
Defect Prediction using Combined Product and Project Metrics
A Case Study from the Open Source “Apache” MyFaces Project Family

Dindin Wahyudin, Alexander Schatten, Dietmar Winkler, A Min Tjoa, Stefan Biffl

Institute for Software Technology and Interactive Systems
Vienna University of Technology, Vienna, Austria

{Dindin, Schatten, Winkler, Tjoa, Biffl }@ifs.tuwien.ac.at

Abstract

The quality evaluation of open source software

(OSS) products, e.g., defect estimation and prediction
approaches of individual releases, gains importance
with increasing OSS adoption in industry applications.
Most empirical studies on the accuracy of defect pre-
diction and software maintenance focus on product
metrics as predictors that are available only when the
product is finished. Only few prediction models con-
sider information on the development process (project
metrics) that seems relevant to quality improvement of
the software product. In this paper, we investigate
defect prediction with data from a family of widely
used OSS projects based both on product and project
metrics as well as on combinations of these metrics.
Main results of data analysis are (a) a set of project
metrics prior to product release that had strong corre-
lation to potential defect growth between releases and
(b) a combination of product and project metrics
enables a more accurate defect prediction than the
application of one single type of measurement. Thus,
the combined application of project and product me-
trics can (a) improve the accuracy of defect prediction,
(b) enable a better guidance of the release process
from project management point of view, and (c) help
identifying areas for product and process improve-
ment.

Keywords: Open Source Software, Software Quali-

ty, Defect Prediction, Software metrics

1. Introduction

The nature of open source software (OSS) devel-
opment [4], such as highly distributed development by
volunteer contributors; cultural and time zone differ-
ences of contributors; informal project management
and modest consideration of quality assurance (QA)
and documentation during development, makes prod-
uct QA a major concern to potential users of new re-
leases. Empirical studies [1, 17] suggest that some OSS

projects have created software products with quality
levels similar to closed source commercial develop-
ment [1].

Ben Collins and Brian Fitzpatrick, committers and
co-founders of the OSS Subversion project1, suggested
constant product improvements and releases as indica-
tors for a “healthy” OSS project [19]. These product
improvements are directed by a strong feedback from
the user community (e.g., bug reports and feature re-
quests)2 and active developers’ contributions [14].

In OSS projects, where formal QA practices such as
inspection are less practicable, one feasible approach
for assessing the quality of a software product is to
predict the defect between releases. In a closed source
software development, the prediction of defects be-
tween releases can provide benefits such as to guide
testing of the next release [3], to improve maintenance
resource allocation and adjust deployment [13], to
guide development process improvement [5], and to
enable the selection among different product releases
[8].

For a release manager and project leading team in
an OSS project, defect prediction between releases is
important as decision support for release candidates
such as: a) is the a release candidate good enough for
deployment or whether there is another QA cycle ne-
cessary before delivery; b) input for planning the next
release cycle based on the prediction results.

However, Fenton [16] reported most prediction
models to be based on product metrics (e.g., size and
complexity metrics) obtained after product release,
which seems rather late for guiding development [17,
18] and release process [13]. Another type of metrics,
which is not as popular as product metrics, is project
metrics. Project metrics are measures for development
activities (e.g. developer source code contributions,

1 Google Speaker Series: Successful Open Source Projects can be
found at http://www.youtube.com/watch?v=ZtYJoatnHb8. Last
accessed 1st March 2008
2 E. Raymond. The cathedral and the bazaar.
http://www.catb.org/esr/writings/cathedralbazaar/
cathedral-bazaar/, 2003. Last accessed 1st March 2008

developer email contributions) which can be monitored
and obtained through all project life cycle [9].

Thus, in this paper we propose a) to derive from
project leader and release manager goals a set of typi-
cal QA practices in “quality-aware” OSS projects and
ways to measure the QA practices in form of project
metrics; b) to investigate the potential contribution of
these project metrics for defect prediction in OSS
project context; c) to investigate whether a combina-
tion of project and product metrics can provide better
defect prediction compared to a prediction model using
only the traditional product metrics.

For an empirical evaluation we collected data from
11 releases of 2 Apache MyFaces project family (To-
bago and Core), and analyzed the potential contribu-
tion of combination of product and project metrics for
defect prediction model in OSS project context.

The remainder of this paper is structured as follows:
Section 2 summarizes related work on software defect
prediction and quality improvement in OSS projects.
Section 3 describes the continuous software product
improvement process in OSS projects and derives
research issues. Section 4 outlines the case study de-
sign. Section 5 reports the data analysis results. Section
6 discusses the results with the research issues. Section
7 concludes and suggests future work.

2. Software Defect Prediction

Most empirical studies use prediction models to es-
timate the number of defects, defect density, and po-
tential defect growth [16] of software products.

Schneidewind [17] suggested two approaches for
defect prediction: (a) time-based approaches and (b)
metric-based approaches. A time-based approach esti-
mates the number of (remaining) defects from the
number of defects found in a time interval after product
release and fit the data to form a software reliability
growth model (RGM) [9]. While a metrics-based
approach uses metrics obtained from historical project
data before product release (called as predictors) to fit
a prediction model.

The advantage of time-based approaches is more
accurate prediction compare to metrics based ap-
proaches, since the estimate is derived from actual
defect occurrences data; however the availability of
data for estimation mostly come later after testing, thus
the prediction is often too late to support in-time deci-
sion making [7] such as release process.

In contrast metric-based approach promises better
support for a release manager by providing defect
forecast prior to release, often with less accuracy as the
tradeoff [7]. Li et al [9] classified defect predictors as:

• Product metrics, which measure attributes of any
intermediate or final software product, for example
line of codes (LOC) or number of classes. Product
metrics are the most commonly used predictors and
supported by [2, 5, 13] as important predictors.

• Project or development metrics measure attribute
of development processes and activities such as
LOC per developer within a release. Mockus et al
[14] and Weyuker et al [20] suggested these me-
trics as important predictors.

• Deployment and usage metrics measure attributes
of the deployment context and usage patterns of
software releases, e.g., time since first release, time
to next release [7, 8].

• Configuration metrics measure attributes of soft-
ware and hardware configuration that interact with
the software product/release during operation e.g.
Deployment operating system, type of software ap-
plication [13].
Currently there are several metric based prediction

models that commonly used by experts. Khosgoftaar
et al. [11] suggested prediction models such as using
component clustering fitted to linear regression, non-
linear regression to predict the changes of dependent
variables value (e.g., number of defects) by paramete-
rized amount of independent variables (e.g., size and
complexity) [12].

Another approach is to use Neural Networks that
presents predictors values as neural inputs, which can
be used by a neural network to reach a conclusion
based on experience cases stored in a database [10].
Surprisingly prior study by Li et al as reported in by
[7] verified that simpler models such as linear regres-
sion showed comparable accuracy levels to more com-
plex defect prediction models in context of open source
project.

In this paper, we focus on metric-based approaches
with two steps predictors’ selection, which consist of
a) correlation analysis of variables and b) stepwise
linear regression procedures. This two-step predictor
selection intends to eliminate insignificant predictors
before we can fit the data to the prediction model. We
expect this selection procedure to enable data analysis
effort reduction by focusing on smaller set of strong
metrics [8, 12].

3. Measuring QA Practices in OSS Projects

A good OSS project offers continuous improvement
of software product releases. Just to give some exam-
ples large OSS projects such as Gnome, Mozilla, Phy-
ton, Subversion and Eclipse encourage quality im-
provement as part of OSS community awareness.

Figure 1. Continuous software product improvement within an OSS project.

Their goals are to improve the quality of the releas-

es by involving a larger part of the project community
based on principles [18] such as involvement of a de-
veloper to review the validity of a defect candidate
reported by a user before submitting the report into the
issue tracker (see: Buddy System at Subversion
project3).

Our prior study [19] in four large Apache OSS
projects concluded that these communities should
coordinate and work together as a symbiosis mutualism
to produce high-quality software. In [19] we found that
large successful projects such as Apache Tomcat and
HTTPD have faster developer response times to user
community feedbacks (i.e. defect report or feature
request), and higher numbers of peer-reviews of each
code set or patches submitted into the project code
versioning system.

Figure 1 illustrates a complete life cycle of an OSS
project with five typical QA practices represented as
circles as partially depicted in studies such as [6, 18,
19]; some of these practices are fully or partially ob-
servable, and thus we can measure the development
activities with these practices to derive relevant project
metrics. Afterward we investigated the usefulness of
these project metrics to defect prediction in our case
study.

QA Activity 1: Design Review

Issues reported to the tracker tool trigger most of the
development activities within OSS projects. An issue
can be a new requirement (feature request/new func-
tionality, or enhancement/patch) or software defect
reported by a user. Throughout the project lifetime,
there are several quality assurance (QA) practices as
part of product release continuous improvement.

3 http://subversion.tigris.org/project_issues.html

When a developer has an idea for new functionality
or a patch, he may construct specification and design
and then ask other developers within the community to
review his specification and design before listing them
as new issues (see circle 1 in Figure 1).

The Python project4 community encourages devel-
opers to engage in a specific design process, called
Python Enhancement Proposal (PEP), which is similar
to a request for comments and design technical review
meeting in commercial software projects [7]. This
design review process uses common information spac-
es of the project such as emails, forum, and project
documentation and involves different stakeholders
across all project communities.

During design review, we can observe the developer
activities in negotiation, collaboration, and refinement
of proposed design. If the design proposal gets ac-
cepted, then the developer lists appropriate action
items in the issue tracker. However, it is also common
that a developer directly jumps into implementation
(with his own ideas), then submits the code set, and
later opens a discussion in developer communication
channels and asks for technical review of his code.

QA Activity 2: Code Testing

It is worth noting that a developer in an OSS project
always conducts code testing before submitting the
code set into the CVS (see circle 2 in Figure 1). If the
tests fail, then the developer either continues to work
until the issue is resolved or returns the issue into the
tracker as “open” with related documentations for
knowledge preservation (i.e., refined bug recipes, de-
velopment issues encountered).

Although we cannot measure the testing process di-
rectly, we can measure developer contributions from
developer communication spaces (mailing list, CVS,

4 http://www.python.org/, last accessed on 14th February 2008.

and issue tracker) prior to a release. Hence we can
obtain the following metrics: changes to code metrics
(e.g. delta, added, deleted, modified to line of codes by
developers) [9], number of committers/core developers
and number of peripheral developers [14], code and
changes contribution of core and peripheral develop-
ers.

QA Activity 3: Code Peer Review

In a quality-aware OSS project, an issue labeled
“resolved” will attract other developers to review the
code set. A committer then should decide based on
review results whether a code set should be added into
current body of code or get returned to the issue tracker
(circle 3 in Figure 1).

These practices especially peer review can be ob-
served through the project communication space, issue
tracker and project CVS. Prior to a release date, a re-
lease manager needs to identify which patches and
functionalities should be added to the next release
package. Later he performs integration testing to assure
the software quality before publishing the release
package.

Code peer review effectiveness can be measured as
number of defects stated as “closed” prior to a release
[23]; based on the Bugzilla5 documentation “closed”
means the issue has been resolved and has passed a
peer review. For example: number of closed defects,
number or resolved defects, number of resolved de-
fects/number of reported defects, number of closed
defects/number of reported defects.

QA Activities 4 and 5: Product Release Usage
and Defect Validation

The user community obtains the new release and
uses it in different work contexts, and provides feed-
backs to the developer community such as defects
found and feature requests. This defect detection prac-
tice is similar to black box testing to find defects in a
software product release (see circle 4 in Figure 1). The
defect detection activities provide a list of defect can-
didates of a software release and considered as the
primary activities performed by developers and users a
release in OSS project [14]. Prior work [18] provides
several examples of metrics that can be used as predic-
tors such as: number of defects reports prior to release,
number of open defects prior to release, number of
invalid defects prior to release, and defect detection
effectiveness prior to release.

Most of the defects are detected through software
usage and then validated by a developer by reproduc-
ing the defect based on defect recipe report from the

5Bugzilla documentation can be found at :http://www.bugzilla.-
org/docs/. Last accessed 10th December 2007.

user (see circle 5 in Figure 1). If the defect is valid, a
developer takes ownership of the confirmed defect and
performs a suitable development process for resolution.

In this study we applied all of these project metrics
as predictors and investigated their correlation to defect
estimates in the case study context.

4. Case Study Design

In this section, we describe our case study objects,
define independent and dependent variables, and for-
mulate research hypotheses for evaluation.

Later we proposed our two-step predictor selection
procedure. First, we use correlation analysis as sug-
gested in [15] to identify predictors with strong corre-
lation to potential defect growth between releases. In
this paper, we call the potential defect growth between
releases “delta defects”. Estimates of delta defects are
important indicators to evaluate the quality improve-
ment of the current development process (e.g., poten-
tial contribution of defects of the next release) com-
pared to prior releases.

In the second step, we use stepwise regression and
backward elimination for selecting a subset of inde-
pendent variables (predictors) from the strong corre-
lated list to form a linear prediction model [12].

For evaluation, we cross validate the prediction
model by comparing the average relative error (ARE)
[17] of each prediction model to select which variant
provides better estimates of delta defects.

4.1. Objects

The objects of our case study are releases in the
family of the OSS Apache MyFaces project6.We se-
lected MyFaces Core and MyFaces Tobago for the
study because Core is the main project of MyFaces and
a pure OSS project (all voluntarily developers) while
Tobago is a hybrid project where some developers are
paid and well supported by commercial organizations.

Later we applied defect prediction models to six re-
leases of Core (C.1.1, C.1.2, C.1.3, C.1.4, C.1.5, and
C.1.6) and six releases of Tobago (T.1.1, T.1.2, T.1.3,
T.1.4, T.1.5, T.1.6). Our selection criteria are: all re-
leases should be announced after both projects have
left the incubation process from the Apache Software
Foundation7. Later we can regard our selected study
objects as mature releases and have been promoted for
larger user and developer community; therefore, we
can observe more activities within the project commu-

6 Apache MyFaces Project website can be found at
http://myfaces.apache.org/. Last accessed at 10th January 2008.
7 http://incubator.apache.org/ Last accessed at 10th January
2008.

nity compare to the activities during the incubation
process.

4.2. Threats to Validity

As in any empirical study, there are threats to the
validity of data collection and analysis that need to be
acknowledged and addressed appropriately.

To reopen a resolved defect is common practice in
OSS projects [18] thus there is high possibility that
some of new defects reported are old defect from prior
releases which most of them could not be observed.
Our observation using reliability growth models (see
figure 2 in section 5.1), reveals that a large proportion
of accumulated defects originated from the incubator
process hence prior to the early mature releases the
developers were heavily preoccupied to resolve these
defects. As the results in the first mature releases of
both projects reveal very large number of defects re-
ported which significantly increase the data skewness
especially in MyFaces Core.

 To address such issues in this paper after collecting
valid defect data (by excluding invalid and duplicate
defects) using Jira query we classified defect as a)
“defect prior to release”: a defect from prior release
that has been targeted to be resolved for the next re-
lease, and b) “defect reported after release”: a release
defect that has been reported into the issue tracker after
release. Later we normalized the number of defects
data reported after release with accumulative number
of defects prior to release (see equn 1 in section 4.3).
Later we called this normalized data as defect growth
between releases or delta defects.

In this work, we focus in one OSS community only;
therefore, we consider the results would be valid for
the projects in MyFaces and similar community in
Apache family. However, we still need to validate the
robustness of proposed estimation model with different
OSS project communities.

4.3. Variables

The measurement model defined for the empirical
study consists of independent and dependent variables.
Following standard practice in empirical studies we
define the independent variables as: a) selection of
input parameters (product, project or combination of
both) and b) context parameters consisting of deploy-
ment metrics, configuration metrics, project origin,
project sponsorship (pure or hybrid) and period of case
study. The dependent variable in our case study is
growth of defect between releases called as delta defect
(Py). Py signifies the number of defects reported after
release (y) in comparison to accumulative defect re-
ported prior to release (yo) and y (see equn. 1).

ݕܲ ൌ ௬
௬ା௬௢

 (equn. 1)
Using Py as dependent variable we can directly as-

sess current quality of release in term of defect re-
ported in comparison to prior release, for example if Py
> 50% means current release contributes more defects
than in prior to release and signify the need for higher
resource allocation for defect removal.

To select which predictors have strong correlation
with independent variables, we employ the Pearson
bivariate correlation model [15], and we use multiple
linear regressions to exclude insignificant predictors
[12] and to develop prediction models with different
combination of predictors (product metrics only,
project metrics only, and combination of both types of
metrics).

To validate our prediction models we fit the model
to historical data of releases, we use the average rela-
tive error (ARE) to evaluate forecast accuracy. In equn.
2 we apply the ARE definition as suggested by [17] to
Py instead of absolute number of defects reported (y);
and Py’ as estimator of Py (see equn 2).

ܧܴܣ ൌ ቀଵ

௡
ቁ∑ ቚ௉௬ି௉௬ᇱ

௉௬
ቚ௡

௜ୀଵ (equn. 2)

4.4. Hypotheses

In the case study we will evaluate following hypo-
theses in order to address the research issues:

RI1. Contribution of Project Metrics: Goal of this

research issue is to investigate whether an increase of
QA effort is correlated with a decrease of defects in the
next release.

Therefore we propose the null hypothesis as:
H01: There is no project metrics (pj) that has statisti-
cally significant impact to dependent variable Py com-
pare to product metrics (pd). If r is a function to check
whether there is a strong correlation between variables
x ϵ Pj and dependent variable Py, then the respective
null hypothesis can be formulated as

H01: ሼݔ ׊ א ,௜ݔ௜ሺݎ|݆݌ ሻݕܲ ൌ ሽ (equn. 3)݁ݏ݈ܽܨ

RI2. Accuracy of Defect Prediction using Com-

bined Project and Product Metrics: A combination
of project and product metrics should be able to predict
the defect growth in the next release with lower ARE
value compared to prediction based on the traditional
product metrics alone. Then we proposed following
null hypothesis as:

H02: A prediction model that used combination of
project and product metrics has higher ARE value
compare to prediction model that used only product
metrics. If the estimate of defect prediction model (℮)

is a function of product (pj) and/or process metrics
(pd), then the respective null hypothesis can be formu-
lated as:

H02: ARE(℮(pj,pd)) > ARE(℮(pd)) (equn. 4)

4.5. Data Collection

In this work, we examined both projects during 6
months of recent development (1/10/2007 to
01/03/2008). To measure the development activities
before release, we retrieved historical code collections
using StatSVN tool, SVN log and diff commands from
the trunk directory of each project. We collected more
than 1,700 valid issues and more than 1,300 valid re-
ported defects using Jira query commands. We applied
an Eclipse metrics tool plug-in8 to measure product
metrics of the study objects. We used a check style
plug-in9 to analyze style violations in the source
code10. We analyzed the collected data using SPSS for
performing Pearson correlation analysis and linear
regressions procedures (Stepwise and Backward).

Table 3 (see Appendix) describes collected product
metrics as suggested by [7] with two additional code
quality metrics.

Table 4 (see Appendix) outlines 23 project metrics
as suggested by [7, 17, 18, 19] and newly proposed
metrics (bold font). For deployment and usage metrics
we used following metrics: type of release (major re-
lease, minor release and service pack), months since
the 1st release, months since the previous release,
month to the next release, months from release date to
the end of case study.

5. Data Analysis Results

In this section, we outline the reliability growth
model for MyFaces Core and Tobago derived from the
whole life span of both projects. Later we perform the
predictor selection procedures and estimate the defect
growth between releases using variants of metrics
(product metrics, project metrics, and combination).

Our two-step predictor selection process starts with
predictor correlation analysis to find out a set of the
strongest correlated predictor to Py and then we use
stepwise and backward linear regression to exclude
some insignificant predictors.

8 Metrics plug-in for Eclipse: http://metrics.sourceforge.net/. Last
accessed at 15th December 2007.
9 Check style plug-in for Eclipse: at http://eclipse-cs.sourceforge.net/.
Last accessed at 10th December 2007.

5.1. Predictor Correlation Analysis

Table 1 shows the Pearson rank correlation among
predictors with the dependent variable Py. In a first
step we analyze predictors with Core data, and then we
compare the results to Tobago data.

From table 1, project metrics such as RRD, RCD
and CI considered have significant correlation to Py.
RCD has negative correlation with Py that means every
peer-reviewed defect resolution may reduce the possi-
bility of defect reported in the next release. While RRD
and CI has positive correlation to Py which means that
resolved defects and number of issue patched prior to a
release may increase number of defects.

Table 1. Top 10 Predictors Correlation Analysis11

Predictors Abbrevia-
tion

Project Correla-
tion

Sig.

Resolved De-
fects/Reported
Defects

RRD Core 0.927* 0.024
Tobago 0.967* 0.02

Closed De-
fects/Reported
Defects

RCD Core -0.879* 0.005
Tobago -0.969* 0.001

Closed Issues
prior to re-
lease/Reported
issue

CI Core 0.901* 0.037
Tobago 0.695 0.125

Changes by
peripheral devel-
opers/total changes

CBD Core -0.768 0.042
Tobago -0.465 0.132

NPath Complexity NP Core -0.734 0.158
Tobago -0.272 0,602

Resolved defects
prior to release

RD Core 0.681 0.205
Tobago 0.955* 0.03

McCabe Cyclo-
matic Complexity

MCC Core 0.613 0.272
Tobago 0.212 0.686

Class Data Ab-
straction Coupling

CDA Core 0.582 0.303
Tobago 0.243 0.064

Depth Inheritance
Tree

DIT Core 0.580 0,305
Tobago 0.616 0,193

Method LOC MLO Core 0.460 0,012
Tobago 0.345 0,155

5.2. Reliability Growth Models

We collected defect occurrences data and use qua-
dratic curve estimation to construct reliability growth
models (RGMs) of Core and Tobago as can be seen in
figure 2.

The RGMs are useful to outline defect growth
through all project life cycle, later using data from
table 3; we can perform analysis based on correlation
of strong predictors with defect growth between releas-
es. We discuss the results with an OSS expert to iden-
tify potential scenarios of the outlined RGMs

Using correlation table 1, there are at least two sce-
narios that potentially accelerate the defect growth in

11 *) correlation is significant with p-value < 0.05 level (2-tailed)

Core as estimated in figure 2a as a steep linear defect
growth which are a) new defects found in new features
and patches b) a curious developer takes resolved de-
fect prior to release and reports as new defect in cur-
rent release.

Tobago has a gradual hyperbolic curve, which
means potential deceleration of defect growth after 5
releases. The RGM shape of Tobago could be derived
by higher number of defects closed prior to release.
Using correlation data from table 1, we can assume
that that in Tobago, the developer community spends
more effort for peer reviewing defect resolutions com-
pare to Core (see figure 3 in Appendix), in which after
five releases have been paid off by slower defects
growth.

(a) RGM for MyFaces Core

(b) RGM for MyFaces Tobago

Fig 2. Reliability Growth Models (RGM) for Myfaces
Tobago and Core

5.3. Selection of Predictors

Stepwise regression and backward elimination pro-
cedure support selecting a subset of independent va-
riables (predictors) from the top-ten list to form a linear
model. We grouped the predictors into three groups:
product, project and combination metrics, and employ

the procedures for each group. Each estimation proce-
dure was used with the three groups to fit a linear mod-
eling expressing program defect growth in a release
(Py).

In this case, each procedure led to selection of these
following metrics: product metrics (CDA, DIT), project
metrics (CD, RRD, RCD, CBD) and combination me-
trics (MCC, DIT, CBD, CDA, RRD, RCD). We use
these variants of metric sets from historical release and
fit the data into the regression model.

The predictive quality for each estimation procedure
was determined by determining the ARE values from
all project releases to perform cross validation of the
model. Table 2 shows the prediction results using li-
near regression and conclude that using Stepwise linear
regression with combination metrics is superior to
other prediction models.

Table 2. Comparison of Prediction Models.

Prediction Model Project Mean (ARE) StdDev
linear regression with
product metrics

Core 0.93 1.18
Tobago 0.12 0.08

linear regression with
project metrics

Core 0.24 0.26
Tobago 0.06 0.05

linear regression with
combination metrics

Core 0.02 0.01
Tobago 0.04 0.01

6. Discussion

Analyzing the empirical results, we derive the fol-
lowing implications for defect prediction in compara-
ble OSS projects.

Contributions of Project Metrics. The results

show for both MyFaces Core and Tobago that project
metrics, which are related to issue and defect resolution
prior to release, have strong correlation to defect
growth between releases (Py). Data analysis for both
projects agreed for RRD and RCD to have strong and
significant correlation with dependent variables Py.

For example, the increase of peer reviewed defect
resolution prior to a release significantly reduces the
likely number of defects in a release; while a higher
number of resolved defects prior to a release are corre-
lated to stronger defect growth. In an OSS project, this
can be a result of practices such as reopening resolved
defects or adding defect prior to release as a new defect
in current release.

In Core CI is strongly positively correlated to Py (p-
value <0.05), this means statistically the increase of
closed issues in form of patches or new features may
significantly carry new defects into the next release. In
summary, the correlation rank data signifies thatሼݔ ׌ א
,௜ݔ௜ሺݎ|݆݌ ሻݕܲ ൌ .ሽ, thus we reject hypothesis H01݁ݑݎܶ

Accuracy of Defect Prediction using Combined
Project and Product Metrics. The results in table 3
exhibit that the prediction model using combination of
project and product metrics (consists of MCC, DIT,
CBD, CDA, RRD and RCD) offers lower ARE value
than using either type of metrics.

Since ARE(℮(pj,pd)) < (ARE(℮(pd)) thus we can re-
ject H02.

In case of Apache MyFaces Core and Tobago we
found strong linear correlation between selected inde-
pendent variables and the dependent variable Py, con-
sequently the two steps predictors’ selection procedure
seems straight forward to provide good prediction with
only a small number of selected predictors.

For a release manager or project leading team in an
OSS project, the proposed predictor selection approach
and defect prediction model can be a starting point for
evaluating a product before release, release decisions
or needs for improvements. For example to boost per-
formance level of peer review of defect resolutions
before release, or to select which release candidate
should be considered for further improvement and
which candidates should be dismantled.

7. Conclusion and Future Work

Current studies on the accuracy of defect prediction
mostly focus on product metrics and only a few predic-
tion models consider information on the development
process. In this paper we reported on an empirical
study of software defect prediction using combined
product and project metrics from Apache MyFaces
project family, following the project life over a period
of two years. Project metrics can be obtained from
several QA practices in OSS project that can be ob-
served and measured. Most of these QA practices were
performed to improve the quality of the next release
and to overcome each defect reported.

Our case study reveals that in a quality-aware OSS
project such as the MyFaces community, a selected
group of project metrics has strong correlation to de-
fect growth between releases compared to the tradi-
tional product metrics. Furthermore, the combination
of selected project and product metrics may provide
more accurate prediction model, hence provide better
guide the release process or indicate areas for process
improvement in context of OSS project.

However, we consider our work as initial empirical
study because we focus in a single OSS project com-
munity with good quality awareness. The results of this
study can have an impact on the quality common OSS
project, applying selected product and process metrics
for quality prediction. Future work is to expand the
showcase, based on the results of this single OSS
project, towards a larger set of different OSS projects

from different communities to further evaluate the
robustness of our approach and check the possibility of
using different metric-based prediction models. Thus,
these planned studies can provide a deeper insight in
quality prediction of healthy [18] projects and less
quality-aware projects.

Additionally, a growing number of commercial
projects focus on global software development within a
professional and commercial environment, which
might be comparable to highly distributed OSS
projects with volunteer contributors. Thus, the conti-
nuous product improvement approach within OSS
projects might be a promising approach for closed
source commercial projects. As closed source commer-
cial products usually can have a similar structure of
(short) releases in a quality-aware environment, similar
project and process metrics might be used for quality
prediction. This approach might be a second major
direction for future work based on the results of this
study.

Acknowledgement. This paper has been partly
supported by The Technology-Grant-South-East-Asia
No. 1242/BAMO/2005 Financed by ASIA-Uninet.

References
[1] M. Aberdour, "Achieving quality in open-source software,"

IEEE Software, vol. 24, pp. 58–64, 2007.
[2] V. R. Basili and B. T. Perricone, "Software Errors and Complexi-

ty: An Empirical Investigation.," Communications of the ACM,
vol. 27, pp. 42-52., 1984.

[3] K. A. Bassin and P. Santhanam, „Use of software triggers to
evaluate software process effectiveness and capture customer
usage profiles," in Proceedings of the Eighth International Sympo-
sium on Software Reliability Engineering - Case Studies, 1997.

[4] A. Capiluppi, P. Lago, and M. Morisio, "Characteristics of open
source projects," in Proceeding of the 7th European Conf. Soft-
ware Maintenance and Reengineering (CSMR 03), 2003.

[5] G. Denaro and M. Pezze, "An Empirical Evaluation of Fault-
Proneness Models," in Proceedings of the 25th International Con-
ference on Software Engineering (ICSE2002), Miami, USA, May
2002., 2002.

[6] B. Flore, B. Jean-Marie, and S. Warren, "A socio-cognitive
analysis of online design discussions in an Open Source Software
community," Interactive. Computing., vol. 20, pp. 141-165, 2008.

[7] P. L. Li, J. Herbsleb, M. Shaw, and B. Robinson, "Experiences
and results from initiating field defect prediction and product test
prioritization efforts at ABB Inc," in Proceedings of the 28th
ICSE, Shanghai, China: ACM, 2006.

[8] P. L. Li, M. Shaw, J. Herbsleb, B. Ray, and P. Santhanam, "Em-
pirical evaluation of defect projection models for widely-deployed
production software systems," SIGSOFT Software Engineering.
Notes, vol. 29, pp. 263-272, 2004.

[9] M. Lyu, Handbook of Software Reliability Engineering.
McGraw-Hill, 1996.

[10] T. Khoshgoftaar, E. B. Allen, J. P. Hudepohl, and S. J. Aud,
"Application of Neural Networks to Software Quality Modeling of
a Very Large Telecommunications System," IEEE Transaction on
Neural Networks, vol. 8, pp. 902-909., 1997.

[11] T. Khoshgoftaar, John Munson, and D. Lanning, "A Compara-
tive Study of Predictive Models for Program Changes during Sys-

tem Testing and Maintenance," in Proceedings of International
Conference on Software Maintenance, 1993pp. 72-79.

[12] T. Khoshgoftaar, B. Bhattacharyya, and G. Richardson, "Pre-
dicting Software Errors, During Development, Using Nonlinear
Regression Models: A Comparative Study," IEEE Transaction On
Reliability, vol. 41, pp. 390-395., 1992.

[13] A. Mockus, D. Weiss, and P. Zhang, "Understanding and Pre-
dicting Effort in Software Projects," in Proceedings of the 26th
ICSE, IEEE 2003.

[14] A. Mockus, R. T. Fielding, and J. Herbsleb, "A case study of
open source software development: the Apache server," in Pro-
ceedings of the 22nd ICSE, 2000.

[15] N. Nagappan, T. Ball, “Use of Relative Code Churn Measures
to Predict System Defect Density”, in Proceeding of the 27th ICSE
2005:St Louis, MO, USA, ACM 2005.

 [16] E. F. Norman and N. Martin, "A Critique of Software Defect
Prediction Models," IEEE Trans. Softw. Eng., vol. 25, pp. 675-
689, 1999.

[17] N. F. Schneidewind, "Body of Knowledge for Software Quality
Measurement," IEEE Computer, vol. vol. 35 pp. 77-83, 2002.

[18] D. Wahyudin, A. Schatten, D. Winkler, and S. Biffl, "Aspects of
Software Quality Assurance in Open Source Software Projects:
Two Case Studies from Apache Project" in Proceedings of 33rd
EUROMICRO Conference SEEA- SPPI track, 2007.

[19] D. Wahyudin, K. Mustofa, A. Schatten, S. Biffl, and A. M.
Tjoa, "Monitoring the “health” status of open source web-
engineering projects," International Journal of Web Information
Systems, vol. 3, pp. 116 - 139, 2007.

[20] E. J. Weyuker, T. J. Ostrand, and R. M. Bell, "Using Developer
Information as a Factor for Fault Prediction," in Proceedings of the
Third International Workshop on Predictor Models in Software
Engineering: IEEE Computer Society, 2007

Appendix

Table 3 lists our collected product metrics based on

available literature in empirical software engineering
and software maintenance research communities.

Table 3. Collected Product Metrics.

Source of Variation Predictors collected
Volume or size Total LOC, Method LOC, Number of classes,

Number of children, Number of methods,
Number of fields, average of the class speciali-
zation index.

Control complexity

McCabe Cyclomatic Complexity, Weighted
Methods per Class, NPath Complexity

Modularity Lack of Cohesion of Methods, Afferent Coupl-
ing, Efferent Coupling, Instability, Abstract-
ness, Normalized Distance from Main Se-
quence, Depth inheritance tree

Code quality Number of check style violations, Ratio of
check style violation per number of check style
methods

Table 4 lists our collected project metrics partially

based on available literature in empirical software
engineering and software maintenance research com-
munities, while our proposed metrics outlined as bold
texts.

Table 4. Collected Project Metrics.
Description Predictors collected

Issue and Defect resolu-
tion prior to release

Number of targeted issues; Number of
closed issues; Number of defects; Number of
open defects; Number of resolved defects;
Number of closed defect; Number of
invalid defect reports; Ratio of resolved
defects per reported defects; Ratio of
closed per reported defects, Number of
issue reporter, Avg Number of defects
reported by a reporter

Code Changes within a
release

Number of files affected by changes; LOC
added, LOC deleted, LOC changed, Delta of
LOC, Delta of changes, Number of changes
committed by a developer; Number of LOC
submitted by a developer,
Number of changes committed by a bot-
tom developer/total changes (non dominant
developer with less than 50% total contribu-
tions), Number of LOC submitted by
bottom developer/TLOC

People involved within
the development process
of a release

Number of active developer; Number of
committers; Number of peripheral devel-
opers

Figure 3 depicts the monthly performances of peer

review of defect resolution (represented as defect
closed per defect reported prior to release) for My
Faces Core and Tobago. In average Tobago has high-
est level of peer review activities (Mean: 0.82) com-
pare to Core (Mean: 0.67). The variability of peer
review practices in Core releases is higher (data are not
normally distributed especially C114 with one outlier)
than Tobago. The results depict in a pure OSS commu-
nity such as Core although peer review of defect reso-
lution are common practices and significantly growth
over the time, however the intensity were fluctuated
depend on the developers’ motivation.

Fig 3. Ratio of monthly defect closed prior to release
in MyFaces Core and Tobago

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

