
A Component-Based Technology for Hardware and Software Components

Luka Lednicki Ana Petričić, Mario Žagar
Mälardalen Real-Time Research Centre

PO Box 883, SE-721 23, Västerås, Sweden

Faculty of electrical engineering and computing

Unska 3, 10 000 Zagreb, Croatia

luka.lednicki@fer.hr {ana.petricic, mario.zagar}@fer.hr

Abstract

One of the challenges in development of embedded

systems is to cope with hardware and software

components simultaneously. Often is their integration

cumbersome due to their incompatibilities, different

specifications and different approaches in their

development. In this paper we present a component-

based technology for building distributed embedded

systems consisting of both embedded hardware devices

and software components. To obtain a uniform view on

hardware and software we have developed a new

component model – UComp. Our technology consists

of UComp component model that allows treating

remote devices as components, and a run-time

framework that supports this component model when

the system is deployed. To evaluate the principles we

have developed a prototype tool that implements the

technology and uses Universal Plug and Play (UPnP)

standard for communication between system parts.

1. Introduction

With the continuous advancement of embedded
computers their usage expands rapidly, and today a
vast majority of computer nodes fall into embedded
systems domain. Examples can be seen in
environmental and industrial monitoring and control,
home automation, and many other domains. These
systems are built from various hardware units coupled
with software components which are frequently
distributed over several nodes. As an example we can
take weather forecast systems consisting of numerous
smart sensors, and communication and computational
nodes dispersed in a large geographical area.

One of the ways to cope with this rising complexity
of systems is by using the component-based approach
for their development. While the general purpose
component-based technologies, like COM [5] or .NET
[3], provide solutions for high level applications (for
example desktop or web applications), component

technologies for embedded systems (e.g. SaveCCM [1]
and Koala [7]) are mostly intended for development of
software components embedded into hardware devices.
A problem arises when trying to connect the two in
complex systems consisting of both high level
software, and low level embedded components that are
closely connected to the hardware.Some standards like
OPC [4] and AUTOSAR [8] enable a degree of
cooperation between software and hardware
components, However, we want to provide a
component model and framework that would make it
possible to handle hardware and software components
during both design and run-time phases of a system.
The focus of our work is on distributed systems whose
functionality is implemented using various devices
connected to a computer network. These devices may
either be physical, i.e. realized using hardware, or
virtual, i.e. realized using software applications.

Run-time modification would enable late
deployment of new embedded devices, or replacement
of existing ones. Also we want to eliminate the need for
specialized device drivers by automatically generating
components that conform to our component model
from the device descriptions.

The purpose of this paper is to present our UComp
technology which provides such an environment.

In Section 2 we present our component model while
its realization and run-time framework is described in
Section 3. Section 4 concludes the paper and states the
possibilities for future work.

2. The UComp Component Model

To achieve our goals we have developed a new
component model, UComp and its supporting
framework.

Component interfaces. Interfaces of UComp
components are defined by their input and output ports.
Ports are used to exchange data and control (triggering)
signals. Data and triggering signals from output port of
one component can be directed to input ports of one or

more components. Graphical representation of a
sample UComp component named Component A,
together with input ports a, b and c, and an output port
out is shown in Figure 1.

Figure 1. Graphical representation of an

UComp component and its ports.

Ports of UComp components are defined by their

names and data types. While output ports handle only
one type of data, input ports can handle a number of
different data types. UComp model itself does not
specify or limit the type of the data.

Any change in the value of the data of an output
port creates a trigger signal on that port. A port can
also be configured to handle no data; in this case it is
used for triggering purposes only.

Connections between Ports. Whenever a
component sets new data to one of its output ports, the
port propagates this data and triggering signals to all
input ports connected to it. Data is also transferred
from an output port to an input port when a connection
between the two is made, thus providing better
behaviour of the system during run-time modification.
Ports can also be reset, making the port signal that
there is no data available.

Triggering of Components. When an input port
receives a trigger signal, it becomes active. Every input
port has an attribute called activation type which
defines how the state of the port affects activation of
component execution. There are three activation types:
(i) Trigger. A component is activated if all input ports
with activation type set to trigger are active.
(ii) Priority trigger. A component is activated if any of
its input port with activation type set to priority trigger
is active.
(iii) Data. If port's activation type is set to data, it is
only used to receive data, and does not affect the
activation of the component.

Activation type of a port is set by the system
developer and can be changed at any time to achieve
the desired system behaviour. By combining these three
activation types, complex triggering patterns or
feedback-loops can be achieved.

As an example, component in Figure 1 has input
ports a (data port), b (trigger port) and c (priority
trigger port), and an output port out.

2.1. Component types

UComp distinguishes between device components
and software components.

Device components. Device components represent
hardware (physical) and virtual (realized using
software applications) network devices. They are the
base for accomplishing the uniform treatment of
hardware and software components of a system. Each
device corresponds to one or more device components
that together cover full functionality of the device.

Device components, together with their input and
output ports, are automatically generated by the
UComp framework using device descriptions.
Automatic generation of device components with their
ports eliminates the need for specialized drivers or
manual configuration of such components. Also, this
allows the application of UComp to already existing
components and systems, as it requires only appending
them appropriate device descriptions. The input and
output ports are created according to data that the
device requires or provides. In addition, every device
component has an output port named connected that
signals if the device is available on the network.

Device components represent actions (synchronous
request-response communication) or events
(asynchronous sender-receiver messaging) of devices.
Therefore, we have defined two types of device
components: action components and event components.

Action Components are designed to wrap around
synchronous action invocations or data queries of
devices connected to computer network. Input and
output ports of an action component are generated by
the UComp framework to reflect arguments of the
action the component represents. Action components
have an additional input port trigger which can be used
for some specific triggering patterns. When an action
component is triggered, an action invocation message
is sent to the device represented by this component.

Event Components allow receiving asynchronous
messages from devices. These messages may signal
data changes or other events that device may provide.
Interfaces of event components have only output ports.
These ports reflect data items that a device provides in
its notification messages.

Software components. Functionality of software
components is fully implemented by program code, and
they are not bound to elements on the network. Some
of the roles of software components are to process data,
manipulate the execution of components (e.g.
generation of periodical triggers), data flow control and
definition of constants. Their function can vary from
very simple (e.g. addition of two numbers) to complex

data processing. This makes it unnecessary to write any
glue-code when connecting components.

2.2. Execution Semantics

Initially, all components in the system are in an idle
state waiting to be activated for execution. Activation
can be caused either by the triggering signals received
at the input ports of the component (passive
components), or by its internal events (active
components). Once activated the component starts its
read-execute-write sequence: First, the component
reads all values from its input ports and stores them
internally, then it executes its functionality, and finally,
the component updates the values of its output ports.

Action components and most software components
are passive, meaning that they execute only when they
are triggered by signals received from other
components, while event components and some
software components are active and thus may start their
execution by an internal event.

2.3. Modeling example

As an example of a system with interleaved
hardware and software we will take a simple
greenhouse temperature monitoring system. It consists
of a sensor that monitors the greenhouse temperature, a
display showing the current temperature, an alarm that
sounds if the temperature exceeds 35°C, and a button
that is used to acknowledge an alarm and reset it.

Figure 2 shows the graphical representation of the
greenhouse temperature monitoring system developed
using UComp. The system consists of tempSensor
(temperature sensor hardware device) and ButtonPanel
(acknowledgment button virtual device) event
components, SetLine (display virtual device) and
SetAlarmState (alarm hardware device) action
components, constant 35, Comparator and SR
(set/reset flip-flop) software components.

3. Realisation of UComp Component

Model

The UComp architecture (shown in) is realised by
a Java application that implements the Universal Plug
and Play (UPnP) [6] technology to manage devices
available on the network. The application
communicates with devices through an UPnP control
point implemented using CyberLink UPnP stack [2].
This centralized architecture has a number of benefits:
(i) It eliminates the need to change embedded device
behaviour to adapt it to specific system requirements.
(ii) Embedded devices do not need to implement UPnP
control points.
(iii) Run-time modification of systems is much easier.

3.1. The Middleware Layer

UPnP [6] is an open standard enables discovery,
description and cooperation of devices using standard
TCP/IP network protocols and technologies.

The UPnP architecture defines two types of entities:
devices and control points. Devices are entities of
UPnP network that provide services. Each service
defines actions that are used to control the device, and
state variables which model the state of the device.
Control points invoke actions and/or monitor values of
state variables of UPnP devices.

One of the main benefits of UPnP is the use of
standards such as HTTP and XML is that it makes
UPnP easily extendable. Also, UPnP is platform,
language and media independent.

The fact that every UPnP device includes a full
description of itself enables us to treat these devices as
black-boxes, with no need for additional
documentation in order to be used.

Realizing Device Components with UPnP. As
UPnP supports action invocation, event notification
and device description, it fits well our component

Figure 2. Graphical representation of the

temperature monitoring system.

Figure 3. The UComp architecture.

technology. For every UPnP device we define a set of
device components: one event component for each
service that the device provides and one action
component for each action defined by each service.

3.2. UComp Run-time Framework

Execution of passive components is handled by a
part of the UComp framework called Executor. The
Executor manages a queue of components that need to
be executed. When a component is triggered, it adds
itself to this queue. Executor sequentially takes
components from the queue and calls their execute
methods. At the end of a component’s execute method
all input triggers are reset.

Execution of active components is not managed by
the Executor, but by the UPnP control stack or the
components themselves.

3.3. Component Repository

Software components are stored as Java class files.
This makes the creation of a component repository
fairly simple. For a new component to be available
deployment, it only needs to be copied to adequate
directory of the file system.

Although not implemented yet, we have envisioned
creation of a repository for device components. This
could be realised by storing XML descriptions of
known devices in a well organised directory structure.

3.4. UComp Development Environment

To facilitate the development we have created a
tool for visual development of UComp systems
(UComp Developer) and a tool for deploying them
(UComp Deployer) to any platform that supports
Standard Edition Java (Java SE).

The UComp Developer enables browsing available
device and software components, and visual component
composition and setup. All modifications can be done
at either design or run-time. Systems developed with
this tool are saved or restored from XML files.

The UComp Deployer tool is a Java console
application that provides only the UComp framework
to an existing UComp system, without the graphical
development environment.

4. Conclusion and Future Work

In this paper we have proposed a simple
component-based technology for developing systems
containing both embedded hardware and high level

software components. We achieved this by defining a
component model that allows using network devices in
a component-based manner. We used a standard
middleware, UPnP, for implementing these devices.
The component framework that we created
automatically generates components using descriptions
provided by such devices. We have created a set of
tools that enables browsing of available components
and visual composition and deployment of systems.

As future work, system design could be enhanced
by providing a device component repository in the
development tool. The component model could further
be improved by including functional and non-
functional properties in device description.. Using
those properties we could perform an analysis of the
system both at the design and run time. Another plan
for the future is to introduce component hierarchy by
adding composite components to the model.

5. Acknowledgement

Our sincere acknowledgement to Ivica Crnković
from Mälardalen University for the suggestions,
guidance and support provided.

This work was partially supported by the Swedish
Foundation for Strategic Research via the PROGRESS
research center, and the Unity Through Knowledge
Fund supported by the Croatian Government and the
World Bank via the DICES project.

6. References

[1] M. Åkerholm, J. Carlson, J. Fredriksson, H. Hansson, J.
Håkansson, A. Möller, P. Pettersson, and M. Tivoli. The
SAVE approach to component-based development of
vehicular systems. Journal of Systems and Software,
80(5):655–667, May 2007
[2] S. Konno, Cyberlink for Java,
http://www.cybergarage.org/
[3] Microsoft, .NET, http://www.microsoft.com/net/
[4] OPC Foundation, .OPC, OLE for Process Control,.
Report v1.0, OPC Standards Collection, 1998,
http://opcfoundation.org
[5] D. Rogerson. Inside COM. Microsoft Press, 1997
[6] UPnP Forum, UPnP Device Architecture 1.0,
http://www.upnp.org/resources/documents/
[7] R. van Ommering, F. van der Linden, and J. Kramer, The
Koala component model for consumer electronics software.
In IEEE Computer, pages 78–85, IEEE, March 2000
[8] AUTOSAR Development Partnership, AUTOSAR –
Technical Overview v2.2.1, 2008, Available at
http://www.autosar.org/download/AUTOSAR_TechnicalOve
rview.pdf

