A Compositional Approach to Active and Passive Components

Kung-Kiu Lau and Ioannis Ntalamagkas
School of Computer Science, The University of Manchester
Manchester M13 9PL, UK
{kung-kiu,i.ntalamagkas } @cs.manchester.ac.uk

Abstract

Current software component models lack compositional-
ity. Most of them also do not have both active and passive
components. In this paper, we show how we can define a
compositional approach to active and passive components.
We define these components in such a way that their com-
position can be defined by explicit composition operators.
Our approach not only achieves compositionality, but also
enables systematic or hierarchical composition.

1 Introduction

Typically a software system contains a mixture of active
components, and passive components. Active components
have their own thread of control and execute autonomously,
whereas passive ones only execute when invoked or trig-
gered by an external execution thread. Combining active
and passive components in a system raises synchronisation
issues, and therefore it is perhaps not surprising that not all
software component models [8] include both kinds of com-
ponents.

Current software component models fall into two main
categories [8]: (i) models where components are (collec-
tions of) objects, as in object-oriented programming; (ii)
models where components are architectural units, as in soft-
ware architectures [4]. Exemplars of these categories are
Enterprise JavaBeans (EJB) [12] and architecture descrip-
tion languages (ADLs) [11] respectively.

All the component models with objects as components
have only passive components, except for COM+ [13],
which has both active and passive components. Some
ADLs, namely C2 [16], Darwin [10], and Wright [3], have
only active components. The only ADL with both active
and passive components is PECOS [14].

All current component models lack compositionality, in
the sense of algebraic composition with a proper compo-
sition theory. This means that current component models
do not offer explicit composition operators that compose

components (as operands) into new components. In other
words, compositionality means that composing two com-
ponents C; and Cy by a composition operator results in an-
other component C3 of the same type as C; and Cs.

In models with objects as components, objects are as-
sembled by method calls. This is not algebraic composition
since an object O; calling a method in another object Oy
does not result in a single object, but rather two objects call-
ing each other. In models with architectural units as compo-
nents, i.e. ADLs, components are connected by connectors
via their ports. This kind of connection defines composition
at the level of ports; at the level of whole components, it de-
fines an ad hoc kind of composition, since the result of the
composition depends on which ports of the sub-components
are forwarded or exported to the composite.

In this paper we show how we can take a compositional
approach to active and passive components. We define
these components in such a way that their composition can
be achieved by pre-defined explicit composition operators.
These operators not only achieve compositionality, but also
enable systematic or hierarchical composition.

2 Active and Passive Components

Active components can generate control signals,
whereas passive components can only receive them. This
is illustrated in Figure 1. In the figure, A is active and B

s Of»——>fO0 |
O4{F----0HO

P Control out-port > Control in-port
[] Data port O Internal port

Figure 1. Active and passive components.

is passive; A can autonomously generate signals, whilst B
only performs its function when it receives a control sig-
nal from A. In the figure, data ports are used for data input/
output.

Among current component models [8], only PECOS [14]
and COM+ [13] have both active and passive components.
PECOS explicitly distinguishes between active and passive

components, whilst COM+ does not. Therefore, in this pa-
per, we will use PECOS as a primary point of reference.

In PECOS, components communicate using a variation
of the description presented in Figure 1. Active compo-
nents work autonomously and update their internal data on
their own thread (hence they have internal and external data
ports, see Figure 2). In contrast, passive components do not
have internal data, and their data are accessed directly by
the composite’s thread (hence they have single data ports,
see Figure 2). In PECOS, there are also event components;
event components are treated as active components as far as
composition and synchronisation are concerned.

PECOS is used to model field devices, which are reactive
systems. Figure 2 shows a PECOS device that displays time
in analogue and digital format. In this device, EventLoop

Device (active)
[Clock { msecs

me T —
time / pispla

time_in_msecs +————]
EvefitLoop _| | Digital
(astiver] can—draw,, Displa
started —
—> control flow

Figure 2. An example of a PECOS device.

is an active component that handles graphical events such
as mouse clicks. Display and DigitalDisplay are passive
components that display the time (which is read from the
Clock component) in analogue and in digital format respec-
tively. DigitalDisplay can only start drawing if the Event-
Loop component has started, hence it is connected to the
started port of the EventLoop.

3 Our Approach

We define active and passive components differently
from PECOS. We want to be able to use explicit compo-
sition operators instead of port connections for composing
components. To this end, we define active and passive com-
ponents as shown in Figure 3. In this presentation we use

A
g ==
Eln catio |] cor
Passive i 'T L]) Active
component = component
Passive Active
computation computation
unit process

—>» control flow —= data flow

Figure 3. Atomic components.

different shapes for visually differentiating between active
and passive components. In the figure, both components are
atomic components, as opposed to composite components,
which we will discuss in Section 5.

A passive component consists of a passive computation
unit and an invocation connector. The passive computation
unit contains a set of methods or operations, and performs

them when invoked by the invocation connector. The in-
vocation connector provides the interface of the component
and is activated by control signals from outside the compo-
nent, i.e. from other components (via composition opera-
tors, see later). It is the external control that accesses the
computation unit (through the invocation connector) that
forces the computation to take place. Without this exter-
nal control, the passive component does nothing. As can be
seen in the figure, data flow follows control flow.

An active component consists of an active computation
process and a channels connector. The active computation
process performs computation on its own thread of control
continuously, and periodically interacts with the channels
connector to pass control signals and perform data i/o. The
channels connector provides the interface of the component
and can communicate with other components (via compo-
sition operators). Thus an active component has an internal
control thread, i.e. control inside the active computation
process, and can receive an external control thread. The
external thread represents the client of the component that
wishes to interact with the active computation process. The
two control threads run independently and interact only in-
side the channels connector where data communication also
takes place.

We define the active computation process in an active
component as a non-empty set of Communicating Sequen-
tial Processes (CSP) executing in parallel. CSP [6] is a pro-
cess algebra used to model concurrent systems. A system
modelled using CSP consists of a set of sequential processes
that execute in parallel, and communicate via synchronous
shared channels.

Example. An example of an active component is a
cruise controller component (Figure 4), which is based on
the cruise controller system presented in [9]. The sys-

*engineOn() *engineOff() *on() *off() *accel() *brake() *resume()

Channels Connector
engineOn| engineOff | on 7ojqaicicgl<‘ib[age?

,@%@@% ,,,,,,,,,,,,,

CruiseCtrl,

0,1 'JCruise Controller C) id=o‘
< I
1,0) (1,1) cIrSpeed‘ recSpeed‘ enable‘ disabl% ﬁ\:

Speed(”)((1,2) (2,00 Speed Controller Throttls
S?gf?r speed id=2 6 setThrottle id‘=3 :

771 Active computation process

Figure 4. Cruise controller component.

tem in [9] is defined as a set of Finite State Processes
(FSPs). The purpose of the cruise controller is to main-
tain the car speed at a desired level. Its active compu-
tation process (CruiseCtrl) consists of four (interacting)
CSP processes: the CruiseController, the SpeedSensor, the
SpeedController and the Throttle.

The user of this active component is the car driver: the
driver decides when to turn the engine on (engineOn) or off
(engineOff), accelerate (accel) or brake (brake). The driver

can also control the cruise controller through three buttons:
on, off and resume. Process ids and channel numbers are
discussed in the next section.

The channels connector provides a suitable interface for
the component. It consists of the channels (*engineOn() for
engineOn, *engineOff() for engineOff, etc.) connected to
the active computation process. The asterisks (*) before the
interface names denote that this component is active. This
is further discussed in Section 5, where we compose active
with passive components to form the whole system.

Users of the active component may interact with the ac-
tive computation process by calling any of the interface
methods, i.e. channels. We will see in Section 4 how ex-
actly the cruise controller component is defined and imple-
mented.

4 Implementing Active Components

We have implemented active and passive components in
Java and we have introduced a Java API for this purpose.
The implementation of passive components has been ex-
plained elsewhere [7]. In this section we explain how we
have implemented active components.

First we need to explain how any component, passive or
active, can be used via its interface. A passive component
provides a set of methods that can be invoked through (its
interface) the invocation connector. Each method is defined
by a name, the types of its input parameters and the types of
its output parameters: (name, input parameter ty-
pes, output parameter types). Each time the com-
ponent is used, one method is invoked and the results are re-
turned. Thus the input data to the invocation connector are
((method) name, input parameters, place-
holders for output parameters). This is achieved
by providing the invocation connector with an execute
method with the signature: void execute (String,
Vector<Object>, Vector<Objects>).

An active component, on the other hand, provides a
set of channels connected to (a set of) CSP processes.
The user can input data values to the channels via the
channels connector, and get back the results of executing
the processes with these input values, also via the chan-
nels connector. Similar to the methods of passive com-
ponents, each channel is defined by a name, the types of
its input parameters and the types of its output parameters:
(name, input parameter types,output param-
eter types). Thus the input data to the channels connec-
tor contain the same data as that to an invocation connec-
tor, i.e. ((channel) name, input parameters,
placeholders for output parameters). Not sur-
prisingly, the channels connector is also provided with an
execute method with identical signature to that of the in-
vocation connector.

The main implementation issue for active components
is how to define and implement the interaction between the
channels connector and the active computation process. Our
approach is shown in Figure 5. We define this interaction

Active Component ‘

Channels
Connector
chEnv0 4 A chEnv1

(inVals | _[outSem | [inVals | _[outSem |
(inSem || outvals | [inSem outVals |
cho | chi]
CSP processes Q]

Figure 5. Structure of an active component.

by special active agents that we call channel environments.
These environments (chEnvO0 and chEnv1l in Figure 5)
are predetermined interaction points between the channels
connector and the CSP processes. We define one channel
environment for each channel connected to the CSP pro-
cesses.

The channels connector is passive; it waits for external
control threads and it then forwards the control signal along
with any data to the chosen channel environment. CSP pro-
cesses are active, and communicate via channels, and every
communication on a channel is considered to be an event.
Therefore, in order to communicate with a CSP channel,
a channel environment must be able to generate and ac-
cept events. This implies that, channel environments need
to combine both event-based and data-based synchronisa-
tion mechanisms, i.e. channels and semaphores, in order
to communicate with the CSP processes and the channels
connector respectively.

We implement the channels connector in Java, and CSP
processes in JCSP [1] (a Java implementation of CSP). For
a channel environment, the channels part is implemented in
JCSP, whereas the semaphores part is implemented in Java,
using standard JDK semaphores. Our implementation al-
lows the user to choose any channel from the CSP processes
to interact with (through channel environments).

As already discussed, a channels connector takes as
input a triple (name, input parameters, place-
holders for output parameters)via its execute
method. This is the method that performs the run-time func-

tionalities of the channels connector and is outlined below:
public void execute(String name,
Vector<Object>inParams, Vector<Object>outParams) {

ChannelEnvironment envs=

((ChannelEnvironment) envs.get (name)) ;

//Set input values

env.setInputParams (inParams) ;

//Signal the ch.env.

env.inSem.release () ;

// Wait for signal that output is ready

env.outSem.acquireUninterruptibly () ;

//get output values

outParams=env.getOutParams () ; }

When this execute method is called, the channels con-
nector interacts with the chosen channel environment. The

incoming thread of the channels connector is used to set
the input values inVals (see Figure 5) of the channel en-
vironment to the input parameters of the call to execute.
The channel environment is then signalled using semaphore
inSem to communicate with the chosen (connected) chan-
nel. The execute method then waits on semaphore
outSem for the signal from the channel environment that
indicates that channel communication has finished. Output
values outVals are then returned to the caller.

Channel environments are active and they operate inside
a non-terminating loop, implemented as the method run:
public void run()

while (true) {
//Wait for input value(s) before communicating
inSem.acquireUninterruptibly () ;

//Communicate on the given channel and set
//output values

communicate () ;
//Signal that communication has finished
outSem.release () ; 1}

Their runtime behaviour is complementary to the execute
method of the channels connector. They actively wait to be
signalled by the channels connector that the input values
have been set. Then these values are communicated to the
connected CSP channel, and finally they signal the chan-
nels connector that communication has finished. The actual
implementation of the communicate method depends on
the type of the connected channel, for example an integer
channel, a channel with no input/output values, and so on.

Our implementation ensures that CSP semantics are pre-
served and this is reflected in the behaviour of the active
component. The communicate call in the run method
is not guaranteed to return immediately. For example, it is
possible that the caller gets blocked until some values are
input in another channel.

We have implemented a tool for generating active com-
ponents from their definition, as illustrated in the following
example.

Example. The implementation of cruise controller in
Figure 4 is outlined as follows. First, we specify the active
computation process CruiseCtrl in CSP as:

CruiseController|SpeedSensor||SpeedController|| Throttle,
where || is the parallel composition operator in CSP. Then
we specify the sub-processes. For example, part of the spec-
ification of the Cruise Controller process is:
CruiseController = engineOn — clrSpeed — Active

O off — CruiseController

O brake — CruiseController

O accel — CruiseController

Active =

The symbol O stands for the external choice operator: the
environment of the process decides which event occurs
next. This specifies that the cruise controller in its initial
state can accept any of the events engineOn, off, brake,

accel. After an engineOn event is accepted, it clears the
speed of the speed controller, and then it becomes active.
The other three events simply return the cruise controller to
its initial state. These events describe no i/o behaviour: they
are simple synchronisation events.

Secondly, the CSP processes are implemented manu-
ally in Java using JCSP. This is because at present there is
no tool for automatically translating machine-readable CSP
into Java [15]. For example, the Java class implementing
the CruiseController process is declared as:
package cruiseControlller;

public class CruiseController implements
jesp.lang.CSProcess {...}

Thirdly, inter-process communication is defined. The
above Java implementation only defines single processes
and how they behave in isolation; it does not (and cannot)
define how processes interact with each other. The latter
has to be defined according to the CSP specification defined
in the first step. This information (that also includes which
channels are to be exposed to the interface of the compos-
ite), is passed in the form of a script to our tool that gener-
ates the active component. For the automobile cruise con-
troller, part of the script is shown below and an explanation
follows (lines beginning with - - are comment lines):
--Declare the processes, first process gets id 0
cruiseController.CruiseController

--then process with id 1
cruiseController.SpeedSensor

--Define the connections

--Enter channels, then connection type
--connection for channel engineOn
(0,0)~(1,0) ALTING BARRIER HUB_IN
--connection for channel speed
(1,2)7(2,0) ALTING_ BARRIER_HUB

After declaring the processes that constitute the CSP com-
ponent, and as part of the implementation directives im-
posed by JCSP, the developer specifies how individual pro-
cess channels connect with each other. These channel con-
nections reflect the ones shown in Figure 4. For example
channel (0,0) connects with channel (1,0). This means con-
nect from the process with id 0 (CruiseController) the first
declared channel inside its class definition, to process with
id 1 (SpeedSensor) to channel with id 0. Process and chan-
nel ids are given automatically by our tool. Immediately
after the connecting channels are defined, the channel types
are specified. For example, ALTING_BARRIER_HUB_IN
defines that a JCSP AltingBarrier will be used,! and
that this channel should be exposed by the component.
The appropriate channel environment is then created for
this channel automatically. In contrast, channels connected

'AltingBarrier is the JCSP class representing a channel with no
i/o behaviour, where the participating processes may alternate.

through ALTING_BARRIER_HUBs remain hidden and for
example channel speed — connection of (/,2) with (2,0), is
not exposed and a channel environment is not created.

S Composite Components

In PECOS, active components and passive components
are composed to form composites. The composition is done
by connecting the components’ data ports and defining a
schedule for execution and synchronisation. The sched-
ule defines in what order the passive sub-components exe-
cute. For active sub-components, the schedule defines when
the data values in their internal data ports will be copied
into their respective external data ports, or vice versa. The
schedule is ad hoc, and only defines sequential control, i.e.
one passive component executes or one data synchronisa-
tion occurs at a time. For example, the Device in Figure 2

is a composite. Its structure is as follows:
active component Device(
Clock clock;
Display display;
DigitalDisplay digitalDisplay;
EventLoop eventLoop;
connector time(clock.msecs,display.time,
digitalDisplay.time_ in msecs) ;
connector eventLoop_started(eventLoop.started,
digitalDisplay.can draw) ; }
Its schedule is shown below:
schedule sched of Device every 1000 at 10{
{ sync eventLoop;
exec clock;
exec display;
exec digitalDisplay;
} at 0; }

The schedule defines a period of execution of 1000 millisec-
onds (every 1000), that executes at the specified priority
(at 10). Inside the schedule, a set of jobs are defined that
execute at the beginning of the period of the Device (at
0). For active sub-components, sync means synchronise
the data of its internal data ports with the data of the exter-
nal data ports, and at runtime the synchronise () of the
component is called. For passive components, exec means
execute the component, and at runtime its execute ()
method invoked. In Figure 2 we have drawn the control
flow as defined by the above schedule.

A disadvantage of this approach is that the synchronisa-
tion mechanism used for transferring data between active
and passive components is error prone. For example, the
developers of active components must explicitly place locks
inside their synchronise () and execute () methods.
Another disadvantage of PECOS composition is that the
scheduling is strictly sequential, while for instance the two
display components should be scheduled to execute in par-
allel. In this section, we show how we can use explicitly
defined composition operators to compose active and pas-
sive components as these were defined in Section 3.

5.1 Passive and Active Composites

The atomic components defined in Figure 3 can be com-
posed via their interfaces by using explicitly defined com-
position operators. Depending on the nature of these opera-
tors, composition can yield either a passive composite or an
active composite (Figure 6).

Passive composite Active | Acomposite

== | (]

] =] I;_
Passive Active Passive Active
component component component component

—>» Control flow —> Data flow

Figure 6. Passive and active composites.

In [7] we defined explicit composition operators as con-
nectors that coordinate control (and data) flow between the
sub-components. A composition connector encapsulates
control. Tt is used to define and coordinate the control for
a set of components. For example, for sequencing we use
the pipe and sequencer connectors, and for branching, we
use the selector connector. A pipe connector that composes
components Cy, ..., C, can call methods in Cy,...,C, in
that order, and pass the results of calls to methods in C; to
those in Cy, k > i. A sequencer connector is the same as
a pipe but does not pass the results of C; to C;. Whenever
composition occurs, the result is a composite component
with an interface based on the interfaces of the connected
components and on the composition operator used.

Using the composition connectors that we previously de-
fined, we get a passive composite whenever we compose a
passive component and an active one. For example, the pas-
sive composite in Figure 6 is composed by a sequencer con-
nector. This composite is passive because it behaves like the
passive sub-component, i.e. it can take and respond to a sin-
gle method invocation at a time and it needs an external con-
trol thread in order to execute. The active sub-component on
the other hand executes on its own control thread, and only
needs sufficient input data in order to execute continuously.
The role of the external control thread is to provide these
data to the component. As a result, each call to the channels
connector may provide more than a single channel name to
execute, for example a sequence of channel names, along
with the appropriate input parameters. These data are then
consumed by the active computation process inside its own
control loop.

However, in the passive composite in Figure 6, con-
trol reaches the active sub-component via the passive sub-
component, and the composition operator treats similarly
both sub-components. Therefore, there can be exactly one
input to the active sub-component for each call to the pas-
sive sub-component. To achieve an active composite com-
ponent, we need to use a different kind of composition con-
nector, namely a stateful facade, as we now explain.

In object-oriented programming, a facade for a set of ob-
jects is a unified interface to all the methods of the objects,
and the main method of the facade invokes methods in the
objects. In a stateful facade [5], the behaviour of the main
method depends on the current state of the facade.

By using a composition connector defined as a stateful
facade, we can produce an active composite (from active
and passive sub-components), since such a facade provides
access to the methods of all the sub-components. The state
of the facade determines which sub-component’s methods
can be called. Thus if a sub-component is active, then the
composite will also be active, i.e. it can service an end-
less sequence of inputs and the role of the external thread
is to provide these inputs to the component. An example
of a generic active composite is shown in Figure 7, that

namel name2 *name3 *name4

if()then Passive;
elsif()then Active;

*name3 *name4

name1 name2
Passive
component

Figure 7. A generic active composite.

consists of an active and a passive sub-component. The fa-
cade connector contains its own data that define its state.
Based on this state, the facade defines a conditional state-
ment that declares the conditions that when true will enable
each sub-component to execute. For example, if a call to
namel is made while the facade is in state2, state2statel,
the call does not succeed and an error message is returned to
the caller.” In the figure, the active sub-component may ac-
cept any sequence of (channel) names. This property is pre-
served when composing via a stateful facade, and therefore
a single call to the composite may provide any sequence
(of finite length) of the names name3, name4, but only a
single name when invoking one of namel or name2.

Finally, an active composite with a stateful facade as its
interface can be further composed, with passive or active
components. The result of each such composition is another
composite with a stateful facade as its interface. In contrast,
using the composition operators we defined previously, in
each such composition, an active composite is treated like
a passive component, i.e. a single name of its interface is
called.

5.2 Implementing Active Composites

In [7] we have presented the implementation of passive
composite components. In this section we present how ac-
tive composites are implemented by using as example an
authenticated cruise controller.

2Clearly, facade’s state affects the way the composite component is
used. We are currently investigating ways of exposing this information
in the composite’s interface.

An authenticated cruise controller is a composite com-
ponent consisting of an authentication component and the
cruise controller system, as shown in Figure 8. The au-

bool check(int,FingerPrint,Pass) *accel() *on() ...
cC
*accel() *on() ...

(out Systen |
Figure 8. Authenticated cruise controller.

thentication component is a passive component that authen-
ticates a user, based on the user id, a fingerprint, and a pass-
word. The active component is the cruise controller com-
ponent shown in Figure 4. The requirements for the system
describe that before users can access the cruise controller,
they need to be authenticated first. After authentication,
users may access the cruise controller directly, until the en-
gine is turned off, at which point they need to authenticate
again prior to using the cruise controller. We use a stateful
facade for composing the two components into composite
CC, where the state of the facade reflects whether a user has
been authenticated or not.

Constructing the active composite comprises of several
steps. Firstly, the system developer must define the state
(data) of the facade. We define these data as a set of
triples of the form (name, type,value). For the authenti-
cated cruise controller of Figure 8, the only data needed
is a single boolean variable: (hasAuthenticated, Boolean,
Boolean.FALSE). We have implemented component data in
Java as a class named Data that provides read/ write access
to individual data elements.

Secondly, the system developer must define the condi-
tions that when true will enable each subcomponent to ex-
ecute. Each subcomponent gets therefore associated with a
boolean expression: if the expression is true, then the com-
ponent executes. For the authenticated car controller, the
boolean expressions associated with each component are
written in reverse polish notation:

bool check(...)

Auth: hasAuthenticated FALSE EQ
CruiseCtrl: hasAuthenticated TRUE EQ

Thirdly, the system developer defines how the compos-
ite’s state gets updated affer a call to a subcomponent re-
turns. This is because the facade’s data reflect the facade’s
definition that the result of an invocation to a subcomponent
affects the next invocation. In order to update its own state,
every facade connector contains an Updater object that has
an update method. That method is called when the exe-
cution of one of the sub-components terminates, and it may
change the data variables of the composite component. The
system developer must provide an Updater object to the fa-
cade’s constructor. For the authenticated cruise controller
the overridden method will be:

public void update (String name, Vector<Object>

inParams, Vector<Objects> outParams){
if (name.equals ("check"))
//method "check" has a single output parameter
Boolean x = (Boolean) outputParams.get (0);
data.write ("hasAuthenticated", x);
} else if (name.contains("engineOff")) ({
data.write ("hasAuthenticated", Boolean.FALSE) ;

} }

Below we outline the code for the composite’s exe -
cute method, i.e. the method that executes when we call
the composite component:

public void execute (String name, Vector<Objects>
inParams, Vector<Objects> outParams)
throws Exception(
checkIfvalid (name, inParams) ;
//Invoke the subcomponent
invoke (name, inParams, outParams) ;
//Update the composite’s state
this.updater.update (names, inParams, outParams) ; }

The input name parameter is a string, and therefore may
consist of a sequence of space separated names. It is ini-
tially necessary to check that the input name and parame-
ters are valid. A validity check defines that for a sequence
of names, all names must belong to the same component.
More importantly, it is checked whether the state of the fa-
cade allows the execution of the component to which these
names belong. The boolean expressions specified in the sec-
ond step are utilised. If the invocation is possible, then the
subcomponent gets invoked, and the state of the facade gets
updated according to the update method presented in the
third step above. If not, an exception is thrown.

Finally, the composite’s interface as shown in Figures 7
and 8, is generated automatically during the composite’s
construction, and it consists of the union of the (channel
or method) names appearing in the connected subcompo-
nents. If the same name appears in both components, then
it is ignored. If more than one subcomponents are active,
then two stars will be placed before each name belonging to
the second active component (three to the third, and so on),
in order to able to distinguish at the interface level which
names correspond to which active component.

We have implemented and run the authenticated cruise
controller system using our tool, as shown in Figure 9. The
figure shows the composite CC, and its interface, that was
created via composition of Auth with CruiseCtrl. We
have inserted printout statements in the the facade connec-
tor and in the two subcomponents, in order to produce the
sample execution trace in the figure. The trace shows that it
is not possible to execute the CruiseCtrl unless the user
has authenticated. The composite then executes a sequence
of (channel) names within a single call, because the active
subcomponent allows this. Because the user has authenti-
cated, it is not possible to authenticate again. Finally, in the
next call, the external user will turn the cruise controller and
then the engine off.

L5
[- [51%])

methodhame | ind ini in2 outd
“accel void
“hrake void
checl int |class java.lang.String |class javalang.Sting |void
“engine0f void
*enginedn wioid
i void
=an vaid
“resumes void

IIIII B =9
l to execute:
Problems I_Tasks ‘ Javadoc | B console 52 N off *engineOf |
Test¥iew (1) [Java Application] C:'Program Files\Java\jdk1.6.0_01%hin'ja:
Facade: Cannot execute "engineOn"™ "accel”. nput value(s):
State: Lalselll ‘

Auth: Executed "check"”.

Facade: State updated to: true. Execute

CruiseCtrl: Executed "engineCn", "accel". Result(s):
CruiseCtrl: Executed "accel”™, "accel™, "on".
Facade: Cannot execute "check".

Stake: Exmelll

Figure 9. Executing the cruise controller.

It is worth noting that using our previously defined com-
position operators instead of the stateful facade would pro-
duce not only a passive composite, but also a wrong one.
For instance, the composite could be composed using a pipe
and a guard (Figure 10). The result of the authentication is
passed into the guard connector. The guard is an adaptation
connector, that allows control to pass only if an internal con-
dition is satisfied. Only if the authentication result is true

on(int,FingerPrint,Pass) |accel(int,FingerPrint,Pass) ...

on(bool) accel(bool).. |

bool|check(..) AD1 GU8ID, o el .
Cruise Ctrl
System O

Figure 10. Authenticated cruise controller.

may the user access the cruise controller. The obvious dis-
advantage of this solution, is that the user needs to authenti-
cate every time before accessing the cruise controller. This
is not the right behaviour that we want.

6 Discussion

Our definitions of passive and active components are dif-
ferent from those in PECOS and in ADLs, e.g. Wright,
which also use CSP to define active components (Fig-
ure 11). The main difference is that our component, be
it active or passive, has an interface for composing whole
components, whereas the ports in a PECOS or Wright com-
ponent only provide connection points for linking to other
ports. Our operators compose whole components, and not
just ports. Composition via stateful facade is different from
port forwarding, because the stateful facade adds behaviour
to the composite component (in terms of its state), whereas
port forwarding does not. Therefore, our approach offers

PECOS Wright Our approach
‘ﬁzfrl]\ils computation o computation
component + ports + interface
active schedule
atomic + computation CSP process CS? process
component + ports + ports + interface
. sub-components sub-components sub—components
composite + schedule + connectors omp
component + connections + connections + composition operator
[+ forwarded ports] |[+ forwarded ports] (interface)
(active) (active) (active or passive)

Figure 11. Related definitions.

the advantage of a proper composition theory, which sup-
ports hierarchical composition. Every composition pro-
duces a composite that can be further composed with other
components, and so on. In other words, our approach has
compositionality, unlike current component models.

Additionally, when compared to PECOS, our active
component has a more expressive language, i.e. CSP, for
defining computation. Simple and elegant CSP designs in-
side our active components can become overly complicated
in PECOS. Additionally, CSP allows us to model check the
CSP processes for certain temporal properties like deadlock
and livelock freedom using automated tools, e.g. FDR [2].
This is not possible in PECOS.

More importantly, in a composite component in PECOS,
active components are treated as passive, i.e. whenever the
control of the composite reaches an active subcomponent, a
single data communication is performed per port, whereas
it should be possible to provide multiple data values to the
port. In contrast, our facade composition operator allows an
active subcomponent to retain its active nature, by letting
users of the composite perform multiple data communica-
tions within a single call to it.

In Wright, an ADL with active components and explicit
active connectors, composition is similar to PECOS, i.e. it
is ad hoc, and composites are defined through explicit port
forwarding; on the other hand, because Wright uses CSP
for defining the behaviour of components and connectors,
no schedule is necessary. However, passive components are
not defined in Wright. This introduces unnecessary com-
plexities especially when designing systems where passive
components are the natural choice. For example, server-side
systems, which many component models, e.g. EJB [12], fo-
cus on, are usually modelled and implemented using passive
components.

7 Conclusion

In this paper we have proposed a compositional, hierar-
chical approach for building concurrent systems. We have
introduced (atomic) active components as part of a system
and explained how they can be composed with other passive
or active components to form composite components. Com-
posite components can be either active or passive depend-

ing on the composition operator used. We have provided the
implementation of both kinds of active components, as well
as a suitable composition operator. Our approach contrasts
with the approaches followed by other component models,
which do not usually model both active and passive compo-
nents. In addition, composition in other models is ad hoc
and takes the form of port connections and port forwarding,
in contrast to our compositional approach.

We are currently working on adding concurrency sup-
port to all the connectors of our model by allowing multiple
users to access them concurrently. This will introduce the
need for additional synchronisation mechanisms, and may
have implications on the way composition is performed.

References

[1] Communicating Sequential Processes for Java (JCSP)
Home Page. Web. http://www.cs.kent.ac.uk/
projects/ofa/jcsp/.

[2] FDR2 Home Page. Web. http://www.fsel.com/
software.html/.

[3] R. J. Allen. A Formal Approach to Software Architecture.
PhD thesis, School of Computer Science, Carnegie Mellon,
May 1997.

[4] L. Bass, P. Clements, and R. Kazman. Software Architecture
in Practice. Addison-Wesley, second edition, 2003.

[5] W.Crawford and J. Kaplan. J2EE Design Patterns. O’Reilly
Media, Sep 2003.

[6] C. Hoare. Communicating Sequential Processes. Prentice
Hall, April 1985.

[7] K.-K. Lau, P. Velasco Elizondo, and Z. Wang. Exogenous
connectors for software components. In Proc. CBSE, LNCS
3489, pages 90-106. Springer-Verlag, 2005.

[8] K.-K. Lau and Z. Wang. Software component models. /EEE
Trans. Soft. Eng., 33(10):709-724, 2007.

[9] J. Magee and J. Kramer. Concurrency: State Models & Java
Programs. John Wiley & Sons, March 1999.

[10] J. Magee, J. Kramer, and D. Giannakopoulou. Behaviour
analysis of software architectures. In WICSA, volume 140 of
IFIP Conference Proceedings, pages 35-50. Kluwer, 1999.

[11] N. Medvidovic and R. N. Taylor. A classification and com-
parison framework for software architecture description lan-
guages. IEEE Trans. Soft. Eng., 26(1):70-93, 2000.

[12] R. Monson-Haefel. Enterprise JavaBeans 3.0. O’Reilly &
Associates, fifth edition, 2006.

[13] T. Pattison. Programming Distributed Applications with
COM+ and Microsoft Visual Basic 6.0. Microsoft Press,
2000.

[14] Pecos: Pervasive component systems.
iam.unibe.ch/~pecos/.

[15] V.Raju, L. Rong, and G. S. Stiles. Automatic Conversion of
CSP to CTJ, JCSP, and CCSP. In Communicating Process
Architectures 2003, pages 63-81, 2003.

[16] R. N. Taylor, et al. A component- and message-based ar-
chitectural style for GUI software. IEEE Trans. Soft. Eng.,
22(6):390-406, 1996.

http://www.

