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Abstract—Conventional data storage methods like SQL and
NoSQL offer a huge amount of possibilities with one major dis-
advantage, having to use a centralized authority. This authority
may be in the form of a centralized or decentralized master
server or a permissioned peer-to-peer setting. This paper looks
at different technologies on how to persist data without using a
central authority, mainly looking at permissionless peer-to-peer
networks, primarily Distributed Ledger Technologies (DLTs) and
a combination of DLTs with conventional databases. Afterwards
it is shown how a system like this might be implemented in
two prototypes which are then evaluated against conventional
databases.

Index Terms—Democratic Data Storage, Immutability,
Blockchain, Distributed Ledger Technology

I. INTRODUCTION

Current data storage techniques like SQL and NoSQL
databases offer a huge amount of possibilities in order to
handle data (e.g. ACID (Atomicity, Consistency, Isolation
and Durability). But as those systems are centralized,
decentralized or permissioned (in reference called hybrid p2p)
peer-to-peer [13] they all incooperate some kind of central
authority. This enables those database systems to be fast
and the storage to be cheap but comes with the problem of
never truly being able to store data democratically1. In these
systems there is always a way to change data without asking
peers for allowance (e.g. MongoDB Replication - Primary
[4]). One way to work around this is to have every node
storing the whole dataset and only allow incremental updates,
if a democratic voting process from the nodes validates
the changes. This voting and the resulting validation of the
peers itself leads to decreased performance and high storage
requirements as every node has to store the same data. These
technologies are called Distributed Ledger Technologies
(DLT), as every node stores its own version of the ledger,
with its main representative, at the moment, the blockchain [7].

This paper investigates possibilities on how to incooperate
immutability, as well as a democratically agreed on state in
a blockchain. In other words, imagine data, which should be

1Democratically in this context means that, due to PoW, every node can
participate in choosing the current state of data (assuming same calculation
power, this would be virtually the same as voting)

accessible to a lot of people, where not everyone is known
and nobody, not even the creator of the data should be able to
change it, without consent of the other participants. Scenarios
like this might be in the medical sector [16], as a tool to
improve direct democracy [14], where any participant can
propose bills, or as a permissionless peer-to-peer certification
system [8]. In order to achieve this, two different systems
are evaluated. The first system uses DLTs in order to store
the data, reducing speed but also decreasing complexity2 of
the resulting system while the second system combines DLTs
with a conventional database, increasing both complexity and
scalability of the resulting system. The general contribution
of this paper is to show why it is hard to have democratically
agreed on data with current datastorage techniques and how
this task could be solved using DLTs, specifically blockchains.

After the definition of important terms and setting
background knowledge, this paper will evaluate an mixture
of important related work like BigchainDB, ChainSQL and
Sproof. Afterwards, the implementation of the different
systems is explained and evaluated in comparison to several
randomly chosen SQL and NoSQL databases. This evaluation
will result in a discussion about advantages and problems of
the explained solutions and possible improvements and future
work. Finally, the paper will conclude its findings.

II. DEFINITIONS AND BACKGROUND

In order to accurately describe the problem of an immutable
data store and possible solutions to this problem the terms
immutability and blockchain as a data store have to be
defined. Furthermore, as the solutions builds on the Ethereum
(Eth) blockchain as well as CouchDB, these systems will
also be introduced.

Immutability is defined as unchanging over time or unable
to be changed [10]. As it is impossible for anything to be
unchanging over time, we define immutability, with respect
to our data, to be unchangeable in a usual timeframe of

2Difficulty of generating and maintaining code for given solutions
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about a hundred years. We also only take basic interfaces for
changes into account, like the ones supposed to be used by
the creators of the chosen frameworks, tools and languages
and not malicious hacking.

Blockchain as a Data Store Blockchains are distributed
ledgers, which basically are distributed and synchronized
states on which most users agree on. The method on how this
is achieved can be different (chain of blocks - Blockchain
[11], Directed Acyclic Graph - Tangle [12]). Furthermore, the
way on how to achieve consensus can also be different (e.g.
Proof-of-Work [11] or Proof-of-Stake [9]).

Ethereum (ETH) is a system that uses blockchain tech-
nology in combination with a turing-complete programming
language. With this language, contracts can be created to
encode arbitrary state transitions on the blockchain. Therefore,
Eth can be used to build fully decentralized applications
(DAPs), allowing anyone in the system to write state transition
functions in the form of contracts [15].

This paper mainly focusses on Eth and its Smart Contract
programming language solidity, but it should be noted that
other blockchains like NEO3, STRATIS4 or LISK5 could be
used as well. Eth was used in this paper and the following
implementations as it can easily be used for prototyping
thanks to the web compiler Remix6 and a big community [15].

CouchDB is a NoSQL database by Apache, with its focus
on synchronisation. To accomplish this, it uses a specific
dataformat and protocol that additionally to data, also stores
the revision history of said data. On sync, the participants
compare the replication histories and work out the differ-
ences of the data. This system is similar to a blockchain in
terms of storing every single change (comparision blockchain:
transaction) but is not immutable, as this history can be
deleted without consent. Moreover, CouchDB has a centralized
instance and doesn’t work in a peer-to-peer setting [3].

III. RELATED WORK

There are several systems already dealing with the problem
of peer-to-peer data storage like IPFS (although beeing a
data transportation system) as well as systems combining
blockchain technology with conventional databases like
BigchainDB, ChainSQL and Sproof. This section will take
a look a those systems, explaining them and showing
their advantages and shortcomings, which the rest of this
contribution will attempt to build on.

IPFS - The Interplanetary File System (IPFS) is a
distributed, peer-to-peer data transportation system, similar
to the internet. The main difference is that, while the
internet uses location based addressing, IPFS used document

3https://neo.org/
4https://stratisplatform.com/
5https://lisk.io/
6https://remix.ethereum.org/

based addressing. This document based addressing leads to
immutability of data, as the documents are never changed. In
the case of a document change, a new document is created. In
order to gain trust in this peer-to-peer system, the documents
get hashed, which can be checked by reconstructing the hash
or merkletree from the untrusted data. IPFS is excellent at
distributing data, but comes with two main disadvantages.
There is no guarantee that the document, currently beeing
accessed, is availiable (possible solution by using Filecoin)
and there is no real option of querying [5].

BigchainDB and ChainSQL - BigchainDB as well as
ChainSQL are systems intending to combine the advantages
of the blockchain while not sacrificing scalability. Both sys-
tems try to achieve this by combining a blockchain with a
conventional databases (BigchainDB - RethinkDB/MongoDB,
ChainSQL - e.g. MySQL). This combination enables scalable
queryable and immutable databases.

In ChainSQL each client has a full SQL database which
gets updated by the blockchain on change or periodically. To
add data, the client adds it to the blockchain which in turn
updates all peers. This implementation comes with the problem
that the blockchain has to store all the data, which cannot be
deleted anymore and doesn’t scale [1].

The original version of BigchainDB ran the database on
one cluster of the chosen database. This results in one illegal
change being reflected to the whole cluster, removing the
usefulness of the blockchain in this system [2]. This problem
was identified and fixed by BigchainDB 2.0, changing from
one database cluster to multiple databases per peer and using
the Tendermint consensus algorithm, an alternative to PoW,
to find consensus between those databases. Nonetheless,
Tendermint gossip uses a centralized member list, which is
strictly against our vision of a completely peer-to-peer system
[2].

Sproof is a permissionless, peer-to-peer certification system,
combining the ETH blockchain with IPFS as a datastore. This
system stores its data in IPFS and incorporates blockchain
advantages by storing changed events and IPFS hashes of
these changes in a permissionless blockchain. The described
querying problem of IPFS is approached by building the data
to query from the event history. This contribution builds on
this idea, in combination with BigchainDb and CouchDB, in
order to generalize an immutable and democratic datastore for
permissionless peer-to-peer systems [8].



IV. IMPLEMENTATION

In this paper, two different approaches to storing data using
DLTs are tested. One prototype stores all the data in the
blockchain itself while another approach stores only references
to the data in the blockchain and the actual data is stored in
a conventional database. The first approach utilizes all advan-
tages as well as disadvantages of the blockchain with a very
simple implementation, while the second approach, for a better
readability in the future called EtherCouch, minimizes the
named disadvantages by adding a NoSQL database, strongly
increasing the complexity of the system.

A. Ethereum

One way of storing data in a blockchain like Eth is to put all
the data in the blockchain directly or through a smart contract.
To add data to a system using smart contracts, one possibility
is to send a transaction to the smart contract that stores the
data and a list, containing all transaction references to access
the data. The first solution accomplishes this by storing data
in the ethereum blockchain using smart contracts to add and
keep track of all added items. For this paper the authors used
a private network consisting of a single node. In order to do
so the authors defined a data structure and a controller that
can be viewed in their github repository7. Since this system
is built entirely using Smart Contracts on the Eth blockchain,
it inherits all advantages as well as disadvantages of similar
DLT platforms like NEO, STRATIS or LISK.

B. EtherCouch

The core reason for implementing EtherCouch is to combine
the immutability and peer-to-peer functionality of blockchain
systems with the scalability and query possibilities of con-
ventional databases. In a way this is similar to BigchainDB
and ChainSQL as the core idea is the same, but in order
to circumvent the problems, described in the section related
work, a new architecture and protocol was conceptualized and
implemented as a prototype.

To accomplish its goals, EtherCouch, which can be viewed
in figure 1, separates the hard to scale blockchain from the
data. This is done by storing the data itself in a NoSQL
database on each peer and using the blockchain (data structure
can be viewed in listing 1) in order to store the hashes of the
data as a reference. This results in a one-to-one relationship
between the blockchain and the data. In order to include the
advantages of the blockchain into a conventional database, the
functionality of the blockchain must not be broken.

Therefore, immutability and the deterministic behaviour of
the blockchain have to be included in the database in order not
to break the one-to-one mapping. This can be accomplished
by only adding data to the database if it has been added
into a block and the block has already been mined. This
fixes indeterministic behaviour which could occur due to, for
example, network delays.

7Ticket Controller Source: https://github.com/kuchenkiller
/DatastorageInBlockchain/NodeJSPythonStoreInEth/Contracts.sol

One way to break the mapping is to have a client go offline
but keep working and changing data. This would result in
different, unsynchronized database states. For such case, in
order to not break the determinism of the blockchain mapping,
EtherCouch implements a synchronization algorithm similar
to CouchDB, hence the second part of the name. In order to
enable this synchronisation, EtherCouch not only stores the
blockchain and the data, but also every change to the data
(revisions). While this enables BASE (Basically Available,
Soft-state, Eventual consistency) by comparing replication
histories it comes with an obvious high additional storage cost.
After reconnecting to the network, the previously offline node
can generate the whole history of data changes, and not only
the newest state, enabling other nodes to fill their databases in
the correct way.

Fig. 1. EtherCouch System

As illustrated in Figure 1 the EtherCouch system is a
peer-to-peer system that communicates by using on- and off-
chain communication. The onchain communication enables the
clients to listen to changes and tells them what hashes have
been added to the blockchain. These hashes enable the clients
to locate the source of the change by the editor hash, the type
of change (add, edit, delete) and the data itself as the data
hash. The blockchain also implements a Smart Contract to
sign up clients with up to date peers and distribute the location
of clients for off-chain communication purpose. Then, after
locating the data, a peer can ask the source for the data off-
chain and verify its integrity by hashing and comparing it to
the hash in the blockchain. As the data will most likely be sent
in multiple packages, verfication of the off-chain distributed
data can be done by using merkle trees, similar to how the
Interplanetary File System (IPFS) handles data separated into
multiple packages [5].

An additional TopicId field in the blockchain data can be
used in order to only listen to changes, relevant to peers. This
TopicID can also be used by the replication source in order to
check if the off-chain peer is allowed to get the data which it
is currently trying to access.

The basic protocol enables adding, editing and deletion
of data. The view of data is possible without accessing the



Fig. 2. EtherCouchAddData

blockchain, as each client has access to its own database, vastly
increasing read speed. This leads to a huge privacy risk that
can be approached by applying public private key cryptogaphy
to secure data readability [17]. With the current findings on
quantum computing in mind, using post-quantum cryptogra-
phy should be taken into account for future expansions on this
paper [6].

1 struct DbFunction {
2 bytes32 task;
3 bytes32 data_hash;
4 bytes32 editor_hash;
5 bytes32 topic_id;
6 uint256 sequence_id;
7 }

Listing 1. Blockchain Datastruct

In order to add data to the database, a user has to generate
the data and hash it. Then the hash has to be pushed into the
data storage Smart Contract (similar to section 4 Ethereum)
in combination with the already explained metadata (listing
1). After the node adds the change to the blockchain, it
will tell the Location Contract that it is up-to-date with the
newest blockchain hash (the recently added hash). If the new
transaction gets put into a block, the miners will recognize
this on mining and will look for the new transaction. In order
to propagate the actuall data after mining, the data will be
broadcast offchain. Alternatively the data is already added and
confirmed so the peers can ask the Location Contract (listing
2) for the location of the data8 and query the data off-chain
in order to add it to their own database.

1 contract LocationContract {
2 struct peer_location { bytes32 editor_hash;

bytes32 location; }

8At least one peer should always be online, propagation the newest data
(original creator). Theoretical, there is the possibility that the creator goes
offline without propagating the data off-chain, resulting in the same problem
IPFS has, as described in the related work section

3 peer_location[100] up_to_date_peers;
4 peer_location[100] all_peers;
5
6 function get_peer_location(bytes32 peer) public

returns(bytes32) {
7 for (uint8 i = 0; i< 100; i ++)
8 if (peer == all_peers[i].editor_hash)
9 return all_peers[i].location;

10 }
11
12 function get_up_to_date_peer_location() public

returns(bytes32) {
13 return up_to_date_peers[0].location;
14 }
15 }

Listing 2. Location Contract

This system never actually changes data, it only makes old
data obsolete by adding the changed data and making it the
currently active data (the old data becomes the latest revision
and the new data becomes the actual data). Therefore, an edit
is almost the same as an add. The only difference is, that
after querying the changed data the new data revision id is
incremented by one, effectively making it the active revision.

As a blockchain is immutable, deleting data should be
impossible, which is a problem regarding the new GDPR
(General Data Protection Regulation) in Europe. EtherCouch
enables us to delete data again while also utilising the
immutability of the blockchain. In order to delete data in
EtherCouch, a delete request is entered into the blockchain.
This request will be propagated through the blockchain and
tell nodes to delete the respective data. Although this will
not delete the references in the blockchain, the actual data
will be deleted. This seems to be a huge security issue, as
nobody can be forced to delete data, but conventional systems
suffer the same problem. If a database node is untrustworthy,
this deletion might not occur (extreme example would be
printing every transaction on paper). One solution to this
problem, independent of this contribution is to only allow the
data to trustworthy peers. This approach will later be further
discussed but as of right now, this problem remains unsolved
by this contribution.

The described system has also been partially implemented
as a prototype at the time of writing. The implementation
was done by using a WebApp as a client and user interface
and the ethereum blockchain as the decentralized application
platform. Although it may not be able to build a peer-to-
peer system with only this approach it was used in order
to simulate a mobile client, using EtherCouch in a slow
environment. For the client IndexDB9 was used as the basic
database and revisions database. The reason for this paper
was not to show a finished product but rather show how
an immutable database could be created. Therefore, a full
implementation was not achieved since it is not needed to
show the general system and time critical tasks, and working
with the blockchain, can still be tested.

9https://www.w3.org/TR/IndexedDB-2/

https://www.w3.org/TR/IndexedDB-2/


A further improvement which is only partially implemented
yet is the ability of using data filters. Since an editor hash
is added into the blockchain transactions (listing 1), data
distributors can check if the replicating peer is actually allowed
to replicate the data. This would remove storage requirements
for peers but increase complexity for the Location Contract
(listing 2) since not every up to date peer now has all data
stored and peers would need hash lists of stored data.

V. EVALUATION

In order to evaluate the prototypes and check how they
scale, a test case was created and evaluated with conventional
databases as a baseline. As the addition of new data into the
blockchain is expected to be the slowest part of the whole
system, this scenario was chosen for our evaluation. The
following evaluation measures the time for creating 101−106

datasets in the form of maintenance tickets. As a baseline
to the prototypes the conventional databases Microsoft SQL
Server Express, MongoDB and the synchronisation optimized
database CouchDB (in sync with a client side PouchDB) was
used and the reported values are the mean values of 5 runs of
the experiment.

As it can be seen in figure 3 the conventional approaches
are less time consuming, with respect to increasing execution
times, than the blockchain approaches. Storing the data only
in the Eth blockchain yields to the worst result, especially if
the ticket amount increases. Since EtherCouch does not store
the data itself but only the data hashes it scales a lot better
with an increase in data amount and amount of data per hash.
The data described in figure 3 was obtained in the following
environment: Windows 10 Enterprise as a operating system,
geth version 1.8.16 as the Eth platform and Mozilla Firefox
version 61.0 as well as nodejs version 8.12.0 to run the clients.

In conclusion, it can be said that the blockchain approaches
scale worse than the tested conventional systems, but definitely
have advantages which will be summarized in the next section.
EthCouch scales better than the pure Blockchain solutions and,
with a high amount of tickets, getting close to CouchDB10.
That means that EtherCouch might be used in non time critical
applications with the need for democratically agreed on data.

VI. ADVANTAGES AND PROBLEMS

This section will talk about the main advantages of both
proposed solutions and their main problems. We acknowledge
that no one persisting method fits all needs, therefore we will
take the opportunity to talk about the main advantages and
disadvantages of the proposed systems.

Advantages - Immutability as well as a democratically
agreed on state are by far the most important advantages of a
blockchain based system as there are hardly any other possibil-
ities on how to achieve both properties. Another advantage of

10This scalability improvement, compared to storing data only in
blockchains increases as the individual datasize (in our case ticket size)
increases, since the hash always stays the same size

storing data in a blockchain is that synchronization is comes
by design, since the system has a democratically agreed on
state. EtherCouch, which stores data in a conventional database
and only saves the references to this data in a blockchain
by design, stores as little data as needed in the blockchain
itself. Therefore, EtherCouch is scalable as well as query-
able in contrast to other blockchain systems. The following
enumeration gives an overview of the advantages of both
proposed solutions.

All
• Immutable (if peers keep to the protocol)
• Democratic state
• Easy synchronization
EtherCouch
• Scalable
• Querying depending on used database
• Blockchain storage minimal

Problems - Storing data fully or partially in a distributed
ledger also comes at a high cost. First of all, as a distributed
ledger is a distributed data store where every full node
has to store the complete database, a lot of data is stored
multiple times. Furthermore, the basic consensus algorithm
for permissionless blockchains, PoW, can have negative side-
effects as, in most PoW systems, mining is rewarded [11]. This
leads to a battle of miners to get more calculation power than
the opposition which has two negative effects. The first being
the unnecessary usage of energy, as this increased difficulty
does not help the blockchain in any way. Secondly, this
behavior leads to miners assembling into mining pools in order
become faster miners. Taken to the extreme, these mining
pools destroy the democratic character of PoW and the security
that comes with it (51% attacks) [15]. Another problem comes
from the basic architecture of distributed ledgers (Blockchain
and DAGs). As those systems are basically lists/graphs, they
do not have any query capabilities by design (other than
walking through the data structure), making querying slow
and requiring extra measures. As EthCouch implements a
conventional database as its main data store, it is not affected
by this problem. A second problem is the speed of adding data
as new data has to be approved by all peers. As Distributed
Ledger Technologies (DLT) are still pretty new, and a lot of
systems are still prototypes without any production standard
there are little to no implementation rules or design patterns.
Furthermore, Libraries and Frameworks still tend to change a
lot, introducing breaking changes along the way and changing
interfaces periodically. This increases the difficulty to work
with DLTs and definitely should be taken into account when
starting a DLT project. The following enumeration gives an
overview of the problems of both proposed solutions.



Fig. 3. Evaluation Prototypes - Conventional Databases

All
• PoW has high energy demands
• Low speed
• Little standards
Only Blockchain
• High storage requirement in blockchain
• No Querying

VII. CONCLUSION AND FUTURE WORK

In conclusion, conventional data storage methods are fast
and the preferred option for large amounts of data, but for
any use case where the speed of saving data does not matter
or immutability as well as a democratically agreed on state
plays a main role, both prototypes as well as the systems
described in section III should be taken into account. Fully
storing a lot of data in a blockchain is simple but doesn’t
scale, while a system like EthCouch scales, with the price of
greatly increasing complexity11.

In the future, encryption can be implemented by a public-
private-key infrastructure, in order to store data without being
publicly visible. It is also possible to add a two part validation
system, enabling data to be either validated or pending. When
adding data, a node now additionally adds the new data as
validation=pending into a messaging queue like Kafka. This

11Difficulty of generating and maintaining code for given solutions

enables other nodes, which take the risk of working with
pending data, to listen to this queue and vastly increase their
speed.

Another improvement would be to create a specialized
blockchain for EthCouch in which a useful PoW algorithm
is implemented, without transaction fees. In order to reward
mining in such a system other methods of payments, like free
cloud storage, which could again be hosted by peers, have to
be found. Furthermore, the addition of data filters reduces the
amount of data and revisions each peer has to store. In future
work, these possibilities will be investigated by, for example,
updating the Location Contract to enable filtered peer-to-peer
replication.
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