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Abstract—Applications can tailor a network slice by specifying
a variety of QoS attributes related to application-specific per-
formance, function or operation. However, some QoS attributes
like guaranteed bandwidth required by the application do vary
over time. For example, network bandwidth needs of video
streams from surveillance cameras can vary a lot depending
on the environmental conditions and the content in the video
streams. In this paper, we propose a novel, dynamic QoS attribute
prediction technique that assists any application to make optimal
resource reservation requests at all times. Standard forecasting
using traditional cost functions like MAE, MSE, RMSE, MDA,
etc. don’t work well because they do not take into account the
direction (whether the forecasting of resources is more or less
than needed), magnitude (by how much the forecast deviates,
and in which direction), or frequency (how many times the
forecast deviates from actual needs, and in which direction).
The direction, magnitude and frequency have a direct impact
on the application’s accuracy of insights, and the operational
costs. We propose a new, parameterized cost function that takes
into account all three of them, and guides the design of a new
prediction technique. To the best of our knowledge, this is the
first work that considers time-varying application requirements
and dynamically adjusts slice QoS requests to 5G networks in
order to ensure a balance between application’s accuracy and
operational costs. In a real-world deployment of a surveillance
video analytics application over 17 cameras, we show that our
technique outperforms other traditional forecasting methods, and
it saves 34% of network bandwidth (over a ∼24 hour period)
when compared to a static, one-time reservation.

Index Terms—5G networks, IoT, QoS, network slice, predic-
tion, self-optimization, analytics applications

I. INTRODUCTION

Smart sensors (or devices) sense and produce raw data
streams that are being used for various types of analytics.
These sensors or “things” are connected to the Internet, giving
rise to a new paradigm called Internet of Things (IoT). The
total number of IoT devices in the world is estimated to
grow to 41.6 billion by the year 2025 and the amount of
data generated from these devices is expected to grow to 79.4
zettabytes by 2025 [1]. All this data from so many IoT devices
is typically transmitted over 5G networks to a remote location
for analytics processing.

With the advent and growth of 5G, the rate at which these
IoT devices are being installed and deployed has suddenly
accelerated. According to Ericsson, by the year 2025, they
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Figure 1: Applications on 5G networks

predict around 5 billion IoT devices will be connected over
cellular network [2]. The promise of 5G to pack over 1
million IoT devices in 1 square kilometer (massive Machine
Type Communication - “mMTC”), coupled with Ultra Reliable
Low Latency (“uRLL”) and Enhanced Mobile Broadband
(“eMBB”), is driving the deployment of numerous IoT sensors
and design of new applications, which were not possible
before. For example, consider Intelligent Transportation Sys-
tems (ITS), which is a new and emerging application. It is
leveraging 5G and IoT sensors to improve various aspects in
transportation, including autonomous driving, collision avoid-
ance, traffic planning, etc. Several AR/VR (augmented reality,
virtual reality) applications are also emerging, wherein high
bandwidth video data transmission and low latency response
times are possible due to 5G. Such a scenario of emerging, new
applications in a city-scale deployment of sensors (with data
being transmitted over 5G for remote processing) is shown in
Fig. 1.

In most applications, the network bandwidth required for
transporting the raw data streams produced by sensors is usu-
ally time-varying because the amount of sensor data changes
depending on the environmental conditions and content in
the data streams. For example, in case of video surveillance
application, the bit rate of the video data stream changes
depending on the observed scene, as shown across different
cameras in Fig. 2 (from a real deployment). If there is no
change or relatively less change from one frame to another,
then the bit rate drops, whereas, if there is quite a lot of activity
and significant changes occur between frames, then the bit rate
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(a) Camera 1 (b) Camera 2

(c) Camera 3 (d) Camera 4

Figure 2: Network traffic from surveillance cameras (1 day)

increases substantially. This is an artifact of the compression
algorithms used within the video cameras, and the amount of
data produced by the camera varies significantly over a period
of time.

5G networks guarantee Quality of Service (QoS) to applica-
tions through network slicing. Network slicing sets up end-to-
end logical/virtual networks over a common physical com-
munication infrastructure. Applications can request specific
QoS by specifying appropriate network slice attributes like the
latency, throughput, bandwidth (guaranteed and maximum),
packet error rate, reliability, duration of slice, etc. One such
abstraction for network slice specification is provided by
AppSlice [3]. Once a slice is created for an application, this
network slice is isolated from other slices, since the network
slice has dedicated virtual network resources. Applications
are charged based on the amount of network resources they
request/reserve, and not on the basis of actual amount of
network resources used by an application [4]. Thus, it is in
the best interest of the application to request only resources
that it will actually use (to save operational costs). Desired
behavior for any application is that there should be minimum
or no oversubscription i.e. actual network bandwidth need
should not exceed the reserved bandwidth; there should also be
minimum or no undersubscription i.e. bandwidth used by the
application is the same or close to the reserved bandwidth to
avoid paying for unused but reserved network bandwidth. As
an added incentive, if the application requests fewer network
resources, then the chances of 5G network granting the request
are much higher.

Our key contributions in this paper are:

1) We propose a novel QoS request prediction technique,
specifically, network bandwidth prediction technique,

which any analytics application can use to dynamically
self-optimize application’s QoS requests to 5G networks

2) We propose a new cost function, which takes into
account the magnitude, direction and frequency of the
oversubscription or undersubscription, and enables the
design of a new prediction technique that continuously
optimizes the network bandwidth requests to 5G net-
works.

3) We show that in a real-world deployment of video
analytics application over 17 cameras, our adaptive
prediction technique outperforms other traditional fore-
casting methods, and it is able to save 34% of network
bandwidth (over a 24-hour period) when compared to a
one-time static bandwidth request at the time of creation
of the slice.

The rest of the paper is organized as follows. We discuss
the related work in Section II. In Section III, we motivate the
need for augmenting applications with additional intelligence
to modulate QoS requests to 5G networks. In Section IV,
we present a system-level overview of how our technique is
used by analytics applications in real-world deployments. We
discuss our new cost function in Section V and present our
novel prediction technique in Section VI. Later, in Section
VII we describe our experiments and the results we obtained
by using our proposed technique in a real-world surveillance
deployment. Finally, we conclude in Section VIII.

II. RELATED WORK

Various forecasting and resource allocation techniques have
been proposed to assist the network operator to optimize
network slicing in 5G networks [5] [6] [7] [8]. These
techniques are tailored towards 5G network infrastructure



providers/operators, and they discuss ways to efficiently handle
slicing requests from multiple applications (multi-tenancy).
Some techniques focus on a single application within a single
network slice, and they use machine learning techniques to
forecast future capacity demands [9]. However, they also
present their work from a 5G network operators point of
view. In contrast, our proposal is application-centric rather than
infrastructure or 5G network operator-centric. Our technique
can be used by any application to dynamically self-adapt the
network slice QoS requests over a variety of carrier or private
5G network operators.

Several network traffic prediction techniques have been pro-
posed [10]: linear time series models (ARMA [11], ARIMA
[12], SARIMA [13], AARIMA [14], EPTS [15]), nonlinear
time series models (GARCH [16], Neural Network techniques
[17] [18] [19]), hybrid models (combination of linear and non-
linear models e.g. ARIMA + GARCH [20]) and decomposed
model [21], where time series is decomposed into multiple
components. There are also models and prediction techniques
based on decision tree regression [22] and support vector
regression [23]. These prediction models use traditional error
metrics to evaluate prediction accuracy, and these metrics
include Mean Absolute Error (MAE), Mean Square Error
(MSE), Root Mean Square Error (RMSE), Normalized Root
Mean Square Error (NRMSE), Mean Percentage Error (MPE)
and Mean Absolute Percentage Error (MAPE). These metrics
mostly focus on absolute error and optimization techniques
try to keep the error as low as possible, without considering
the direction or frequency of the error. This may be okay
for some scenarios, but in our scenario the direction as well
as the frequency of error matters. This was also pointed
out in [9] [24]. We cannot use the traditional error metrics
and we define a new cost function to capture the tradeoff
between accuracy of insights and operational costs. We use
the cost function to guide us in the design of a new prediction
technique. Unlike prior prediction techniques, our prediction
technique prioritizes reduction in magnitude and frequency
of oversubscription (direction), which is more critical than
undersubscription in video analytics applications.

III. MOTIVATION

As mentioned in Section I, it is desirable for the application
to have minimum or no oversubscription and minimum or no
undersubscription to avoid any data loss (which can result in
loss of accuracy of insights from the application), or non-usage
of guaranteed network resources. Without knowing the net-
work traffic profile and the usage pattern, an obvious method
to issue QoS requests to 5G networks in order to prioritize ac-
curacy over cost, is to request the worst case required network
bandwidth. This is shown in Fig. 3 as “Fixed QoS requests”.
In response to such a request, the 5G network will grant the
worst case required network bandwidth, if available, and then
the application may choose to use it however it wants. Now, the
actual network traffic usage varies over time (this is shown as
“actual usage”), and there can be surplus network bandwidth
reserved. The surplus results in additional operational costs,

Figure 3: Adaptive QoS requests

which can be avoided. Now, in order to reduce the wastage,
the intuition is that instead of issuing static, one-time, worst
case required network bandwidth request to the 5G network,
it may be beneficial to periodically send QoS requests to the
5G network, each time adapting and predicting the required
network bandwidth and then issuing QoS request with the
predicted network bandwidth. Dynamic adaptation of QoS
requests is shown by “adaptive QoS requests” in Fig. 3. Such
modulation of QoS requests can lead to significant savings
in network bandwidth, as shown in the figure as “Bandwidth
savings”. However, occasionally, if the prediction is less than
the network bandwidth actually required, then there could
be some data that won’t be transmitted. This is shown in
the figure as “Data Loss”. Thus, “adaptive QoS requests”
have the potential for substantial network bandwidth savings,
and significant reduction of overall operational costs for the
application.

IV. SYSTEM OVERVIEW

A high level system overview is shown in Fig. 4. Data
streams from different sensors go over a 5G network into a
network slice that has been set up by the 5G network for use
by the analytics application, which can have tasks running
at the edge. Depending on the network bandwidth needs of
the sensors, the application can adapt and periodically issue
updated QoS requests to the 5G network. As an illustration,
consider the face recognition application, which recognizes
faces seen in the video stream based on a pre-registered gallery
of faces. The application monitors one or more video streams.
These streams are made available to the application by the
5G network in a single network slice, whose QoS attributes
are periodically updated by the face recognition application
to ensure optimal use of the reserved network resources.
For example, the bit rate of the video is low during the
night when there is no movement of people in front of the
camera. However, the bit rate is high during the day when
people are moving in front of the camera. This time-varying,
dynamic network traffic can be monitored by face recognition
application and the bandwidth reserved at night can be way



Figure 4: System overview

lower than the bandwidth reserved during the day. Different
network bandwidth reservations during the night and day lead
to significant network bandwidth savings, with almost no effect
on the accuracy of insights from the application.

V. COST FUNCTION

There are several forecasting methods used in various
domains like weather prediction, hardware failure prediction,
and exchange rate prediction in economics or finance. In
every case, it is desirable that the predicted value be as
close as possible to the actual value. A cost function is
typically minimized or maximized in order to achieve the
desired prediction results, and cost functions are designed
around traditional error metrics like Mean Absolute Error
(MAE), Mean Absolute Percentage Error (MAPE), Mean
Squared Error (MSE), Root Mean Squared Error (RMSE),
Mean Direction Accuracy (MDA) and Adjusted Root Mean
Squared Error (ARMSE) [24].

The cost functions typically consider the magnitude or di-
rection of the error, or some combination thereof. For example,
MAE is the average of the residuals or the absolute error (i.e.
the difference between the predicted and actual value) and it
considers only the magnitude of the error. It does not take into
account the direction of the error (i.e. whether the predicted
value is higher or lower than the actual value), or the frequency
(i.e. how often the predicted value deviates from the actual,
and in which direction). Similarly, MAPE also focuses on the
percentage of the magnitude of the error, without considering
direction or frequency. MSE is another error metric that is
the average of the squared error and it measures the variance
of the residuals. Again, like MAE, MSE also does not take
into account the direction or frequency. RMSE is the square
root of MSE and it measures the standard deviation of the
residuals. MSE and RMSE penalize large prediction errors
more, compared to MAE. Lower values of MAE, MSE and
RMSE correspond to better predictions. Unlike MAE, MSE
and RMSE, MDA considers the direction of the predicted

value, and it is a popular forecasting performance metric
in economics and finance [25]. MDA captures the upward
or downward trend but it is oblivious to the magnitude or
frequency of the error. AMRSE tries to combine magnitude
and direction, but it does not account for frequency.

So, none of the known and popularly used cost functions si-
multaneously consider the magnitude, direction and frequency
of the error. All three are important in our problem. The
amount of actual network bandwidth usage (whether it is
over or under the reserved network bandwidth), and how
frequently the predicted usage is over or under the actual usage
is important to minimize the operating costs of the application
and avoid loss of accuracy of insights due to data loss. In our
application, predicting usage that is less than the actual usage
is critical because it can lead to undesirable loss in accuracy
of insights produced by the analytics application.

We propose a new cost function (Equation (1)) that takes
into account the magnitude, direction and frequency of the
error. For each time unit t in the total duration T , we check
for undersubscription or oversubscription. The flag Fu is 1
if there is undersubscription i.e. actual value (At), is less
than reserved guaranteed bandwith (GBR) value GBRt. The
flag Fo is 1 if there is oversubscription i.e. actual value (At)
is greater than the GBR value GBRt. Both Fu and Fo are
zero otherwise, as shown in Equation (2). Now, every time
there is undersubscription, we penalize with a cost of Pu

and every time there is oversubscription, we penalize with a
cost of Po and the penalty is applied to the actual amount of
either undersubscription or oversubscription. The penalty for
oversubscription is typically much higher than the penalty for
undersubscription, since oversubscription directly adversely
affects the accuracy of analytics. We want the oversubscription
to be minimal, so that the accuracy of the analytics is not
adversely affected. On the other hand, undersubscription leads
to wastage of resources and higher operational costs due to
excess reservation of network bandwidth. Therefore, there is
penalty for undersubscription too. However, this penalty is



typically not as critical as the penalty for oversubscription.
The actual penalty values can be configured depending on
the relative importance of over and under subscription in the
specific application. The total cost is the sum of costs incurred
for undersubscription and oversubscription, and lower the total
cost, the better is the prediction.

Ctotal =
∑
t∈T

Fu × (GBRt −At)⊗ Pu

+
∑
t∈T

Fo × (At −GBRt)⊗ Po

(1)

Fu =

{
1, if, GBRt > At

0, otherwise
and Fo =

{
1, if, At > GBRt

0, otherwise
(2)

VI. PREDICTION TECHNIQUE

Different prediction techniques and models like ARMA,
ARIMA, GARCH, Neural-network based, Linear regression,
Support Vector Regression using linear and non-linear kernels
e.g. RBF, Decision Tree based regression, Adaboost regres-
sion, etc. are used and applied to predict network traffic [10].
However, these prediction techniques do not account for the
vastly different impact of oversubscription or undersubscrip-
tion of network resource usage on the operating costs and
accuracy of insights from the analytics application. Therefore,
we propose a novel prediction technique, which analytics
applications can use to dynamically self-optimize application’s
QoS requests to 5G networks. Our proposed prediction tech-
nique adequately takes into account the operating costs as well
as the accuracy of insights from the analytics applications.

As mentioned in Section V, oversubscription impacts the
accuracy of the application and therefore is more critical. In
our cost function, we assign a higher penalty for oversubscrip-
tion. Our prediction technique aims to reduce oversubscription
magnitude as well as frequency. We first design a simple
prediction technique, which we call as the “Max” prediction
technique: we use the maximum network bandwidth that was
actually utilized by the application in the previous interval
as the predicted network bandwidth for the next interval.
Now, with the “Max” prediction technique, although we do
consider and adjust to the upward or downward trend of the
network bandwidth usage, it is still very coarse grained and
may result in higher oversubscription or undersubscription,
both in terms of magnitude as well as frequency. This is
because, the network traffic may jump up or drop down at
a very fast rate, and this is not easily captured quickly by
the “Max” prediction technique. Besides, blindly using the
maximum may lead to significant undersubscription. To adjust
to the rapid change in the rate of network bandwidth usage,
avoid too much undersubscription, and in general to capture
the upward or downward trend of the network bandwidth
usage at a more fine-grained level, we propose next a slightly
modified version of the “Max” prediction technique, which we
call as the “Modified-Max” technique.

In the “Modified-Max” prediction technique, instead of just
blindly using the maximum network bandwidth that was uti-
lized by the application in the previous interval, we remember
what was the predicted network bandwidth for the past t time
intervals. Now, for these t time intervals, we see if there was an
upward or downward trend of the network bandwidth usage.
To be conservative and prevent future oversubscription, we
consider that there is an upward trend even if we see that
there is one occurrence of oversubscription in the past t time
intervals. Now, if there is an upward trend, then the mean of
the magnitude of oversubscription above the predicted value of
all occurrences of oversubscription is calculated. The highest
magnitude or the maximum of the network bandwidth utilized
is then chosen as the baseline for the next prediction and the
calculated mean is added to this baseline, which adjusts or
modifies the maximum and this “modified maximum” is then
chosen as the next network bandwidth prediction.

Along with considering the upward trend, “Modified-Max”
prediction technique also takes into account the downward
trend i.e. when there is no oversubscription observed in the
past t time intervals. When there is a downward trend, then
the mean of the magnitude of undersubscription below the
predicted value of all occurrences of undersubscription is
calculated. This mean is then subtracted from the baseline,
which is the highest magnitude or the maximum of the network
bandwidth utilized by the application, and this new “modified
maximum” is then chosen as the prediction for the next
interval. Thus, when there is an upward trend, “Modified-
Max” technique raises the predicted network bandwidth for
next interval above the baseline, while for downward trend, it
lowers the predicted network bandwidth below the baseline,
thereby, capturing the rapid change in the rate of network
bandwidth usage as well as capturing the upward or down-
ward trend in a much finer granularity. Our “Modified-Max”
prediction technique is able to keep the oversubscription as
well as undersubscription in check, while giving priority to
prevent oversubscription more than undersubscription.

VII. EXPERIMENTS AND RESULTS

We report our experience with a real-world deployment of
a video surveillance application that monitors 17 cameras in a
busy airport. These cameras are placed indoors and outdoors,
they experience different lighting conditions, and they monitor
different locations with time-varying people traffic. Video
streams from these cameras are sent over a private 5G network
for remote processing. Our application uses a single network
slice to access all the 17 video streams.

We use Axis Q1615 cameras with H.264 encoding for the
video streams. As the environment changes, the network traffic
profiles (i.e. bit rates from these individual cameras) change.
The bit rate varies for an individual camera. The bit rate
also varies across different cameras due to the time-varying
density of people traffic (network traffic profiles for some
of the cameras is shown in Fig. 2). For our video analytics
application, it is important to predict the network bandwidth
requirement for each camera, aggregate the predictions, and



(a) Magnitude of oversubscription

(b) Frequency of oversubscription

(c) Magnitude of undersubscription

(d) Frequency of undersubscription

Figure 5: Magnitude and frequency for different techniques

issue a single QoS request to the private 5G network to change
the guaranteed bandwidth attribute of the network slice.

Fig. 5 compares various prediction techniques in terms of
the magnitude and frequency of oversubscription, and the
magnitude of undersubscription. We observe that the mag-
nitude of oversubscription for the proposed “Modified-Max”
technique is much less than the others. We also observe that the
frequency of oversubscription is quite low, compared to others.
This shows that our technique is very effective in preventing
oversubscription (data loss), thereby ensuring high analytics
application accuracy.

We also observe that the magnitude of undersubscription

for the proposed “Modified-Max” technique is higher than the
other prediction techniques (because we use “Max” value from
previous interval as our baseline). However, when compare
to a static, one-time reservation, our technique saves 34% of
network bandwidth. We report compared to static, one-time,
reservation rather than other prediction techniques because
other prediction techniques have a high magnitude of over-
subscription, which is not acceptable for the application. So,
if zero oversubscription is desired, then the application has
to reserve the worst case network bandwidth and incur the
associated high network resource reservation costs.

Figure 6: Total cost for different prediction techniques

Fig. 6 compares the proposed cost function values for the
different techniques. We used the same oversubscription and
undersubscription penalty for all the techniques. The exact
values used were 0.1 for undersubscription penalty (Pu) and
30 for oversubscription penalty (Po). We observe that our
“Modified-Max” prediction technique has the lowest cost and
it outperforms all the other prediction techniques.

VIII. CONCLUSION

Network traffic profile from sensors e.g. video cameras,
vary depending on environmental conditions, and analytics
applications receiving such time-varying, dynamic sensor data
streams over 5G networks, have to decide and issue QoS
requests to 5G networks for network slices, since 5G networks
are unaware of the application requirements. Static, one-time,
issuance of QoS request by application, leads to tremendous
amount of wastage of network resources, which increases
operational cost significantly. To this end, in this paper, we
propose a novel QoS request prediction technique, specifically,
network bandwidth prediction technique, and we also present
a new cost function, which takes into account the magnitude,
direction and frequency of error i.e. difference between the
actual used and reserved network bandwidth. Our proposed
technique empowers applications to dynamically adapt and
self-optimize QoS requests to 5G networks in order to reduce
network bandwidth wastage, and thereby operational cost, with
minimal effect on accuracy. With real-world deployment of
video analytics application over 17 cameras, we show that
our technique is able to save 34% of network bandwidth,
with minimal data loss, when compared to a static, one-time
reservation and it also outperforms other traditional forecasting
methods.
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