy
consumption. We can also appreciate that the energy savings
obtained by the greedy algorithm are slightly higher than those
of the other two algorithms, which consume almost the same.
In addition, we can notice from Fig. 8 that values lower than
0.05 seconds yield noticeably worst results than values greater
than 0.05 seconds in terms of energy consumption.

The next experiments evaluate the impact on the packet
losses induced by our algorithm. Fig. 9 shows the packet
loss percentage variation with the sampling period for a given
buffer size of 10 000 packets. Fig. 10 represents the packet
losses for different buffer sizes, for a given sampling period
of 0.5 seconds.

The impact in packet loss depicted in the figures shows

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 10 100 1000 10000 100000

p
a
ck

e
t

lo
ss

 (
%

)

buffer size(packets)

Greedy
Bounded-Greedy

Conservative
Equitable

Figure 10. Packet loss percentage variation with the buffer size.

how the conservative algorithm outperforms the other two, but
without reaching the level of the equitable one. In Fig. 9 we can
also appreciate that this values exhibited by the conservative
algorithm are indeed very close to 0 for almost any value of
the sampling period (for a buffer of 10 000 packets).

Carefully analyzing this graphs we can appreciate that
lowering the energy consumption implies incrementing the
packet losses. Therefore, both metrics cannot be simultaneously
optimized. Nevertheless, the improvement in the energy savings
achieved by greedy algorithm with respect to the conservative
one seems not to be worthy, due to the great impact in the
packet loss rate. However, although in view of Fig. 10, low
values of the sampling period such as 0.01 seconds report good
values of packet losses, this is hardly implementable in practice:
such a low sampling period would imply not only sampling
the flow tables of every switch 100 times per second, but also
sending up to 256 flow modifications every 10 ms. This is
clearly a considerable amount of control traffic and imposes
a huge number of flow modifications per second that would
barely be manageable by the switches. Therefore, for a practical
solution with a negligible performance degradation, we should
employ a sampling period of at least 0.5 seconds. Finally, the
energy consumption of the bounded-greedy algorithm is almost
the same as the conservative, but the latter is clearly better in
terms of packet loss percentage. Hence, there is no advantage
in using the bounded-greedy rather than the conservative in any
way, since the computational complexity of the three algorithms
is equivalent.

To sum up, our energy savings do not come completely free:
energy savings increase traffic delay. Consequently, if the delay
must be bounded to a low value, a low buffer size has to be
used, leading to appreciable packet losses due to the traffic rate
variability of the transmitted flows. The conservative algorithm
is able to obtain the minimum traffic delay and packet losses
while obtaining almost identical energy savings. For instance,
for the analyzed 30 Gbit/s traffic trace, the delay averages
270 µs and the energy consumption is 82 % when using a flow
sampling period of 0.5 s and a buffer size of 10 000 packets. For
the conservative algorithms, this trade-off between delay and

energy savings can be tuned via the safety margin parameter
(which we have set to 20 % up to this point). For instance,
this same scenario using a safety margin of 70 % reduces the
average delay to 150 µs, although it elevates the consumption
to nearly 91 % which is still a 9 % improvement in the energy
consumption.

VII. CONCLUSIONS

This paper demonstrates the implementation of an energy
saving algorithm using the facilities provided by SDN equip-
ment. We have used the ONOS network operating system to
reduce the energy consumption of an Ethernet link aggregate
between to switches with IEEE 802.3az ports.

The obtained results match those predicted by the packet
level model of the energy saving algorithm we have employed
as the basis for our implementation. Thanks to the usage of
ONOS, our algorithm is ready to be deployed in any SDN
network, irrespective of the underlying SDN technology of the
equipment manufactures.

We plan to extend the implementation to cover the case
where several link aggregates are present in the SDN network,
to harness the flow selection work already carried out by the
switches for aggregates downstream to the flows, leveraging
ONOS’s centralized view of the topology.

ACKNOWLEDGEMENTS

This work was supported by the “Ministerio de Economı́a,
Industria y Competitividad” through the project TEC2017-
85587-R of the “Programa Estatal de Investigación, Desarrollo
e Innovación Orientada a los Retos de la Sociedad,” (partly
financed with FEDER funds).

REFERENCES

[1] L. Chiaraviglio, M. Mellia, and F. Neri, “Minimizing ISP Network
Energy Cost: Formulation and Solutions,” IEEE/ACM Transactions on
Networking, vol. 20, no. 2, pp. 463–476, Apr. 2012.

[2] D. Jung, R. Kim, and H. Lim, “Power-saving strategy for balancing
energy and delay performance in WLANs,” Computer Communications,
vol. 50, pp. 3–9, Sep. 2014.

[3] Y.-M. Kim, E.-J. Lee, H.-S. Park, J.-K. Choi, and H.-S. Park, “Ant colony
based self-adaptive energy saving routing for energy efficient Internet,”
Computer Networks, vol. 56, no. 10, pp. 2343–2354, Jul. 2012.

[4] M. Rodrı́guez Pérez, M. Fernández Veiga, S. Herrerı́a Alonso, M. Hmila,
and C. López Garcı́a, “Optimum Traffic Allocation in Bundled Energy-
Efficient Ethernet Links,” IEEE Systems Journal, p. in press, 2015.

[5] “ONOS - A new carrier-grade SDN network operating system designed
for high availability, performance, scale-out.” [Online]. Available:
https://onosproject.org/

[6] K. Christensen, P. Reviriego, B. Nordman, M. Bennett, M. Mostowfi,
and J. A. Maestro, “IEEE 802.3az: the road to Energy Efficient Ethernet,”
IEEE Communications Magazine, vol. 48, no. 11, pp. 50–56, Nov. 2010.

[7] M. F. Tuysuz, Z. K. Ankarali, and D. Gözüpek, “A survey on energy
efficiency in software defined networks,” Computer Networks, vol. 113,
pp. 188–204, Feb. 2017.

[8] B. B. Rodrigues, A. C. Riekstin, G. C. Januário, V. T. Nascimento, T. C.
M. B. Carvalho, and C. Meirosu, “GreenSDN: Bringing energy efficiency
to an SDN emulation environment,” in 2015 IFIP/IEEE Int. Symp. Integr.
Netw. Manag. IEEE, May 2015, pp. 948–953.

[9] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banerjee, and N. McKeown, “Elastictree: Saving energy in data center
networks.” in Nsdi, vol. 10, 2010, pp. 249–264.

[10] T. Huong, D. Schlosser, P. Nam, M. Jarschel, N. Thanh, and R. Pries,
“Ecodane—reducing energy consumption in data center networks based
on traffic engineering,” in 11th Würzburg Workshop on IP: Joint
ITG and Euro-NF Workshop Visions of Future Generation Networks
(EuroView2011), 2011.

[11] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[12] “The CAIDA UCSD Anonymized 2013 Internet Traces — 2013/08/15
13:14:00 UTC.” [Online]. Available: https://www.caida.org/data/passive/
passive 2013 dataset.xml

[13] “Mininet: An Instant Virtual Network on your Laptop (or other PC).”
[Online]. Available: http://mininet.org/

[14] S. Herrerı́a Alonso, M. Rodrı́guez Pérez, M. Fernández Veiga, and
C. López Garcı́a, “A GI/G/1 Model for 10 Gb/s Energy Efficient Ethernet
Links,” IEEE Transactions on Communications, vol. 60, no. 11, pp. 3386–
3395, Nov. 2012.

[15] M. A. Marsan, A. F. Anta, V. Mancuso, B. Rengarajan, P. R. Vasallo, and
G. Rizzo, “A Simple Analytical Model for Energy Efficient Ethernet,”
IEEE Communications Letters, vol. 15, no. 7, pp. 773–775, Jul. 2011.

[16] “IEEE Standard for Information technology– Local and metropolitan
area networks– Specific requirements– part 3: CSMA/CD Access Method
and Physical Layer Specifications Amendment 5: Media Access Control
Parameters, Physical Layers, and Management Parameters for Energy-
Efficient Ethernet,” IEEE Std 802.3az-2010 (Amendment to IEEE Std
802.3-2008), pp. 1–302, Oct. 2010.

[17] M. Rodrı́guez Pérez, “A Rustified Simulator for 10 Gb/s EEE with
Configurable Hysteresis.” [Online]. Available: https://migrax.github.io/
HystEEE/

[18] P. Fondo-Ferreiro, “SDN Bundle Network Simulator.” [Online].
Available: https://pfondo.github.io/sdn-bundle-simulator/

https://onosproject.org/
https://www.caida.org/data/passive/passive_2013_dataset.xml
https://www.caida.org/data/passive/passive_2013_dataset.xml
http://mininet.org/
https://migrax.github.io/HystEEE/
https://migrax.github.io/HystEEE/
https://pfondo.github.io/sdn-bundle-simulator/

	I Introduction
	II Related Work
	III Problem Statement
	IV SDN Based Implementation
	IV-A Flow Selection
	IV-B ONOS Application

	V Assignment Algorithms
	V-A Greedy Algorithm
	V-B Bounded-Greedy Algorithm
	V-C Conservative Algorithm

	VI Experimental Results
	VI-A Experimental Setup

	VII Conclusions
	References

