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Abstract—Network Function Virtualization (NFV) is one of the
main enablers behind the promised improvements in the Fifth
Generation (5G) networking era. Thanks to this concept, Network
Functions (NFs) are evolving into software components (e.g., Vir-
tual Network Functions (VNFs)) that can be deployed in general-
purpose servers following a cloud-based approach. In this way,
NFs can be deployed at scale, fulfilling a great variety of service
requirements. Unfortunately, the complexity in the management
and orchestration of NFV-based networks has increased due to
the diverse demands from a growing number of network services.
Such complexity calls for an automated and autonomous solution
that self adapts to the needs of those network services. In this
paper, we propose and compare a Deep Reinforcement Learn-
ing (DRL) agent, a classical Proportional–Integral–Derivative
(PID) controller, and a Threshold (THD)-based algorithm for
autonomously determining the amount of VNF instances to fulfill
a service latency requirement without knowing or predicting the
expected demand. Finally, we present a comparison of the three
approaches in terms of created VNFs and peak latency performed
in a discrete event simulator.

Index Terms—Auto-scaling, Beyond 5G, PID Controller, Rein-
forcement Learning

I. INTRODUCTION

In 2015, the International Telecommunication Union (ITU)

defined three usage scenarios for International Mobile

Telecommunications (IMT) for 2020 and beyond, namely,

Enhanced Mobile Broadband (eMBB), Ultra-Reliable Low-

Latency Communication (URLLC), and Massive Machine

Type Communication (mMTC) [1]. These three usage sce-

narios must coexist in the same network infrastructure and

impose highly demanding requirements in terms of Quality

of Service (QoS), throughput, reliability, and latency. One of

the key enablers of 5G is NFV, which allows the network

infrastructure to be shared among different stakeholders by

creating virtual instantiations of physical resources.

However, the virtualization of physical resources comes

hand in hand with increased network management overhead.

With NFV, network managers can create different network

slices to serve multiple tenants, fulfilling specific requirements.

Human operators cannot keep track of all Virtual Networks

(VNs) given the diverse demands of network services. There-

fore, automatic solutions are needed to manage NFV-based

networks that are flexible enough to adapt to various working

conditions without human intervention.

The European Telecommunications Standards Institute

(ETSI) has defined several Management and Orchestration

(MANO) operations that are critical for the correct operation

of NFV-based networks [2], and scaling is one of them. The

auto-scaling problem can be defined as dynamically adding

or removing network resources (e.g., VNF instances) to serve

a variable workload [3]. Resource scaling can be classified

as horizontal or vertical. In horizontal scaling, new VNF

instances are added or removed as needed. In vertical scaling,

the size of the VNF (e.g., its assigned computing and storage

resources) is changed accordingly. Moreover, the scaling mode

can be proactive or reactive. Proactive scaling requires the

ability to infer the upcoming workload so that the resources

are scheduled beforehand. In contrast, in reactive scaling, the

resources are changed in response to the perceived variations.

All the scaling strategies mentioned above try to find a balance

between resource cost and fulfilling a given Service Level

Objective (SLO) (e.g., service latency). A network operator

can easily guarantee an SLO by over-dimensioning the number

of VNFs but at the expense of increasing the economical cost.

At the same time, the economic cost decreases when under-

dimensioning the number of VNFs, but seriously compromises

the SLO fulfillment.

Recently, Machine Learning (ML) strategies are being pro-

posed for flexible resource scaling in NFV-based networks,

given their ability to learn from data and past experiences.

Most of the proposed strategies focused on predictive scaling,

exploiting the historical data by using time-series forecast-

ing [4]. Although it has been shown that predictive scaling

produces better results in reducing the boot-up time of a new

instance and yielding few SLO violations, reactive scaling is

still widely used by the cloud industry due to its easiness

to deploy, decent performance and low computational cost.

Moreover, predicting the workload can be an easy task if the

workload follows regular patterns (e.g., during the daytime,

peak hours on weekdays, etc.). However, the prediction ac-

curacy might degrade under unseen workload patterns. More

recently, Reinforcement Learning (RL) is also explored as a

solution for scaling network resources. An agent’s objective



in RL is to learn a policy that maximizes an expected reward

function by interacting with an environment through actions.

Following the learned policy, the agent proactively adapts

the network resources, similar to predictive auto-scalers, but

without any a priori knowledge of the system.

Nonetheless, advanced predicting modules and modern RL

approaches are nowadays based on Deep Neural Networks

(DNNs), which require powerful computing processing. These

resource-hungry DNNs might not suit resource-constrained en-

vironments (e.g., Multi-access Edge Computing (MEC) hosts).

In this sense, selecting an appropriate auto-scaler is a problem

that depends on the network context. Therefore, an orches-

trator might select an auto-scaler depending on the available

infrastructure, SLOs, operational budget, among others.

In this paper, we propose and compare three auto-scaling

mechanisms that do not require any information about the

workload and yet can dynamically adapt the number of VNF

instances while keeping them at a reasonable level without

over- nor under-dimensioning the problem. Numerical eval-

uations are obtained in a discrete-time event simulator. Our

contributions are summarized as follows.

• We design and evaluate three auto-scaling methods:

an RL-, a PID- and a THD-based algorithm that au-

tonomously change the number of VNF instances to

guarantee an SLO. Unlike predictive scalers, the proposed

approaches do not require any information about the

workload and yet can maintain the number of VNF

instances at a level that avoids incurring in over- or under-

dimensioning.

• We propose a methodology to define the RL-based auto-

scaler that first maps the auto-scaling problem to a

Markov Decision Process (MDP) of a well-known RL

problem and then adapt it accordingly instead of defining

it from scratch. This approach is contrary to most of the

work in the literature where the MDPs are traditionally

directly determined by the networking problem with all

the difficulties of designing a properly working MDP.

The remainder of this paper is organized as follows. An

overview of the related work is given in Section II. We describe

the proposed auto-scalers in Section III. Section IV describes

the discrete-time event simulator we use to train, tune and test

the proposed solutions. Section V summarizes the evaluation

of the three approaches. Finally, Section VI concludes the

paper.

II. RELATED WORK

In NFV-based networks, it is of vital importance to fulfill

the SLOs of different services. By assigning more resources,

a network operator can cope with the requirements imposed

by the network services. Scaling is a challenging problem,

mainly because it decides the exact amount of resources that

a running service requires to meet an SLO. Although different

techniques have been explored over a decade, we focus on

the use of ML to solve the scaling problem. Lorido-Botran

et al. [5] and Chen et al. [6] review the proposed solutions

for autoscaling in cloud environments, while Duc et al. [4]

give a broader view on resource provisioning in edge-cloud

computing using ML.

Usually, scaling can be divided into reactive and predictive,

as mentioned in Section I. Reactive scalers respond to the

current system status. In contrast, predictive scaling involves

scheduling resources for upcoming network states. Such states

are generally represented by the inferred future demands that

the network needs to provide. As for predictive scaling, the

delay between the scaling action and execution is reduced. The

most recent applications of ML are in the area of predictive

scaling [7]–[9]. For instance, Subramanya and Riggio [10]

developed a proactive auto-scaler focused on a distributed

MEC-NFV deployment. In their work, a Neural Network (NN)

was proposed whose input is the traffic load in a time-series

form to determine the number of VNF instances per cell

at a given time. However, as the authors characterized the

scaling as a classification problem, building the training dataset

requires defining how many VNF instances are needed to

serve a given traffic load, a non-trivial task requiring expert

knowledge. Additionally, the traffic load traces seen in testing

might differ from the traces seen in training; therefore, a

considerable amount of training data must be available and

labeled. As a final remark, they leveraged the access to real

traces from a network operator, but their results cannot be

replicated due to privacy.

More recently, RL-based auto-scalers are being proposed.

Q-Learning is one of the most used RL methods for autoscal-

ing. Q-Learning assigns a Q-Value to an action-state pair (Q-

Function) in a tabular representation. This tabular represen-

tation helps the agent to improve its policy by selecting the

actions with the highest Q-Value. In continuous state or action

problems, tabular Q-Learning is not scalable, i.e., the size of

the Q-Table explodes in complex problems. To overcome this

limitation, the Q-Table is replaced by a NN as a Q-Function

approximator [11], creating Deep Q-Networks (DQNs).

In [12], Lee et al. designed a multi-tier autoscaling module.

In NFV-based networks, services can also be provided by

composing multiple VNF in Service Function Chaining (SFC).

In these multi-tier applications, the auto-scaler must decide

how many instances of VNF are inside the SFC and the tier to

scale. The authors proposed an RL-based autoscaling method

based on DQN that uses an own-defined NN. The NN’s input

and output are defined as the status of each tier and the actions

the agent can take (e.g., add or remove one VNF per tier

or maintain them), respectively. The definition of the NN is

tightly coupled with the problem size since it depends on the

length of the SFC, which makes their approach not general

enough to be implemented. Although they showed that the

DQN method outperforms two THD-based approaches, DQN

creates more VNF instances than the other two, incurring in

over-provisioning.

Another RL-based auto-scaler is proposed in [13]. The

authors used Gaussian processes to improve the scaling policy

to reduce the agent’s errors during the exploratory phase in

training. The Gaussian processes allowed them to model the

system as a regression function that predicts the workload;



then, they used those predictions to run hypothetical inter-

actions in the training of the RL-based agent. The agent runs

two processes: policy improvement and policy evaluation. The

former allows the agent to foresee the results of its action,

while the latter is the current execution of the policy. The

authors showed that, the scaling policy could be improved by

using a Gaussian Process as system model, leading to a more

stable response in terms of mean response time and number

of created instances.

An auto-scaler for video conferencing systems is proposed

in [14]. There, Gabriela et al. defined the selective forwarding

unit of a video conferencing system as the VNF to be scaled.

They used a DQN-based auto-scaler consisting of three layers:

a Long Short-Term Memory (LSTM), a linear, and an output

layer. The LSTM layer allows capturing the trend of the traffic.

For doing this, the authors deployed a time-series database,

so the features of the last four time steps are stored. To

define the state of the RL agent, the authors did not use

infrastructure-level metrics such as Central Processing Unit

(CPU) usage, but application-level metrics such as the number

of conferences currently existing and the total number of

participants in the meetings. These application-level metrics

are indirect estimators of the workload.

With NFV, network resources can change dynamically to

cope with the workload. Before NFV, traditional solutions

were based on over-dimensioning the network resources to

support workload peaks. Reactive and proactive approaches

have been proposed for the scaling problem. Due to limited

space, we have reviewed recent scaling methods that employ

ML techniques in this section. However, it is worth mentioning

that most of the solutions are focused on predictive scaling,

exploiting the capabilities of ML to forecast/predict the future

workload. The key differences between our work and previous

works are summarized as follows:

• To achieve high prediction accuracy in ML-based predic-

tive scaling, a large amount of data is needed. However,

there is no guarantee that the obtained ML model will

generalize in unseen workloads. Contrary, our agent does

not require any knowledge from the workload, making it

more flexible under unseen data.

• Auto-scaling can also be solved with a Supervised Learn-

ing (SL) approach. In this case, labeled data is required.

However, to define how many instances of a given VNF

are needed based on a set of input features is not a trivial

task, requiring expert knowledge. Our RL-based agent

does not need to have labeled data to learn since the agent

learns by interactions with the network, simplifying the

training process.

III. AUTONOMOUS AUTOSCALING USING DEEP

REINFORCEMENT LEARNING

A. System Model

In NFV-based networks, multiple network functions can be

deployed as small software pieces in the form of VNFs. To

work properly, these VNFs require a minimum amount of

Workload 
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Balancer
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Actions

Fig. 1. Considered use-case

resources, e.g., processing power in terms of CPUs, which

indicates the number of jobs per second it can process.

Moreover, these VNFs can be deployed in Commercial Off-

The-Shelf (COTS) servers with limited CPU capacity, and as

a consequence, the number of VNF instances is limited as

well. Furthermore, the network receives a workload, which

must be served under a given SLO, e.g., maximum latency.

To meet this SLO, the number of computing resources must

be dynamically and efficiently changed without incurring in

under- or over-provisioning.

In this paper, we consider horizontal scaling instead of ver-

tical scaling. Horizontal scaling can be exploited by distributed

applications where the workload is shared among different

instances of the same application. While vertical scaling is

limited to the capacity of a single server, horizontal scaling

leverages the virtually infinite computing capacity in cloud

environments, making it easier to deploy several instances of

the same application. Additionally, horizontal scaling allows

more granular control of VNFs in multi-tier applications where

each tier is scaled independently of each other. Moreover,

depending on the business model, acquiring more general-

purpose hardware (i.e., adding more instances) is preferable

to obtaining more powerful hardware due to its cost.

The workload enters a load balancer that distributes it

according to some weights1 among the active VNFs. Each

VNF has a First In, First Out (FIFO) queue for processing the

assigned workload. When the queue is empty, the workload is

processed immediately. If the workload cannot be processed, it

waits in the FIFO queue until it can be processed. Additionally,

we consider a monitor that delivers usage metrics to a decision-

making agent, which automatically determines the amount of

VNF replicas. Fig. 1 gives an overview of the system we

consider in this paper.

B. DRL-based Agent

As stated in Section II, SL can be used to solve the auto-

scaling problem. However, SL requires a labeled dataset for

learning. To build this dataset, an expert must map a combina-

tion of the input features (e.g., latency, CPU usage, workload)

to a scaling decision. Moreover, there is no guarantee that the

trained model will perform well with input features not seen in

the training phase, even if the model obtains high accuracy in

1In this paper, we assume equal weights for all VNF instances so that the
load balancer continuously distributes the work evenly.



the inference phase. On the contrary, RL is an online-learning

approach, where the agent does not need a labeled dataset

since it learns from interacting with an environment.

To determine the adequate amount of VNF instances to

fulfill a maximum latency SLO using DRL, the problem needs

to be formulated as an MDP. An MDP is a discrete-time

stochastic framework for modeling decision-making problems.

This process is defined by a tuple (S,A, p, r) where S is

a set of states, A is a set of actions, p is the transition

probability between states s and s′ after action a is taken,

and r is the immediate reward obtained for performing action

a. The policy, defined as π, is a mapping function from states

to actions. The solution to an MDP is an optimal policy

that maximizes the expected long-term reward (which is a

discounted sum of immediate rewards). To solve the MDP,

several tools can be employed, RL being one of those. The

optimal policy is found in RL after many agent interactions

with the environment (i.e., in steady-state). Q-Learning is the

most used algorithm to find this optimal policy by defining

a Q-function for all state-action pairs to measure how good

the policy is. Therefore, finding the optimal policy is reduced

to finding the action that maximizes this Q-function. Note

that the state-action pairs can be stored in a table (i.e., Q-

table); however, its size will grow substantially according the

number of states (e.g., a continuous state space), preventing

its wide adoption. Instead, DQN uses a NN as a Q-function

approximator to overcome the Q-Table’s size limitation.

Contrary to most of the RL applications in networking,

where the states, actions, and reward function are defined using

a networking rationale, in this paper, we map the auto-scaling

problem to known applications of RL. Specifically, the Gym

Open-AI project provides a set of classical problems for RL

algorithm benchmarking. We notice that our problem closely

resembles the Cart-Pole 2 environment. In our problem, the

agent tries to guarantee a given SLO by taking discrete actions

(i.e., increase, decrease or maintain). Similarly, in the Cart-

Pole, the cart tries to keep the pole upright by taking discrete

actions (i.e., go left or right).

Following the same rationale as in the Cart-Pole environ-

ment, we define the information retrieved by the monitor as

the network state. At time step t, the state s(t) is defined as:

1) Mean CPU usage among the active VNFs.

2) Mean number of jobs waiting in the queue.

3) Peak (maximum) latency from the active VNFs.

4) The number of active VNFs.

Based on this information, the DQN agent decides if the

number of VNF instances must be increased, decreased, or

kept the same. The reward function is also defined in a similar

way as in the Cart-Pole problem. Our agent takes discrete

actions to maintain a given continuous variable (e.g., latency)

at a certain level. Consequently, the agent is rewarded if the

actions are leading towards that goal. More specifically, the

reward function at time step t is defined as

2https://gym.openai.com/envs/CartPole-v1/

r(t) =































1 |d(t) − dtgt| < ǫ · dtgt∨

|cpu(t) − cputgt| < ǫ · cputgt

0 |d(t) − dtgt| ≥ ǫ · dtgt∨

|cpu(t) − cputgt| ≥ ǫ · cputgt

−100 in episode termination cases

(1)

where d(t) is the peak latency from the active VNFs at time

step t (taken from the network state), dtgt is the target latency

as defined by the SLO and ǫ is a range of tolerance (e.g., 20%).

Notice that if the reward function is only defined based on the

perceived latency, the agent will take the most obvious action:

to keep increasing the number of VNF instances, disregarding

the economic impact of such a decision. To keep the number

of VNF instances at an adequate level, we also let the agent

be rewarded if the current CPU usage is within a predefined

range. If the CPU usage is low, probably the workload can

be served using fewer VNFs and vice versa. Moreover, the

agent is hardly penalized if it incurs in episode termination

situations (defined in Section V-A).

C. THD-based Agent

Reactive scalers are widely used in cloud applications due

to their simplicity and ease of deployment. They use THD-

based rules, which depend on the monitored performance

metric (e.g., service latency) to perform the predefined scaling

actions. Note that one disadvantage of reactive scalers is their

questionable effectiveness under bursty workloads [5]. Based

on the above eq. (1), a THD-based agent can be defined as

follows, in which the tolerance range of CPU usage and peak

latency is made up of ǫ and respective cputgt and dtgt values:

• if the current CPU usage or the peak latency is above their

respective tolerance range, the number of VNF instances

is increased,

• if the current CPU usage or the peak latency is below their

respective tolerance range, the number of VNF instances

is decreased.

As with the RL-based auto-scaler, the number of VNF

instances to increase/decrease is limited to one per time step.

D. PID-based Agent

The PID agent uses the current d(t) and previous d(t−1) peak

latency to decide how to set the number of VNF instances. In

particular, it keeps track of a variable δ(t) at time step t:

δ(t+1) = δ(t) + α
(

d(t) − dtgt

)

+ β
(

d(t) − d(t−1)
)

(2)

If, at the beginning of time step t+ 1,

• δ(t+1) ≥ 1, then the number of VNF instances is

increased by 1 and δ(t+1) is decreased by 1,

• δ(t+1) ≤ −1, then the number of VNF instances is

decreased by 1 and δ(t+1) is increased by 1,

• −1 < δ(t+1) < 1 the number of VNF instances is kept

the same.
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The second and third terms in eq. (2) are the integral

and proportional terms, respectively. The former tries to keep

the peak delay around the target, while the latter tries to

proactively react to trends in the latency evolution. There is

no differential term in eq. (2). Notice that the PID agent only

needs the peak latency (current and previous value) as input.

In particular, it does not need CPU usage. A PID agent is

typically not designed to learn. Good values for its parameters

α and β are often determined based on some runs on training

data or on linearizing the system to control.

IV. SIMULATION SETUP

To train, tune, and evaluate the performance of all the

agents, we use Simulation of Discrete Systems of All Scales

(Sim-Diasca), a general-purpose, parallel, and distributed

discrete-time simulation engine for complex systems written

in the Erlang language [15]3. Fig. 2 shows the architecture of

the simulator. Sim-Diasca (lower layer) is in charge of syn-

chronizing time between the actors, evolving the system state,

sending and receiving messages to and from the controller,

and managing the results. Its built-in support for distributed

simulation enables deploying a simulation case over multiple

computers. Through the base actor model, own-defined models

can be created. Therefore, we establish the middle layer called

DynamicSim, in which we define an actor model for the VNFs,

the server, and the load balancer. The traffic generator and the

monitor modules act as an interface between the actors in the

lower layer and the high-level functions defined in Python.

Finally, we design several user-defined simulation cases in the

topmost layer, including the one presented in Section III-A.

In a simulation case, the duration of a time step is user-

defined. Within a time step, the actors simulate its functionality

representing the work done in such a duration. After each actor

finishes its simulated work, the time manager increases the

time step by one, and the simulation goes to the next tick.

At the beginning of the simulation, an initial set of actors are

generated based on the defined simulation case in Sim-Diasca.

This simulation case consists of a server with two VNFs

and a load balancer between them. The load balancer evenly

divides the incoming workload among the created VNFs.

The communication between the blue and purple modules

in Fig. 2 is based on pub/sub paradigm implemented in

3https://github.com/Olivier-Boudeville-EDF/Sim-Diasca.
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TABLE I
PARAMETERS USED DURING THE SIMULATION

Parameter Value

VNF Thread Limit 300

Server Processing Capacity 12000

Latency Target (dtgt) 20 ms

Cpu Usage Target (cputgt) 0.75

Tolerance (ǫ) 0.2

ZeroMQ to transfer structured data based on Google protobuf.

The decision-making agent interacts with the simulator (i.e.,

environment) in regular time ticks. We make the duration of

an interval between time ticks the same as the time step

mentioned above. In practice, the agent communicates its

scaling decision every tick and then waits until the monitor

module generates a new report. Once a report is ready, the

agent will receive it and evaluate the impact of its decisions.

Moreover, the traffic generator (workload module in Fig 1)

follows a known pattern in data centers, as shown in Fig. 3.

Generally, the traffic to a data center is low at night and peaks

during working hours. This pattern repeats more or less during

the weekday. The traffic is generated using:

W (t) = max(0, 300 · (0.9 + 0.1 cos (π · T/10))·

(4 + 1.2 sin (2π · T )− 0.6 sin (6π · T )+

0.02(sin (503π · T )− sin (709π · T ))))

+ 5N(t) + I(t)

(3)

where T = t

86400 , which re-expresses the time t expressed

in ticks (i.e., seconds) in T days, the term sin (2 · π · T )
introduces a daily pattern and sin (6 · π · T ) an 8h pattern.

The rest of the terms introduce some randomness so that this

pattern does not repeat itself every day. In particular, N(t) is

a zero-mean, unit-variance Gaussian random variable and I(t)
introduces exponentially decaying impulses on average every

10 000s of average height 200 jobs lasting about 500s.

Every tick, a VNF asks resources to the server accordingly

with the jobs they need to process but without exceeding

a thread limit. This thread limit is set to 300 jobs, which

represents the capacity of a CPU. Similarly, the server has

a capacity of hosting maximum 40 VNFs. Table I summarizes

the remaining parameters used during the simulation.
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V. PERFORMANCE EVALUATION

In this section, we show the details of the DQN agent

training and the PID agent tuning. We finalize the section with

a comparison of the three auto-scaling approaches.

A. DQN Agent

We implemented our DQN agent using Stable-Baselines3

(SB3) [16], a framework that implements popular RL algo-

rithms in Pytorch4. In the definition of the DQN agent, we used

the default values given by the SB3 framework. For training

our DQN agent, we used episodes. An episode is defined as the

number of timesteps until the simulation has to be restarted.

Accordingly, we defined two situations where the episode is

terminated: when the agent creates more than 20 VNFs or

the jobs that are waiting in the queue (overload) are above

200. These two situations represent wrong agent behavior and

must be penalized. In such situations, the episode ends, and

the simulation is restarted. After the simulation is restarted,

the initial scenario is again deployed.

During training, the agent tries to maximize the reward

function defined in eq. (1). If the peak latency or the CPU

usage of the active VNFs are within a tolerance range, the

agent is rewarded; otherwise, the agent is not rewarded. If

the agent falls into the episode termination cases, the agent is

hardly penalized. Typically, the agent is more likely to take

actions that produced a reward in the past by taking the actions

that led to that situation (exploitation). However, the agent

must take random and possibly new actions (exploration) to

discover the actions that maximize its reward. Initially, we

wanted to experimentally determine how many training steps

the agent would require to perform well. Therefore, we trained

our DQN agent using different lengths of the trace defined in

eq. (3). In particular, we used the first [10, 30, 50, 86.4, 172.8
and 259.2K] values of the workload as training length. We

noticed that using training lengths shorter than the frequency

of the trace (86.4K timesteps, equivalent to one day), the agent

cannot converge to a policy that keeps the simulation running5.

Fig. 4 shows the obtained cumulative reward on a loga-

rithmic scale during training. The figure shows the training

4https://pytorch.org/
5We don’t include these results giving the limitation on the number of

pages.

phase of the agents that obtained better testing results from

a set of three runs. As long as the simulation is running, the

agent can get a reward if the metrics are within the tolerance

range; otherwise, the reward is zero. Therefore, the cumulative

reward is continually increasing. However, when the agent falls

in the episode termination cases, the agent is hardly penalized,

affecting the cumulative reward. As seen from the graphs,

the agent needs at least 50K timesteps to keep the simulation

running and get higher cumulative rewards. We selected the

agent shown in Fig. 4b for comparison against the baseline

approaches. This agent showed faster convergence, steepest

slope in the positive reward area, and the testing phase results

were closely similar to the agent in Fig. 4c, requiring less

training time.

B. PID Agent

As stated above, the PID agent tries to keep the peak latency

around dtgt = 20ms. The optimal values for its parameters α
and β were determined by an exhaustive search. The parameter

space (α, β) was sampled by letting α range over the values

{0.125, 0.25, 0.5, 1, 2, 4, 8} and β over {50, 100, 200, 400}.

Then it was determined for which of all these combinations the

latency was the least amount of time above the tolerated upper

bound of (1+ǫ)dtgt, when the PID agent controlls the first part

of the workload trace, i.e., the training set. It turns out that if

the training set spans the first day, the optimal parameters are

(α, β) = (16, 200), while if the training set spans the first two

days, the optimal parameters are (α, β) = (0.25, 200). In both

these cases, the minimum is broad: relatively small changes

in α and β do not alter the number of latency violations

drastically so that the choice of α and β is not critical.

C. Comparison

To test the agents’ behavior in unseen workload traces,

they were tested using the last 172.8K workload values. It

is important to notice that the DQN (and THD-based) agent

and the PID agent use different information as input. The

former uses the instant peak latency and CPU load, while the

latter uses the instant and previous peak latency. Also, the RL

agent learns automatically, while the PID agent is manually

tuned. Both of these facts mean that care should be taken

when comparing the performance of these agents.



0 25000 50000 75000 100000125000150000175000
Timesteps

0

2

4

6

8

10
Num VNFs | Workload

VNF
Work

0 25000 50000 75000 100000125000150000175000
Timesteps

0.00

0.02

0.04

0.06

0.08
Peak Latency [sec]

0 25000 50000 75000 100000125000150000175000
Timesteps

0

1

2

3

4
CPU Usage [%] | Overflow [Num_jobs]

overflow
cpu

(a) DQN Agent

0 25000 50000 75000 100000125000150000175000
Timesteps

0

2

4

6

8

10
Num VNFs | Workload

VNF
Work

0 25000 50000 75000 100000125000150000175000
Timesteps

0.00

0.02

0.04

0.06

0.08
Peak Latency [sec]

0 25000 50000 75000 100000125000150000175000
Timesteps

0

1

2

3

4
CPU Usage [%] | Overflow [Num_jobs]

overflow
cpu
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(c) PID Agent

Fig. 5. Performance of the three proposed agents in terms of the number of created VNFs, peak latency, CPU usage and overflow

TABLE II
COMPARISON RESULTS

Metric Approach Mean Std Min 25% 50% 75% Max

Number of VNFs
DQN 4.87 0.84 1 5 5 5 8
THD 4.32 1.25 1 3 4 5 17
PID 4.06 1.09 1 3 4 5 10

Peak Latency [s]
DQN 0.0095 0.0025 0.0058 0.0088 0.0090 0.0093 0.0785
THD 0.0153 0.007 0.0058 0.0099 0.0118 0.0195 0.1432
PID 0.0198 0.0048 0.0033 0.0163 0.0194 0.0228 0.0689

TABLE III
SLO VIOLATIONS

Approach %SLO Violations

DQN 0.69%

THD 12.20%

PID 16.57%

The behavior of each agent is shown in Fig. 5. On the left of

Figs. 5a, 5b, and 5c, the testing workload trace and the number

of created VNFs are shown. Every agent is tested using the

same workload trace, which is different from the workload

trace used during training or tuning. Generally speaking, the

THD-based and the PID agents create more VNFs. Moreover,

when facing the low workload valleys (around timesteps 30K

and 125K), the PID and the THD-based decrease the number

of VNFs to a number that cannot serve the incoming demand,

increasing the peak latency and the overflow. To recover from

that situation and clear the built-up overflow, both agents are

forced to create more VNFs than needed. On the contrary,

the DQN agent closely follows the workload trace, despite

not having any information regarding it. Around the timesteps

mentioned above, the DQN agent creates an amount of VNFs

that can serve the incoming demand, keeping the peak latency

and the overflow within desirable margins. Nonetheless, the

DQN agent does not react well when facing the highest

peaks of the workload (around timesteps 75K and 170K).

In such situations and for short periods, the agent decreases

the number of VNFs below the required, increasing the peak

latency and the overflow momentarily.

The middle and right parts of Figs. 5a, 5b, and 5c show the

peak latency and the CPU usage and overflow, respectively.

All three agents can keep the peak latency within the desired

tolerance range, with some temporary exceptions. Table II



gives a quantitative analysis of the behavior by showing the

main statistical figures: mean, standard deviation, minimum,

maximum, and the most representative quartiles of the peak

latency and number of created VNFs. As can be seen, the

DQN can maintain a more stable and lower number of created

VNFs than the PID and the THD-based agents. However, this

is more a secondary effect since all the agents are not designed

to optimize the number of replicas. Regarding the peak latency,

most of the time, all the agents can keep this metric under the

upper bound (24ms). Nonetheless, as shown in Table III, the

PID agent violates the upper bound 16.57% of the time while,

the THD-based and the DQN are reducing the violations to

12.2% and 0.69%, respectively.

D. Discussion

This section shows the numerical evaluation of three types

of agents, namely, DQN, PID, and THD-based. Although they

are trained/tuned using different setups (cf. Section III), all

these agents are designed with the same goal of keeping the

peak latency at a target of 20ms with a tolerance of 20%.

In this sense, we put them on the same table in the above

experiment using the identical workload in a simulator engine

to quantify their performance in a real system. Note that these

results not only reveal the trend of these three agents but

also set the foundation for future study on the impacts from

different setups beyond instant peak latency, i.e., previous peak

latency (used by PID agent) and CPU load (used by both DQN

and THD-based agents).

Furthermore, choosing the applicable agent is a task beyond

only performance evaluation. It also depends on both business-

and operational-related conditions. On the one hand, a multi-

tier Service Level Agreement (SLA) between stakeholders

might show different amounts of marginal penalty among

agreed objectives, e.g., a high penalty even when slightly

violating the maximum service latency; therefore, the auto-

scaler agent may have a higher chance to disregard the number

of created VNFs. On the other hand, from the operational point

of view, an operator might not have the required hardware

to support ML solutions. Therefore, a DQN agent is ruled

out due to its requirement to explore new actions to improve

the reward, leading to unpredictable behavior on lower-end

hardware.

VI. CONCLUSION

More and more, future networking systems are becoming

autonomous by using intelligent agents to carry out sev-

eral MANO operations. One of those operations is scaling.

The auto-scaling problem determines how many replicas are

needed to fulfill operational, economic, or business objectives.

In this paper, we designed and evaluated three autonomous

scaling agents using known techniques such as heuristics,

classic control and RL. We compared the three agents in

terms of the peak latency and the amount of created VNFs.

Additionally, we discussed their advantages and disadvantages

when considering their implementation.

Despite the promising results, several challenges are still

open and can be addressed in future work. For instance, we

will include vertical and horizontal scaling, where multiple

servers need to be deployed.
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