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Abstract—Large-scale simulations play a central role in science
and the industry. Several challenges occur when building simu-
lation software, because simulations require complex software
developed in a dynamic construction process. That is why
simulation software engineering (SSE) is emerging lately as a
research focus. The dichotomous trade-off between scalability
and efficiency (SE) on the one hand and maintainability and
portability (MP) on the other hand is one of the core challenges.
We report on the SE/MP trade-off in the context of an ongoing
systematic literature review (SLR). After characterizing the issue
of the SE/MP trade-off using two examples from our own
research, we (1) review the 33 identified articles that assess the
trade-off, (2) summarize the proposed solutions for the trade-
off, and (3) discuss the findings for SSE and future work.
Overall, we see evidence for the SE/MP trade-off and first
solution approaches. However, a strong empirical foundation has
yet to be established; general quantitative metrics and methods
supporting software developers in addressing the trade-off have
to be developed. We foresee considerable future work in SSE
across scientific communities.

I. INTRODUCTION

We consider simulation software engineering (SSE) from
a two-fold perspective: the perspective of software developers
specialized in methods of scientific computing and high perfor-
mance computing and the perspective of software engineering.

A. Problem Statement

Our experiences as scientific software developers show that
software engineering tools and methods are used and are
very helpful for various tasks such as testing, version control,
debugging, and the design of the object-oriented software ar-
chitecture. However, a question that is of particular importance
for high performance simulation software is not addressed
by the available software engineering research: How do we

achieve a high hardware efficiency and parallel scalability on
massively parallel and heterogeneous supercomputers without
deteriorating the readability, maintainability, and portability of
the code? Whereas efficiency and scalability often require a
tailoring of the code to specific hardware details such as cache
line lengths and memory bandwidth and, therefore, the use
of low-level languages, maintainability and portability require
a certain abstraction level from the actual hardware and,
thus, e.g., a modular software architecture, clear separation of
concerns, and the restriction to standard language elements.

Moreover, simulation software is different from many other
software types from the software engineering perspective: The
aim of the software is often ill-defined in the early phases,
there is no clear separation of roles between programmers and
customers, fundamental parts of the code have to be reimple-
mented frequently due to new scientific and methodological
insights, the requirements of scientific projects to produce
results quickly do not allow for extended phases of software
development before reaching a first usable software prototype,
a missing or fuzzy knowledge of the correct behavior of
the software makes testing and verification much harder, and
the fact that there actually is a trade-off and not a synergy
between scalability/efficiency and maintainability/portability is
different from, e.g., software for embedded systems, where a
high abstraction can help to reach a high efficiency.

B. Research Objective

Whereas other literature reviews such as, in particular, [1],
cover the total view on software engineering for scientific
software, we narrow the focus on 1) a special type of scientific
software, i.e., simulation software intended to run efficiently
on massively parallel high performance architectures, 2) the
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trade-off between scalability & efficiency on the one hand
and maintainability & portability on the other hand. This
SE/MP trade-off seems to be one of the most central issues
in software development in this area with only few systematic
solution approaches available. As an initial step for research
on this specific topic, we report exemplary experiences from
our own research on simulation software and, as the main part
of the paper, present results and conclusions from a systematic
literature review to get a clear view of the state-of-the-art.

C. Definitions

In literature, many different terms are used to describe
research fields and topics related to this paper. We give our
definitions here which we adhere to for the rest of the paper.
High Performance Computing: High performance com-
puting (HPC) is the area of computer-supported simulation
on massively parallel computing architectures with particular
high requirements in terms of computational performance and
memory efficiency.
Simulation Software: This type of software aims at modeling
and analyzing scientific problems, e.g., from engineering,
physics, chemical science, biology, or medicine.
Simulation Software Engineering: In SSE, we focus on
all activities that are concerned with developing a simulation
software.

II. EXPERIENCES

Experiences from the research projects of the authors [2]
show that the trade-off between scalability and efficiency
on the one hand and maintainability and portability on the
other hand is ubiquitous in scientific simulation software
development. In this section, we present two examples that
represent two extremes in terms of granularity: a software
environment for complex multi-physics simulations and code
snippets for matrix-matrix multiplication, one of the low-level
building blocks of many simulation codes.

A. Multiphysics Simulations

Multi-physics simulations are characterized by the require-
ment to combine physical phenomena described by different
mathematical models in a single simulation. With increasing
compute power, improved numerical solvers and increasing
model accuracy requirements, they have become a very impor-
tant class of scientific simulations during the last decade. Two
main approaches to develop corresponding simulation software
have been established: monolithic approaches that tackle all
equations in a single system and, thus, a single software, and
partitioned approaches that re-use existing software for the
involved single-physics sub-problems. Simple combinatorial
consideration shows that already for five sub-problems, ten
different monolithic codes for pairs of them and 31 different
codes for all possible combinations would have to be devel-
oped from scratch. Thus, a partitioned, i.e., highly modular
approach seems to be very attractive. The partitioned approach,
however, raises questions on whether the same numerical and

hardware efficiency and parallel scalability as for monolithic
codes can be achieved.

The software library preCICE [3] has been developed (in
a small group of doctoral students with a varying number of
members between one and three) as a tool for surface coupling
between sub-domains with different physics. It is written
in standard C++ using MPI parallelization and implements
point-to-point communication between parallel single-physics
solvers, data mapping between non-matching meshes and
outer iterative solvers recovering the monolithic solution for
implicit time-stepping or steady-state scenarios. Our standard
application example is the interaction of fluid flow with elastic
structures.

In the following, we summarize results from previous pub-
lications and interpret them with the focus on the trade-off
between scalability/efficiency and maintainability/portability.

Scalability & Efficiency. The major concern in partitioned
multi-physics simulation approaches is that they might degrade
the scalability and efficiency both in terms of numerical
efficiency and in terms of hardware performance. To show
that this is not necessarily true, we simulated 1) a Gaussian
pulse moving in an artificially split domain and 2) various real
fluid-structure interactions.

The simulations showed that, given an efficient realization
of inter-code communication, scalability and efficiency losses
due to the domain splitting are low. The coupled simulation
inherits the high scalability and efficiency of the coupled
simulation codes [3].1 With 2), we can prove that only a very
moderate number of outer iterations is required for real-world
problems. This results in an increase of computational cost
that is similar to what we observe in monolithic approaches
due to the worse condition of the coupled system compared
to the condition of the single-physics problems [5].

Maintainability & Portability. The high number of com-
mercial and academic codes (2 commercial, 13 academic
codes, [3]) that have been coupled with preCICE in the last
5 years based on the work of only a handful of doctoral
students hints at an enormous reduction of development time
compared to writing a new code from scratch. In addition,
the resulting flexibility in exchanging coupled codes allows
us to use single-physics solvers optimized for the respective
target architectures. The preCICE code itself is highly portable
as it uses only standard C++ and MPI functionality and has
only a low number of dependencies [3]. It is strictly object-
oriented and of moderate size. Experiences with modifications
or integration of new methods over the last five years showed
that due to this not only the maintainability of the whole
coupled simulation environment but also of preCICE itself is
very good.

Conclusion. Other than in the example presented in II-B,
a highly modular approach at the level of multiple interacting
physical effects in a simulation scenario seems to be very

1The simulation was done with the high order discontinuous Galerkin code
Ateles on octree meshes [4].



appropriate in terms of maintainability & portability without
degenerating scalability & efficiency.

B. Matrix-Matrix Multiplication

Matrix-matrix and matrix-vector operations are the core
operations in simulation codes. The underlying physics is
often modeled as a system of partial or ordinary differential
equations. Their discretization via finite elements or finite
differences often leads to a (sparse) system of linear equations.
If an iterative solver is employed, the expensive core operation
typically is a matrix-vector multiplication. In addition, matrix-
matrix multiplications occur, e.g., when transformations are
applied to the discretized system.

In the following, we consider the multiplication of two
dense square matrices. From a programmer’s point of view,
this should not be very challenging, easy to implement, main-
tainable and portable, and well supported by modern hardware
and compilers. As we will show, this is true with respect
to the ease of programming, maintainability & portability.
However, it turns out that the easy implementation leads to
very poor efficiency. The more a programmer reaches towards
the hardware’s peak performance, the more specialized and
the less maintainable and portable the code gets. This is what
we demonstrate in the following. As the target hardware, we
consider an Intel i5 4300 Laptop CPU of the Mobile Processor
Series. It exhibits two cores, 2.6 GHz clock cycle, 2 vector
units, support for fused-multiply-add operations and 4-wide
vector units yielding a theoretical peak performance (TPP) of
83.2 GFlops (double precision).

The computation of

AB = C, A,B,C ∈ Rn×n,

with n = 4096 for the following performance results, can
easily be implemented in four lines of code, see Listing 1.
This is clearly maintainable & portable. However, it results in
a performance of a mere 0.22 GFlops, which corresponds to
the TPP of an Intel Pentium 200 from 1996.

Listing 1. Direct implementation
for (size_t i = 0; i < n; i += 1) {
for (size_t j = 0; j < n; j += 1) {
for (size_t k = 0; k < n; k += 1) {
C[i * n + j] += A[i * n + k] * B[k * n + j];

}
}

}

This is a classical example in HPC lectures: The memory
access to matrix B is non-contiguous. This hinders prefetching
and leads to a significant pollution of the hardware caches. A
simple transposed access of B comes to the rescue, which
compilers do not do automatically. This increases the perfor-
mance to 0.5 GFlops (corresponding roughly to the TPP of
a Pentium2 450 from 1998). However, we have then tailored
our implementation to the memory layout of the programming
language C/C ++.

Compilers cannot detect that the function can be vectorized.
We can either enforce auto-vectorization by replacing the
dependency on the matrix C with an accumulator variable
which leads to 1.04 GFlops, or we can directly use the shared
memory parallelization of OpenMP, which can then make use
of both cores and two processes per core (Hyper-Threading).
A simple pragma statement is sufficient, see Listing 2, which
leads to 3.23 GFlops (the TPP of a Pentium 4 from 2001).

Listing 2. Shared-memory parallelization with OpenMP
#pragma omp parallel for
for (size_t i = 0; i < n; i++) {

// ...
}

Analyzing the suboptimal performance, we realize that
memory access is the main bottleneck. The main memory can
be accessed with a maximum of 25.6 GB/s on our i5 4300
chipset. We can thus only read about 0.32 Bytes per floating
point operation. This is not sufficient to provide enough data
in time. We therefore have to rewrite our code so that we
can execute as many computations as possible for each loaded
batch of data. The idea is to work on sub-blocks (sub-matrices)
that fit into the cache of our system. As a side-effect, we obtain
a performance that is independent of the matrix size n, but we
loose auto-vectorization once more. The resulting code is now
33 lines of code and much less maintainable (see Listing 3 for
some hints). But our performance jumps to 12.7 GFlops when
we combine blocking and OpenMP. This corresponds to the
TPP of an Intel Core 2 Duo E6600 from 2006.

Listing 3. A blocked implementation using OpenMP
#define BLOCKSIZE 128
#define KCHUNK 128
omp_set_num_threads(4);

#pragma omp parallel for
for (size_t i = 0; i < n; i += BLOCKSIZE) {
for (size_t j = 0; j < n; j += BLOCKSIZE) {
double result[BLOCKSIZE * BLOCKSIZE];
// ...
for (size_t kBlock=0;kBlock<n;kBlock+=KCHUNK) {
// ...
// Inner block multiplication
for (size_t ii = 0; ii < BLOCKSIZE; ii += 1) {
for (size_t jj = 0; jj< BLOCKSIZE; jj += 1) {
double resultChunk1[4]; // only one register
// ...
for (size_t k = 0; k < KCHUNK; k += 4) {
for (size_t kk = 0; kk < 4; kk++) {
resultChunk1[kk] += AA[(ii+0)*KCHUNK+k+kk]

* BB[(jj+0)*KCHUNK+k+kk];
}

}
// ...

Remembering that we do not exploit the vectorization that
our processor provides, we manually vectorize our code using
intrinsics. This results in 49 lines of code of which we show



three lines in Listing 4. The resulting implementation is not
intuitively understandable any more. However, we now reach
38 GFlops in total, thus about the TPP of an Intel Core 2 Quad
Q6700 from 2007.

Conclusion. Reaching to almost 50% of the theoretical peak
performance on our system is an excellent result for the perfor-
mance optimization. But the resulting code is custom-tailored
to a certain hardware platform, exploits specific properties
such as the width of vector units and the size of cache-lines,
and can result in significant performance penalties on other
hardware – if it compiles at all. This example demonstrates that
we need new ways to obtain an acceptable trade-off between
computational efficiency on the one hand and maintainability
and portability on the other hand [6], [7].

Listing 4. Three lines of the inner-most loop of an implementation with
OpenMP and Intrinsics
// ...
alignas(32) __m256d Aregister[REG_BLOCK_II];
for (size_t iii=0; iii<REG_BLOCK_II; iii++) {

Aregister[iii] = _mm256_set1_pd(
AA[(ii + iii) * KCHUNK + k + 0]);

// ...

III. REVIEW QUESTIONS

To put our own experiences described above into a broader
perspective, we performed a SLR. We started with a broader
set of review questions related to understanding the emerging
field of SSE as defined in [2], as well as the corresponding
challenges and advantages. For the present paper, we focused
only on the SE/MP trade-off and formulated the following
questions:

• What are issues around scalability, efficiency, maintain-
ability and portability in SSE?

• How is the SE/MP trade-off addressed?
• How valid/quantitative is the knowledge we have on the

SE/MP trade-off?
• Which methods and solutions are proposed?

IV. METHOD

We followed the established guidelines for SLRs proposed
by Kitchenham [8].

A. Data Sources and Search Strategy

We searched the papers using a three-fold strategy for data
sources.

1) Academic search engines and digital libraries (IEEE
Xplore, ACM DL, ScienceDirect, Web of Science, SEI
Digital Library, Wiley Interscience, and Inspec).

2) Manual inspection of the output of the publication venues
that are known to host potentially relevant articles (the
proceedings of the “Software Engineering for Compu-
tational Science Workshop” series, the “Computing in
Science and Engineering”, “International Journal of High

Performance Computing Applications”, and “IEEE Soft-
ware” journals).

3) Manual inspection of the results in steps 1 and 2, after
applying inclusion and exclusion criteria (see IV-B, IV-E
for articles that reflect about the SE/MP trade-off).

We constructed the search query following the quasi-gold
standard (QGS) strategy suggested by Zhang et al. [9]. The
strategy aims to raise the objectivity of the search queries by
extracting the search terms from a collection of articles that
are considered as the gold standard of a given topic. The quasi
part of QGS is related to the time and context dependency that
are typical in software engineering. The constructed queries,
when run, should attempt to discover as much of the QGS
collection as possible. We defined a QGS from 69 articles,
which let us construct the following query.

( “software engineering” OR “software development”)
AND ( “simulation software” OR “simulation code”‘) AND (
“scientific computing” OR “scientific software” OR “compu-
tational science” OR “computational simulation” OR “high
performance computing” OR “parallel computing”)

One author of the present paper performed the search for
the articles.

B. Inclusion and Exclusion Criteria

We formulated the inclusion and exclusion criteria in an
iterative fashion during the initial meetings. Two authors
applied the inclusion and exclusions criteria in a two-phases
strategy as suggested by Kitchenham [8]. In the first phase, we
inspected the paper titles. In the second phase, we inspected
the abstracts and the conclusions.

Inclusion criteria
1) Answers our research and review questions
2) Suggests a software engineering method to improve one

aspect of simulation software development
3) Is a research article (including empirical studies, review

articles, opinion articles, and experience reports)
4) Published in the time range 1990-2015
Exclusion criteria

1) Book
2) Database focused
3) Hardware focused
4) Deals with simulation software for the improvement of

software engineering
5) External to software engineering
6) External to simulation software
7) Education-related

C. Data Extraction and Tabulation

All authors but one of the present paper worked on the data
extraction and tabulation. The allocation of the papers was
randomized and assigned equal workloads. We set biweekly
meetings to share the status of the tasks and to reach agree-
ments. We recorded the data in a Google Form, which resulted
in a shared Google Sheet.

We extracted demographic data of each paper such as author
names and their primary research areas, paper title, publication



year, and publication venue. We classified each paper as opin-
ion, practice/experience report, empirical with intervention
(e.g., controlled experiments), or empirical without interven-
tion. We extracted the main research questions (or the research
goals and objectives). We elicited the challenges addressed
in the papers which were related to software engineering for
simulations and the areas of software engineering as defined
by the SWEBOK [10].

Five questions synthesized the content of each paper. Two
of those questions varied according to the article type. Three
questions were in common.

• Opinion or philosophical—(1) What is the opinion of the
author? (2) What is proposed?

• Practice or experience report—(1) What is reported? (2)
What is the potential benefit?

• Empirical with intervention—(1) What is the proposed
solution? (2) What are expected advantages?

• Empirical without intervention—(1) What is the state-of-
the-art? (2) What are the observations?

• Common questions—(3) What are the remaining prob-
lems, or did nothing change? (4) Any potential remarks /
anything else? (5) Which aspects of the SE/MP trade-off
are covered and how?

D. Quality Evaluation

Dybå and Dingsøyr [11] defined eleven criteria for the
quality evaluation of material included in SLRs. After a careful
discussion, we agreed to include the following eight quality
criteria (QC):

QC1 Is this a refereed paper?
QC2 Is there a clear statement of the aims of the research?
QC3 Is there an adequate description of the context of the

work?
QC4 Was the research design appropriate to address the aims

of the research?
QC5 Was the recruitment strategy appropriate to the aims of

the research?
QC6 Was the data collected in a way that addressed the

research issue?
QC7 Has the relationship between researcher and participants

been considered adequately?
QC8 Is there a clear statement and proof of findings?

We assessed the quality of our sample using a short scale
with the answers “yes”, “no”, and “cannot tell” to each
criterion.

E. SE/MP Trade-off

We analyzed the content of the papers for retaining those
that mentioned any of the aspects dealing with the SE/MP
trade-off. We extracted the SE/MP trade-off information and
put it in an extra column of our shared spreadsheet. We met
twice in the course of two weeks for discussing the filtered
papers, the extracted data, and for agreeing on the steps to
undertake.

V. RESULTS

The search query that we input in the academic search
engines and digital libraries yielded 768 papers, which we
reduced to 255 after applying the first round of inclusion
and exclusion criteria. The manual inspection of the related
publication venues resulted in 86 papers after the first round
of filtering. After adding the 69 QGS set of papers we reached
410 articles (255+86+69). A search fur duplicates let us reduce
the dataset to 399 papers.

By applying the second round of inclusion and exclusion
criteria, our dataset was further reduced to 82 papers. Finally,
we identified 33 papers that deal with the SE/MP trade-off.
The included and excluded studies are also available online
[12].

Several papers reported opinions and experiences. Paper
[13] was written by software engineering researchers sum-
marizing software risks for scientific software including a
discussion of maintainability and portability and how they
are linked. Efficiency is discussed in detail. There is even a
mention of a trade-off: “To the extent that advances in per-
formance are achieved through hardware, software portability
becomes more important than software efficiency.” Paper [14]
recommends practices such as to simplify and to organize the
code to improve its maintainability. Paper [2] mentions all
four quality attributes and also discusses the trade-off based
on their experiences in SSE. Paper [15] is an experience report
on the High Performance Computing Systems program of
the Defense Advanced Research Project Agency (DARPA).
The aim is to create an empirical basis describing expertise
gaps in all aspects of productivity. The main gaps observed
were developing HPC code, debugging/testing, optimizing,
scheduling and using math libraries. Paper [16] contains
opinions on the role of software infrastructure (compilers,
languages, libraries or debuggers) for the overall productivity
(including development effort, portability to next generation
architectures, maintainability, performance, and scalability).
Paper [17] discusses the risks of poor code documentation.

There were also four descriptions of surveys among com-
putational scientists. Paper [18] describes a survey in which
they identify efficiency as a main concern and state that main-
tainability is often poor. Paper [19] mentions maintainability:
“Software maintenance was generally ranked as moderately
important.” Paper [20] even claims that “Code performance
is not the driving force for developers or users; the science
and portability are of primary concern.” Paper [21] describes
a survey in which they found: “What is regarded as a priority
in terms of software engineering are development methods,
that help to design for performance from the beginning and
to find the right (not too simple, not too complex) software
architecture on the first run.”

The following papers went more into detail and performed
what could roughly be categorized as case studies and experi-
ments. Paper [22] describes a series of case studies where they
found that performance competes with other important goals
and that the low use of higher-level languages is a problem



for portability. Paper [23] investigates in a pilot study the
use of design patterns in parallel programming to increase
maintainability. Paper [24] describes case studies which touch
on several attributes and also mentions a trade-off while
tuning the code between efficiency and maintainability. Paper
[25] is about making legacy code parallel. Paper [26] is a
long-term analysis of a scientific software with a focus on
its maintainability. Paper [27] deals with maintainability and
performance. They wrap existing legacy-codes in architecture-
aware interfaces to embed them into architectured software
systems. This yields modular software systems maintaining
the performance of the legacy code. Paper [28] contains a case
study for using test-driven development for cardiac simulation
software. They focus on modularity and use of state-of-the-
art numerics, and they develop a set of maintainable libraries.
Paper [29] is an analysis of commit comments in scientific
software projects. Good commit comments help in maintaining
software.

We found three articles proposing specific methods in the
design of a software. Paper [30] proposes a tool for the
automatic extraction of a UML class diagram from an object-
oriented FORTRAN code. Paper [31] proposes and shows
how to define good interfaces for scientific software: “We talk
about how those interfaces allow us to generate most code
automatically as an expert would manually.” In paper [32], the
authors argue that using test-driven development, the library
becomes easier to use and extend.

Most articles propose or somehow describe the usage of
particular frameworks, libraries or languages. Paper [33] men-
tions all four SE/MP attributes and discusses the proposed
framework according to them. No trade-offs are mentioned.
Paper [34] describes a case of using the OpenACC program-
ming environment to improve maintainability, portability and
performance. The OpenACC language is used to allow for
portability while keeping efficiency. Paper [35] is similar to
[34] and describes a smaller rewrite using OpenACC. Paper
[36] proposes model-driven development for HPC and claims
to support efficiency and portability. Paper [37] investigates
how a DSL can provide better maintainability while keep-
ing good efficiency. Paper [38] describes design patterns for
FORTRAN for modern, maintainable software which is still
efficient. Paper [39] reports on the experience of using existing
frameworks especially for infrastructure and data management
to improve extensibility while keeping high efficiency. Paper
[40] reports on experiences from the NSF FLAME project
(on dense linear algebra library development). The approach
is “design by transformation” using, e.g., domain specific
languages to automate optimization based on codified experts’
knowledge. Paper [41] talks about “portable message-passing
programming” and parallelization and load balancing. Paper
[42] shows the trade-off between efficiency and maintainabil-
ity. It is a solution to a specific part of the trade-off: Choosing
the best algorithms/implementations for a problem. Paper
[43] addresses performance and somehow maintainability:
“Dynamic scripting programming languages, in general, have
distinct advantages in terms of developer productivity over

compiled languages such as C/C++ and FORTRAN, because
of their ease of use and extensive libraries. Such “static”
languages have clear performance advantages due to their opti-
mizing compilers.” Paper [44] discuss the efficiency-portability
trade-off and how to reduce it by libraries: “The extensive
usage of scientific libraries and parallel computing technology
makes the programming easier and the model’s computing per-
formance much better. However this usage generally reduces
software portability, which is one of the common problems
for any large-scale, parallel scientific software.”

Overall, we found that there is a considerable amount of
papers that consider at least one of the quality attributes we
focus on. Fig. 1 shows that in 28 of the papers, maintain-
ability played some role. Efficiency was mentioned in 21,
portability in 18 and scalability in 14 papers. The figure also
visualizes the discussed trade-offs between quality attributes.
Trade-offs between efficiency and maintainability as well as
between portability and efficiency have been mentioned 10
times each. The trade-off between scalability and portability
was mentioned in four papers, the trade-off between scalability
and portability only twice. There was, as expected, no trade-
off between scalability and efficiency or maintainability and
portability.

Scalability Efficiency

Maintainability Portability

21

18

14

28

Figure 1. An overview of how often the quality attributes and trade-offs are
mentioned

Most authors of our included articles have either a back-
ground in software engineering or high-performance com-
puting. Actually, as Fig. 2 shows, most of the papers were
authored by software engineering researchers only. The second
most frequent group of papers was authored only by re-
searchers from the high-performance computing domain. Yet,
there are also six papers with authors from both communities.
The collaboration, however, could be significantly improved.
Even worse, from the communities the scientific software is
designed for, there are only few authors: in our SLR, soft-
ware engineering and high-performance computing researchers
collaborated with scientists from engineering, biology and
mathematics.

Furthermore, we classified the publication venues of articles
included. Tab. III shows the results. Almost half of the
included articles were published in workshop proceedings. The



Figure 2. The backgrounds of the authors in the included articles (SE:
software engineering, HPC: high-performance computing)

regular workshops on software engineering in science and
engineering co-located with the International Conference on
Software Engineering (ICSE) and the International Conference
for High Performance Computing, Networking, Storage and
Analysis (SC) are the venues for all of those. Then there is
roughly the same number of journal and conference proceed-
ings articles, which is an expected distribution in computer
science. Only one paper was published as a technical report
and, hence, definitely non-refereed.

Table I
ARTICLE TYPES OF INCLUDED PAPERS, OCCURENCE, AND REFERENCES

Practice/experience
report 13 [33], [34], [35], [36], [37], [27], [40], [30],

[41], [31], [43], [32], [44]
Empirical study
without intervention 11 [18], [22], [24], [26], [15], [29], [19], [42],

[20], [17], [21]
Empirical study
with intervention 5 [23], [38], [39], [25], [28]

Opinion/philosophical
paper 4 [13], [14], [2], [16]

We also classified the included article in different types.
We show the results in Tab. I. Most of the included pa-
pers are practice or experience reports of some sort. They
often describe some initiative or project from the scientific
computing domain. In the included papers, however, we can
also find several empirical studies. Most of them without
intervention; those are usually surveys among scientists who
develop software. Empirical studies with intervention are a
kind of case study that applies a new method, tool, framework
or language. Finally, we also included four opinion papers that
somehow argued about one of the attributes or about a trade-
off.

We report on our quality evaluation in Tab. II. At this stage,
we focus on the counts of items for assessing each quality
criterion and not their score. The reason is that more than half
of our sample of SE/MP trade-off papers are of philosophical
or reporting nature (see Tab. I). The scores for QC4, QC5,
QC6, and QC7 would be unbalanced by the non-empirical
studies, or be a too small sample for meaningful interpretations
if we ignore the non-empirical studies.

Table II
QUALITY EVALUATION RESULTS (SEE SECTION IV-D)

Quality criteria Yes No Cannot tell
QC1 24 3 6
QC2 31 0 2
QC3 26 5 2
QC4 16 1 16
QC5 8 4 21
QC6 12 5 16
QC7 4 8 21
QC8 16 10 7

Table III
PUBLICATION VENUES OF INCLUDED PAPERS

Articles in workshop proceedings 16
Journal articles 8
Articles in conference proceedings 6
Magazine articles 2
Technical report 1

VI. DISCUSSION

After summarizing the results of the SLR in the previous
section, we discuss the findings and conclusions for future
research that we draw.

A. Principal Findings

Our main finding is that we are not alone with the observa-
tion that the SE/MP trade-off plays an important role in the de-
velopment and maintenance of scientific simulation software.
Even in this initial SLR, we found many articles mentioning
it. Our review was not strictly restricted to simulation software
but regarded the wider field of high performance applications.
Only very few contributions have a clear focus on simulation
software with its specific requirements. However, in this wider
field, the individual quality attributes are clearly recognized
as important.

Furthermore, we identified four different classes of contri-
butions in the included articles as shown in Table IV.

Table IV
CLASSES OF CONTRIBUTIONS IN INCLUDED ARTICLES, OCCURRENCE,

AND REFERENCES

Describe/analyze
single attributes 7 [18], [26], [16], [29], [19], [17], [21]

Describe/analyze
trade-off 5 [13], [22], [24], [2], [20]

Solutions for
single attributes 8 [33], [14], [23], [25], [15], [28], [30], [32]

Solutions for
trade-off 13 [34], [35], [36], [37], [38], [39], [27], [40], [41],

[31], [42], [43], [44]

The papers describing or analyzing single attributes con-
centrate on one or more of the quality attributes. We have
seven such papers. They focus for example on the analysis of
the maintainability of a scientific software over time [26]. In
contrast, papers that describe or analyze the trade-off are often



based on surveys in which they found something about the
opinion of scientists on the trade-off (e.g. [21]). We have only
five papers in this class, and none gives any concrete means
to analyze the effects of different decisions in the trade-off.

By far most of the papers present some kind of solution or
solution proposal. Eight articles provide solutions for one or
more of the quality attributes individually. For example, [14]
describes some general guidelines to improve code to make
it more maintainable. Most solution proposals, however, try
to actually improve the trade-off more or less explicitly. We
have 13 papers in this class. For example, [33] and [34] report
on OpenACC and its usage to improve existing simulation
code. Frameworks, libraries or specific languages are proposed
to raise the level of abstraction (for easier maintenance and
faster or even automatic porting) while still being able to
reach high levels of efficiency and scalability. In some cases,
performance measurements to support this claim are presented.
Most evidence is anecdotal, however.

B. Strengths and Weaknesses

Overall, there is evidence for the SE/MP trade-off. Half
of the publications, however, result from workshops which
often accept less mature findings (including the present paper).
Hence, for a part of these papers, we have to be careful about
the validity. Also many of the papers have no clear empirical
design but are opinion pieces or experience reports. A strong
empirical foundation is yet missing. The topical conclusion is
that there is a lot more work to be done in the community
to establish quantitative metrics and systematic methods to
address the SE/MP trade-off.

Furthermore, often we find only SE or only HPC researchers
among the authors. This narrows the view of each individual
paper to the community the authors come from. This might
be reflected in the findings.

C. Meaning of Findings

We see three main outcomes of these findings: (1) There
has to be more research on the basic factors in the trade-off
as well as its analysis/evaluation. The trade-off is mentioned
often. Yet, we have no single quantification of the trade-off in
a concrete setting. To be able to optimize it, we need to better
understand it. This includes also aspects such as the process
or guidelines to follow to reach a good trade-off. There is
nothing on these aspects in the included papers. Furthermore,
they often only report single or few cases in specific settings. It
is yet unclear whether their insights are transferable to other
settings or generalisable to broader domains.

(2) There is still a need for further research on practices,
methods and tools to help reduce the trade-off (keep scal-
ability/efficiency while improving maintainability/portability).
Especially in combination with (1), we should develop those
practices, methods and tools more targeted and supported by
more quantitative metrics.

(3) Finally, we see room for much more collaboration across
scientific communities. By bringing together the viewpoints
and experiences of not only SE and HPC researchers but

also the scientists from mathematics, engineering, biology or
physics who often develop simulation software, we can reach
better and more comprehensive insights.

VII. CONCLUSION

The emerging field of Simulation Software Engineering
(SSE) fills a central gap in the development of (scientific)
simulation software. We have motivated our research on
the Scalability-Efficiency/Maintainability-Portability (SE/MP)
trade-off, one of the core challenges of SSE, reporting on our
own experiences. In a systematic literature review, we have
examined to what extent this trade-off has been reflected in
the literature. While there is evidence for the SE/MP trade-off,
we conclude that significantly more effort is necessary in the
research community: Anecdotal findings and solutions that are
custom-tailored to specific problems have to be generalized;
there is need for new metrics, practices, methods and tools;
and there are too few collaborations across the scientific
communities that are involved.
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