
Sprint Planning with a Digital Aid Tool: Lessons Learnt

Erlend Agøy Engum
National Oilwell Varco
 Stavanger, Norway

eaengum@yahoo.no

Zornitza Racheva, Maya Daneva
 University of Twente
 Enschede, The Netherlands

{z.racheva, m.daneva}@utwente.nl

Abstract - Managing the product’s backlog is a major task in agile
projects. This case study reports on one organization’s
experiences from the transition to a backlog management tool
and its contribution to improving sprint planning.. Our key
lessons learnt are that a tool is particularly appropriate to
organize and specify backlog items in a transparent manner and
to handle dependencies. However, we also observed an overhead
in backlog management and in reporting during meetings. The
concrete project settings play the paramount role in whether
such a tool helps or harms the process.

Keywords: agile development, sprint planning, process
improvement

I. INTRODUCTION
Agile software development became a prominent solution

coping with two weaknesses of the ‘traditional’ development
methods, namely, intolerance to changes and long
development cycles. Agile methods are incremental and
iterative and promise the clients fast delivery of value and
ability to accommodate changing requirements during the
development [1]. Although the core agile practices [6,12]
seem intuitive and easy to apply, empirical studies [3,8]
indicate that their implementation requires experience,
discipline and motivation. This poses a serious challenge
especially to inexperienced teams [13]. For example, when the
process is not well tuned, and developers lack agile
experience, it is difficult to achieve the efficiency and
flexibility that the agile followers claim to be the particularity
of this development method. This is specifically true for
requirements management. The requirements, the so-called
features in agile project, are organized as a list, named Product
Backlog (PB). Unlike in the traditional development, the PB in
an agile project changes often, which necessitates frequent (re-
) prioritization of the requirements. As the development is
structured in the form of short cycles, it is not possible to
include many features in an iteration. This, in turn, means that
those features left aside from each iteration should be
prioritized again in the next iterations. Moreover, the
appearance of new features on the list also triggers
prioritization. Therefore, an effective procedure is needed
helping both the product owner and the project manager to
keep track of the requirements and the changes in the PB. In
young and small agile companies, a common practice is to use
for this purpose a spreadsheet complemented with the use of
hand-written post-it notes. While simple and easy to apply,
this method brings some serious problems: (i) it renders
developers inefficient because of not enough information
available to them, which leads to misunderstandings about the

exact task to be developed, (ii) it creates ambiguity issues as
individual interpretations dominate over a shared
understanding across project participants, which, in turn,
makes the exchange of tacit knowledge difficult, and (iii) it is
overstrained when there are dependencies between teams
and/or team members, where coordination and knowledge
sharing is instrumental to project success.

This paper reports on a case study in a North-European
small agile company transitioning to a tool for managing the
PB and the Sprint Backlog (SB). We attempted to distill
lessons learnt from the case study company’s experiences. We
make the note that previous studies by other authors [7]
indicate the necessity of providing more empirical research
and giving more attention to management-oriented approaches
in agile context. As Lindvall et al. [7] says, “collection and
analysis of empirical evidence of the effectiveness and
classification of appropriate environments for Agile projects
has not been conducted”. We consider our study a step in this
direction, as we (i) collect empirical evidence; and (ii) give an
insight about the concrete environment. In what follows we
describe the research process (Sect. 2), provide the
background and the context of the project (Sect. 3), present the
application of the digital tool to improve the prioritization
process (Sect 4) and report on our lessons learnt (Sect 5).

II.RESEARCH APPROACH
We carried out an explorative case study by using the

qualitative research practices recommended in [4,15]. The
goals of our explorative study were: (i) to observe the state of
the practice when using two different process approaches,
namely with and without tool support; (ii) to compare the
observations concerning the challenges the particular team
faced; (iii) to formulate hypotheses based on the observations,
that can be validated in further case studies. In this paper, we
report on those research results pertaining to the first two
goals. We make the note that the results related to the third
goal are out of the scope of this paper. Our research process
included (i) collecting experiences about what worked and
what did not in requirements reprioritization, (ii) categorizing
these experiences, (iii) discerning key themes and concepts,
and (iv) sense-making of our leanings. We used the constant
comparison and coding techniques of Grounded Theory [4].
Because this paper is focused on the lessons learnt, we do not
discuss in detail the theoretical foundations of the case study
approach we followed. We deliberately put in the foreground
what we distilled as lessons which other practitioners in other
agile companies might find applicable to their practice. We are
set out to present problems or challenges encountered in

2009 35th Euromicro Conference on Software Engineering and Advanced Applications

978-0-7695-3784-9/09 $25.00 © 2009 IEEE

DOI 10.1109/SEAA.2009.68

259

2009 35th Euromicro Conference on Software Engineering and Advanced Applications

978-0-7695-3784-9/09 $26.00 © 2009 IEEE

DOI 10.1109/SEAA.2009.68

259

practice, to relate success and failure stories, and to report on
industrial practice. Therefore, the focus is on 'what' and on
lessons learnt, not on an in-depth analysis of 'why'. We will
describe the agile practices used and provide information
about the context, so that readers should be able to draw
conclusions for their own practice.

III. BACKGROUND
Our case study site is a small and growing IT company

serving the travel industry by providing to them web sites,
payment solutions and search services. The first author
(Engum) held a scrum master role for a development team in
this organization. Experiences are gathered from a total of ten
sprints of different duration, with and without a tool to assist
the planning process.

Project context: The scrum team included six to seven
developers, half of them working part-time, as the company
hires students in part-time positions along with more
experienced developers. There is no trained tester, no
technical writer and no other non-development roles filled.
One team member holds the role as scrum master. The product
owner is not part of the development team but is responsible
for handling customer contact, the requirements specification
and the PB. When the company introduced Scrum it did not
send product owners, scrum masters or the scrum team to
formal training. The process introduced was based on the
reading of books, e.g. [12] and a package with other materials.
In the remainder of this paper we refer to scrum terminology
as defined in these books.

The duration of each sprint was set individually, based on
the work demanded for implementing the features and on the
customers’ and other development teams’ deadlines. In
practice, sprints were varying from one day to three weeks.

Initial state: We report on the development of a new,
custom built content management system (CMS) and a related
web service used for powering web sites. The demands are
high as the successful implementation of new features is used
to automate the building of several existing and new web sites.

The PB and the SB were both initially handled by
spreadsheets. Tracking tasks during the sprint was done on a
scrum board where the tasks were written on magnetic stickers
which had the size of post-its. The description of issues on the
PB and SB were poorly written and most of the information
was kept with those professionals issuing requests and/or
performing tasks. A review and retrospective meeting are
held at the end of each sprint, which are to identify two types
of experiences: “what went well” and “what can we improve”
(impediments) from the last sprint. The latter get divided into
two categories, “team” and “organization”, and are ordered by
priority. Prioritization is done by pair-wise comparison of one
impediment to another. The team discusses the experienced or
perceived effect and allocates higher priority to higher impact
impediments. The process is continued iteratively until all
impediments are dealt with. We make the note that we allow
for equal priority impediments and for merging of very similar
impediments. The Sprint 4 retrospective meeting of “sprint 4”

identified a set of nine impediments that needed to be
overcome, in order to improve the efficiency of development.

An important part of this process is that the reviews
encouraged both the management and the team to look for
solutions to improve the process. After analyzing the
problematic processes, the project manager was clear on that
better task description and tracking tool was needed. A
decision was made to introduce the generic issue management
tool, Redmine [10], in order to help organize, specify and
prioritize the PB and track development and time usage. Based
on their collective experience, the team expected that the tool
would provide improvement to three out of the nine identified
impediments described in detail below:

 Priority 1: Poor or insufficient specification of tasks
during sprint planning. The members of the team differ in
experience and in knowledge of the system being built. This
means, much tacit knowledge is involved and the person
writing the one or two line task definition often omits
information of great importance to the performing team
member. This generated misunderstandings which lead to an
inferior product and frustration inside the team.

Priority 2: Lack of identification of dependencies to other
teams. A particular aspect of the company’s context are the
dependencies between different teams, similar to a supplier
network situation [2]. For example, several of the tasks the
team performs include interaction and testing together with
other teams. Our experience shows that failure to identify and
communicate these cooperation needs lead to poor resource
allocation and time consuming workarounds.

Priority 3: Team dependencies on part-timers. The
inclusion of developers, employed with part-time work
contracts, in the project team added up to tedious and complex
coordination. While part-timers are frequently not attending
the planning meetings and they possess less general system
knowledge, they often serve as the key resources for specific
modules and possess key knowledge for the success of a
sprint. The team needed a means to better communicate
information to the part-timers, as well as to be able to access
their knowledge at all times.

IV. THE APPLICATION OF THE TOOL
This section describes how the Redmine tool was used in

the company’s context in support of the activities mentioned
earlier. We refer interested reader to [10] for more information
on its functionality and look-and-feel features. We also make
the note that the tool was selected by the senior management
team of the company without any involvement of the
developers and the scrum master. In our case study we did not
have access to the senior team nor to documentation
explaining the selection process and the selection criteria.
Therefore, our research did not include investigation on this
topic. We use the tool to support the four main activities:

 Activity 1: Add PB item. Any stakeholder in the project
can add requirements to the PB as the tool provides sufficient
space to specify information on the new PB item. Compared to
the initial situation, we observed two advantages: (i) those

260260

team members adding and modifying an issue are clearly
identified helping to determine dependencies; (ii) the amount
of explicitly stated information on an issue has improved.
Earlier, the issue description was rarely longer then one
sentence, while, in Readmine it is often a few paragraphs long
and occasionally diagrams or documents are added. However,
an adopting team should also consider side effects. We learnt,
for example, that when not all stakeholders are trained in
entering the information needed, it is harder to ensure the
relevance of what they enter. We observed that the PB grows
including several duplicate issues and issues regarding already
implemented features. We have also experienced issues of no
relevance to the CMS being added to the backlog. The
maintenance effort for the backlog has, thus, increased.

Activity 2: Prioritize PB. The Product Owner is
responsible for prioritizing the PB. He does so with input from
the stakeholders before, during and after the “estimate PB”
activity. The PB is initially prioritized by an auction scheme
where the product owner sells time and priority to the
stakeholders. Changes to priorities may happen at any time
due to events such as customers change of mind or new issues
entering the PB. The tool provides a field for assigning
priority to an issue. We assign priority in the range 1 to 9
using priority 9 for new, non-prioritized issues. Priority 1
issues will finally go into the next SB.

Compared to the initial situation, we experienced that
Readmine changed in many ways how we dealt with priorities:
it made it easier to search, filter and sort issues so that related
issues can be found and compared. The increased information
concerning new requirements can also help in setting initial
priority. On the other hand, we also observed that the amount
of backlog items has increased significantly which adds
complexity to the prioritization process.

Activity 3. Estimate PB. Estimation of the PB is carried
out by the product owner, the scrum master and the scrum
team during the “sprint planning 1” meeting. Stakeholders,
such as the costumer or members of other teams are also
invited to attend. A starting point for the estimations is a
prioritized PB. Typically, as the PB is long and the process
rather time consuming, only high priority issues are chosen for
estimation. All meeting participants exchange knowledge and
reason about the effort needed for each issue on the agenda.
The purpose is to collect everyone's knowledge about the
issue. After the discussion, one or more rounds of planning
poker [6] are played where the participants express their
estimates. The final estimate, in terms of shells (measure of
complexity compared to a commonly understood task) is
recorded in Redmine. In this estimation process, the tool has
multiple functions: besides recording the shells, the issues get
specified in greater detail by adding notes and attachments
coming out of the discussion. This helps mitigate our highest
priority impediment. Also, as the meeting involves many
stakeholders, dependencies are more easily identified and
these are recorded. This helps us with the other impediments.

Activity 4. Create SB. This activity is about splitting a
subset of the PB into manageable and explicit tasks and is
done during the “sprint planning 2” meeting led by the scrum

master and attended by the scrum team. The product owner is
available to answer questions during this meeting. The SB
contains tasks, bugs, support and feature issues, all handled as
issues. Creating a task issue for the SB is done the same way
as other issues. If team members are not able to attend the
meeting, they are expected to review the SB and add their
knowledge to it later. Below we will describe three procedures
used during the “create SB” activity, namely task
specification, risk assessment and dependency handling.

Sub-activity 4.1. Task specification. The tool allows to
link tasks to the respective features each task implements as
well as to team’s discussions on task execution. This turns the
planning process into a knowledge-sharing session whereby
knowledge is captured in writing. This mitigates the priority 1
impediment described in Sect. 3. An unexpected drawback is
that the secretary of the group gets confused during the
discussion and spends too much time writing during the
meeting. This experience shows that a practice should be
introduced to capture only some keywords and important
notes during the meeting and have someone specify the task in
more detail just after the meeting ends.

Sub-activity 4.2. Risk assessment. As the tool made
possible for the team to write a risk assessment in the details
field, they estimated risk of events that can prevent them from
sprint success, e.g. the lack of resources in a cooperating team
or failure to make a server available. The risk assessment
procedure is as follows: (i) the risk is specified including who
or what is affected and what is particular about it; (ii) the
likelihood that this risk poses a threat to the sprint is estimated
on a scale of high, medium and low; (iii) severity, if this
problem occurs, is estimated on a scale of high, medium and
low. This method is a simplification of an industrial hazard
analysis [5] and risk control method. Risk estimation helped
improve the cooperation and decreased the stress factor in the
development process, as the risk information was used to: (i)
communicate team’s concerns to stakeholders, (ii) ask for
change in requirements or re-prioritization if the risk is too
high, (iii) perform expectation management with the
stakeholders, (iv) work as an insurance policy for the team, as
risks that could not be mitigated are explicitly communicated
ahead of time and the team feels “off the hook”.

Sub-activity 4.3. Handling inter-team dependencies. As
part of sprint planning, we identify tasks for which the team
either needs input from other teams or for which someone else
needs our output to successfully complete their tasks. The
team decided to set task deadlines in the middle of the sprint
in such cases. By explicitly stating deadlines it is easier to
work against them and to perform expectation management of
external parties. This mitigates the priority 2 impediment
described in Sect. 3.To illustrate it, we provide one of our
experiences as an example: The team created a menu structure
to be used by a site being developed abroad. It was identified
that, to meet the deadline, there was a need for implementation
on our side and a proof of concept on the costumer side. To
achieve this, it was necessary to set an agreed upon deadline
for when to hand over implementation details from our team
to customer. When they received the documentation they had

261261

already set aside resources and implemented the proof of
concept in time for the sprint review.

V. LESSONS LEARNT
The findings of the case study were used twofold: (1) to

catalogue existing lessons learnt and (2) to compare them and
identify areas where the lessons overlap or diverge with earlier
published experiences. In our comparison, we also checked for
each lesson the context of its intended use. We included the
project manager of the company in this analysis. The analysis
revealed the following characterizing features of our learning:

In our experience, the tool helps the sprint planning
process in at least five ways: (i) it provides a single, easily
accessible and transparent interface for the PB and SB, (ii) it
greatly increases the amount of explicit information, (iii) inter-
team dependencies are more easily identified, (iv) risk analysis
and communication is made possible and (v) knowledge and
experience is better shared between the team members. We
will note that Redmine only provided the opportunity for these
improvements and that the key to successful impediment
mitigation is the processes and not the tool.

All impediments (see Sect 3) have been resolved. The
company is happy with the new task specification process and
believes it ensures more efficient development and a better
product. The inter-team cooperation has improved due to early
detection of dependencies and earlier request for resources.
When it comes to the dependency on part-timers we find it
hard to draw any conclusions. On one side the knowledge
sharing has increased due to the processes described here but
some turnover, interpersonal issues and other initiated
processes prevents us from saying that the impediment is
removed because of the tool.

As already indicated earlier, introducing and using a new
tool did not come for free. Below we point out to what we
found problematic: (i) we did have a slowed down
introduction in the organization as all users were new to the
program, (ii) several developers reported to have lost overview
of the SB and its progress because of the removal of the scrum
board, (iii) the PB and its management increased due to some
duplicated or non-relevant issues as well as increased number
of added relevant issues and (iv) meetings got longer due to
heavy workload on the secretary.

Using a tool to organize backlogs can be a good solution
when the context is appropriate. In our experience, an
appropriate context is one characterized by: (i) a great deal of
dependencies between product lines and teams and (ii) the
team members possessing very different knowledge about the
system and the interpersonal knowledge sharing is difficult.

Last, when comparing our lessons with previously
published reports [9,11,13] on topics similar to ours, we
found that our conclusions converge with observations made
by other agile practitioners. For example, Silva et al. [13]
found that the interaction between the programmers is affected
throughout the project when not everyone is able to keep
regular face-to-face meetings. This agrees with our
experiences regarding the part-timers’ participation. Read [9]
observes that the agile techniques could be customized to

collaborate into an effective solution. Ruhnow [11] reports
that “At first the team struggled putting into practices the ideas
from books and papers on agile development. We eventually
made headway by focusing on making changes in a very
purposeful and incremental fashion, which I call "Conscious
Evolution". The matter that our experiences overlapped with
previously published ones indicated that the lessons we
present go beyond the context of our case study company and
that they can be of relevance to other practitioners.

VI. CONCLUSION
This paper reported on lessons learnt from one company’s

experiences in adopting an agile requirements management
tool. We applied case-study-research techniques and observed
ten iterations of a project, where Scrum was used. The first
four sprints were performed using spreadsheets to organize
SBs, during the remaining sprints Redmine was used. After
the first introduction pains, it became clear to the company
that the tool will continue to support the sprint planning
process. We make the note that there are many products e.g.
[14] available for the purpose of agile project management.
Here we don’t put the focus on the concrete tool, but moreover
on the difference in the project management practice with or
without tool support.

Our future work is to use the experiences we collected in a
more rigorous analytical process aimed at formulating
research hypotheses based on the observations. Our long term
plan includes further empirical studies to find evidence
supporting or refuting these hypotheses.

REFERENCES

[1] Agile manifesto http://agilemanifesto.org/
[2] Assmann, D., T. Punter, Towards Partnership in Software

Subcontracting Source, Computers in Industry 54(2), 2004,
pp.137-150.

[3] Baker, T.J.C., Establishing an Agile Portfolio to Align IT
Investments with Business Needs, AGILE’08, pp. 252-258.

[4] Charmaz, K., Constructing Grounded Theory, Sage, 2008.
[5] Clifton A. Ericson, Hazard Analysis Techniques for System

Safety, Wiley, 2005.
[6] Cohn, M., "Agile Estimating and Planning", (November

2005).Mountain Goat Software.
[7] Lindvall, M., Basili, V., Boehm, B., Costa, P., Shull, F.,

Tesoriero, R., Williams, L., Zelkowitz, M., Empirical Findings
in Agile Methods, XP/Agile Universe Conference’02, Springer,
pp. 197– 207.

[8] Paasivaara, M., Durasiewicz, S., Lassenius M., Using scrum in a
globally distributed project: a case study, J of Software Process:
Improvement and Practice 13(6), Nov/Dec 2008, pp. 527-544.

[9] Read, D., Going Agile – A Case Study Software Process
Consultant Strategic Systems, 19. Australian Software
Engineering Conference, 2008, Perth.

[10] Redmine [www.redmine.org]
[11] Ruhnow, A. Consciously Evolving an Agile Team, AGILE

2007, pp. 130-135.
[12] Schwaber, K and Beedle, M, “Agile Software Development with

Scrum”, ISBN 0-13-067634-9, Prentice Hall, 2001
[13] Silva L, Santana C., Rocha F., Paschoalino M., Falconieri G,

 Ribeiro L., Medeiros R.,Soares S., Gusmão C., Applying XP to
an Agile-Inexperienced Software Development Team, Springer,
2008, pp. 114-126

[14] Tinypm http://www.tinypm.com/
[15] Yin, R.K.: Case study research, Sage Publications, 2003.

262262

