Automated Deployment of a Heterogeneous Service-Oriented System

Sander van der Burg
Department of Software Technology
Delft University of Technology
Delft, The Netherlands
s.vanderburg@tudelft.nl

Abstract—Deployment of a service-oriented system in a
network of machines is often complex and labourious. In many
cases components implementing a service have to be built from
source code for the right target platform, transferred to the
right machines with the right capabilities and activated in the
right order. Upgrading a running system is even more difficult
as this may break the running system and cannot be performed
atomically. Many approaches that deal with the complexity of
a distributed deployment process only support certain types
of components or specific environments, while general solu-
tions lack certain desirable non-functional properties, such as
atomic upgrading. This paper shows Disnix, a deployment tool
which allows developers and administrators to reliably deploy,
upgrade and roll back a service-oriented system consisting of
various types of components in a heterogeneous environment
from declarative specifications.

I. INTRODUCTION

The service-oriented computing (SOC) paradigm is nowa-
days a very popular way to rapidly develop, low-cost,
interoperable, evolvable, and massively distributed appli-
cations [1]. The key in realizing this vision is the Ser-
vice Oriented Architecture (SOA) in which a system is
decoupled into “services”, which are autonomous, platform-
independent entities that can be described, published, dis-
covered, and loosely coupled and perform functions ranging
from answering simple requests to sophisticated business
processes.

While a service-oriented system provides all kinds of
advantages such as exposing a system to the Internet
infrastructure, deploying it is often very labourious and
error-prone because many deployment steps are performed
manually and in an ad-hoc fashion. Upgrading is even more
complex. Replacing components may break the system, and
upgrading is not an atomic operation; i.e. while upgrading it
is observable from the outside that the system is changing.
This introduces all kinds of problems to end users, such as
error messages or inaccessible features.

Because the software deployment process of a service-
oriented system in a network is very hard, this is also a
major obstacle in reaching their full potential. For instance,
a system administrator might want to run every web service
of a system on a separate machine (say, for privacy reasons),
but refrain from doing so because it would take too much

Eelco Dolstra
Department of Software Technology
Delft University of Technology
Delft, The Netherlands
e.dolstra@tudelft.nl

deployment effort. Similarly, actions such as setting up a
test environment that faithfully reproduces the production
environment may be very expensive.

Existing research in dealing with the complexity of the
software deployment process in distributed environments is
largely very context-specific; e.g. designed for a particular
class of components [2], [3] or specific environments (such
as Grid Computing [4]). Other approaches illustrate the
use of component models and languages [5], [6] which
can be used to make deployment easier. While existing
research approaches provide useful features to reduce the
complexity of a particular software deployment process and
also support various non-functional aspects, few of them deal
with complete heterogeneous systems consisting of multiple
platforms, various types of components and complete depen-
dencies, i.e. services and all their dependencies including
their infrastructure, such as database back-ends of which
service-oriented systems may be composed.

The contribution of this paper is a deployment tool,
Disnix, which is used to model the components of a system
including all its dependencies, along with the machines
in the heterogeneous network in which the system is to
be deployed. These are then used to automatically install
or upgrade the complete system efficiently and reliably, to
support various types of services and protocols by using an
extensible approach, and to upgrade or rollback the system
almost atomically.

As a case study, we used Disnix to automate the deploy-
ment of SDS2, a SOA-based system for asset tracking and
utilization services in hospital environments developed at
Philips Research.

II. MOTIVATION

In this paper we will use as a case study a SOA-based
system developed at Philips Research, called the Service De-
velopment Support System (SDS2) [7]. SDS2 is a platform
that provides data abstractions over huge data sets produced
by medical equipment in a hospital environment.

Background: Medical devices produce very large
amounts of data such as status logs, maintenance logs,
patient alarms, images, and measurements. This data often
has a poorly-defined structure, e.g. logfiles. In SDS2 web

services provide the role of transformers, creating abstrac-
tion layers for the data sets stored in the data repositories. By
combining transformers, they turn the data sets into useful
and concrete information with a well-defined interface. Data
abstractions, such as workflow analysis results, can be
presented by one of the web application front-ends to the
stakeholders.

The services of SDS2 may be distributed across several
locations. For instance, the web service providing access to
the log records should be located within the hospital envi-
ronment, since medical data may not be stored outside the
hospital for privacy reasons. The web service that performs
certain analysis jobs over data sets may be located within
the Philips Enterprise environment, since Philips has a more
powerful infrastructure to perform analysis tasks and may
want to use analysis results for other purposes.

Implementation: All the data that is produced by the
devices are stored in MySQL databases. Events that are
produced by medical devices are broadcasted through one
or more Ejabberd servers. All the web service components
are implemented in the Java Programming language using
the Apache Axis2 library. For hosting the web application
components Apache Tomcat is used. The web application
front-ends are implemented using the Google Web Toolkit.

Deployment process: Deploying the SDS2 platform is
a labourious process. First, a global configuration file needs
to be created, which contains URLs of all the services of
which SDS2 consists. Second, all the platform components
have to be built and packaged from source code (Apache
Maven is used for this). For every machine that provides
data storage, MySQL databases have to be installed and
configured. For every Ejabberd server, user accounts have to
be created and configured through a web interface. Finally,
the platform components have to be transferred to the right
machines in the network and activated. This process has
several disadvantages. Many steps are performed manually,
and are therefore time-consuming and subject to errors. This
complexity is proportional to the number of target machines
in the network.

Moreover, some steps have to be performed in the right
order; e.g. a web service that provides access to data in
a MySQL database, requires that the database instance
is started before the web service starts. Performing these
tasks in the wrong order may bring the web service in an
inconsistent state, e.g. due to failing database connections
that are not automatically restored.

Upgrading is difficult and expensive: when changing the
location of a service, the global configuration file needs to be
adapted and all the dependent services need to be updated.
Furthermore, it is not always clear what the dependencies
of a service are and how we can upgrade them reliably
and efficiently, i.e. we only want to replace the necessary
parts without breaking the entire system. Upgrading is also
not atomic; when changing parts of the system it may be

observable by end users that the system is changing, as the
web front-ends may return incorrect results.

In heterogeneous networks (i.e. networks consisting of
systems with various architectures) the deployment process
is even more complex, because we have to compile and
test components for multiple platforms. Finally, since the
deployment process is so expensive, it is also expensive to
deploy the platform in a test environment and perform test-
cases on them.

The technology used to implement SDS2 is very common
in realizing service-oriented systems. The problems above
are also applicable to other systems using the same or similar
technology.

To deal with the complexity of the software deployment
process of SDS2 and similar systems, we require a solution
that automatically deploys a service-oriented system in an
environment taking dependencies into account. Performing
the deployment process automatically is usually less time-
consuming and error-prone. Moreover, with a solution that
takes all dependencies into account we never have a breaking
system due to missing dependencies and we can also deploy
the dependencies in the right order derived from the depen-
dency graph. We also want to efficiently upgrade a service-
oriented system by only replacing the changed parts and
taking the dependencies into account so that all dependencies
are always present and deployed in the right order.

In order to automate the installation and upgrade, we have
to capture the services of a system and the infrastructure in
declarative specifications. Using these specifications, we can
derive the deployment steps of the system, and reproduce a
previous deployment scenario in an environment of choice,
such as a test environment.

Furthermore, we require features to make the deployment
process atomic, so that we never end up with an inconsistent
system in case of a failure and can guarantee that it is not
observable to end users that the system is changing.

Since the underlying implementation of a service could be
developed for various platforms with various technologies,
we should be able to build the service for multiple platforms
and integrate with the existing environment.

While there are solutions available that deal with these
requirements, few have a notion of complete dependencies,
and most are only applicable within a certain class of
component types or environments and lack desirable non-
functional properties such as atomic upgrades. Therefore, a
new approach is required.

III. DISNIX

To solve the complexities of the deployment process of
distributed systems such as SDS2, we designed Disnix [8]
(http://nixos.org/disnix), a distributed deployment extension
to the Nix deployment system [9], [10].

Nix is a package manager which stores components in
isolation from each other and provides a purely functional

infrastructure .nix
distribution .nix III
services .nix

all-packages.nix

e Network
RisnixService

DisnixService,

Overview of Disnix

Figure 1.

language to specify build actions. Nix only deals with
intra-dependencies, which are either run-time or build-time
dependencies residing on the same machine. Disnix provides
additional features on top of Nix to deal with distributed sys-
tems, including management of inter-dependencies, which
are run-time dependencies between components residing on
different machines. In this chapter we give an overview of
Disnix and show how it is used to automate the software
deployment process of SDS2.

A. Overview

Figure 1 shows an overview of the Disnix system. It
consists of the disnix-env tool that takes three models as
input. The services model describes the services of which
the system is composed, their properties and their inter-
dependencies. Usually this specification is written by the de-
velopers of the system. This model also includes a reference
to all-packages.nix, a model in which the build functions and
intra-dependencies of the services are specified.

The infrastructure model describes the target machines in
the network on which the services can be deployed. Usually
this specification is written by system administrators or can
be generated by using a network discovery service.

The distribution model maps the services to machines in
the network. Usually this specification is written by system
administrators, or generated automatically.

The described models are implemented in the Nix ex-
pression language, a simple purely functional language
used to describe component build actions. For example, to
deploy SDS2, the developers and administrators must write
instances of the above models (shown below) that describe
the SDS2 services and the machines on which SDS2 is to be
deployed. The following command then suffices to deploy
SDS2:

$ disnix-env -s services.nix —-i infrastructure.nix \
-d distribution.nix
This command builds all components of SDS2 from
source code for the intented target platforms, including all
their intra-dependencies, transfers them to the selected target
machines, and activates all services in the right order.

{javaenv, config, SDS2Util}: [1]
{mobileeventlogs}: @

let
jdbcURL = "jdbc:mysql://"+
mobileeventlogs.target.hostname+":"+
toString mobileeventlogs.target.mysglPort+"/"+
mobileeventlogs.name; in
javaenv.createTomcatWebApplication rec { @

name = "MELogService";
contextXML = '’ @
<Context>
<Resource

name="jdbc/sds2/mobileeventlogs" auth="Container"
type="javax.sqgl.DataSource"
username="${mobileeventlogs.target.mysgqlUsername}"
password="${mobileeventlogs.target.mysqglPassword}"
url="${jdbcURL}" />

</Context>’'";

webapp = javaenv.buildWebService rec { [5]
inherit name;

src = ../../../WebServices/MELogService; [6]

baseDir = "src/main/java";
wsdlFile = "MELogService.wsdl";
libs = [config SDS2Util 1;
Yi
}
Figure 2. Build expression of MELogService

To upgrade SDS2 or change its configuration, the user
modifies the models, and runs disnix-env again. Disnix will
rebuild and transfer any components that have changed.
After the transfer phase, a transition phase is started in which
obsolete services that are no longer in use are deactivated
and new services are activated. (In this phase only the
changed parts of the system are updated taking the inter-
dependencies and their activation order into account.) If
the activation of a particular service fails, a rollback is
performed in which the old configuration is restored.

Since the machines in the network could be of a different
type than the machine on which the deployment tool is
running, the coordinator might have to delegate the build
to a machine capable of building the service for the tar-
get platform (e.g. an i686-linux machine cannot compile a
component for an i686-freebsd system). When there is no
dedicated build machine available for this job, Disnix also
provides the option to perform the build on the selected
target machine in the network. Disnix performs actions
on remote machines (such as transferring, building and
activating) through a web service, the DisnixService, that
must be installed on every target machine.

B. Building a service

Since Disnix is built around Nix, we need to specify for
every component including its dependencies how it should
be derived from source code.

Figure 2 shows a Nix expression for the MELogService
component of SDS2. The MELogService is an Apache
Tomcat web application containing a web service archive
built from Java source code, providing an interface to log
records stored in a MySQL database, which can reside on a

{system, distribution}:

rec |

MELogService = import ../WebServices/MELogService { [9]
inherit javaenv config SDS2Util;

Vi

config = import ../libraries/config {
inherit javaenv distribution;

Vi

javaenv = import ../tools/javaenv {
inherit stdenv jdk;

}i

jdk = ... { inherit stdenv; ... }
stdenv = ... { inherit system; ... } @
mobileeventlogs = ...

SDS2Util = ...

Figure 3. all-packages.nix: Intra-dependency composition

different machine. In order to allow the service to connect
to the database server, the expression also generates a so-
called context XML file that specifies connection settings of
the MySQL database.

In order to build and configure this service, we need to
derive the service from its source code, intra-dependencies
(libraries, compilers) and inter-dependencies (the database
backend). To specify what the intra-dependencies of a ser-
vice are, we define the build expression in Figure 2 as
two nested functions. The outer function [i] takes intra-
dependencies as input parameters. In this case these are
the packages config and SDS2Util, which are libraries of
the SDS2 platform, and javaenv, which is used to compile
and package Java source code. The inner function [2] takes
the inter-dependencies as input parameters. Here, the service
passed through the argument mobileeventlogs represents the
MySQL database where data is stored.

The remainder of the expression consists of the function
call [3] that composes an Apache Tomcat web application
from a web service archive and a context XML file. The
context XML file is generated by using the target property
from the inter-dependency argument mobileeventlogs that
provides the connection settings of the database server. The
web service archive is derived in [5] by a function that
compiles and packages the Java source code using the source
code defined in [g] and libraries [7], which are provided by the
intra-dependency arguments as inputs. By using a different
build function other types of services can be built using the
same dependency scheme.

Although this expression specifies how to derive the
component from source code, we still cannot build this
service directly. We have to compose the component by
calling this expression with the expected function arguments.
First we need to compose the service locally, by calling the
function with the needed intra-dependency arguments; later,
we provide the inter-dependency arguments as well.

Figure 3 shows a partial Nix expression that composes

{distribution, system}: @

let pkgs = import ../top-level/all-packages.nix { [13]
inherit distribution system;
}; in
{
mobileeventlogs = {
name = "mobileeventlogs";
pkg = pkgs.mobileeventlogs;
type = "mysgl-database";
}i
MELogService = {
name = "MELogService"; [15]
pkg = pkgs.MELogService;
dependsOn = {
inherit mobileeventlogs;
}i
type = "tomcat-webapplication";
}i
SDS2AssetTracker = {
name = "SDS2AssetTracker";
pkg = pkgs.SDS2AssetTracker;
dependsOn = {
inherit MELogService ...;
}i
type = "tomcat-webapplication";
bi

Figure 4. A partial services model for SDS2

the intra-dependencies of the SDS2 services. In [g] the
MELogService expression in Figure 2 is imported and called
with the right arguments (all the intra-dependencies of the
MELogService, such as SDS2Util, are composed in this
expression as well). The distribution parameter provided in
determines the distribution of services to machines in
the network. It is used to compose the config component
in [{0], which is a registry library providing the locations
of every web service. The system parameter defined in
specifies the platform for which the service has to be built
using identifiers such as i686-linux and x86_64-freebsd. The
system parameter is passed to [i1], which is a component used
virtually by every other component; e.g. passing i686-linux
as system argument to stdenv will build every component
for that type of platform.

C. Services model

Apart from specifying how each individual service should
be derived from source code, intra-dependencies and inter-
dependencies, we must also model what services constitute
a system, how they are connected to each other (inter-
dependency relationships) and how they can be activated or
deactivated. This is captured in a services model, illustrated
in Figure 4.

The expression is an attribute set in which every attribute
represents a service with its properties, such as [1a] defining
the MELogService. [i5] specifies an identifier for MELogSer-
vice. denotes the intra-dependency composition to be
used, imported in and defined in Figure 3. refers to
an attribute set in which each attribute points to a service in

testl = {

hostname = "testl.net";

tomcatPort = 8080;

mysqglUser = "user";

mysglPassword = "secret";

mysglPort = 3306;

targetEPR = http://testl.net/.../DisnixService;

system = "i686-1linux";
i
test2 = {

hostname = "test2.net";

tomcatPort = 8080;

targetEPR = http://test2.net/.../DisnixService;
system = "x86_64-1linux";
bi

Figure 5. Infrastructure model for SDS2

the services model, each representing an inter-dependency
of the MELogService. The attribute set provides a flexible
way of composing services together, e.g. mobileeventlogs =
othermobileeventlogs allows the user to compose a different
inter-dependency relationship of the MELogService. [18] spec-
ifies what module has to be used for activation/deactivation
of the service. Examples of types are: tomcat-webapplication,
axis2-webservice, process and mysqgl-database. The Disnix
interface will invoke the appropriate activation module on
the target platform, e.g. the tomcat-webapplication will acti-
vate the given service in an Apache Tomcat web application
container.

At [12] the distribution and system arguments are specified.
The former argument is the distribution model and the
latter agument is the system architecture of a target in the
infrastructure model. These arguments are passed in [13] to
the composition expression.

D. Infrastructure model

In order to deploy services in the network, we also have
to specify what machines are available in the network, how
they can be reached to perform deployment steps remotely,
what architecture they have (so that services can built for
that type of platform) and other relevant capabilities, such as
authentication credentials and port numbers so that services
can be activated or deactivated. This information is captured
in the infrastructure model, illustrated in Figure 5.

The infrastructure model is an attribute set in which each
attribute captures a system in the network with its relevant
properties/capabilities, such as specifying a machine
called test1. Some attributes have reserved use such as
specifying the URL of the DisnixService and [21] specifying
the system architecture so that services are built for that
particular platform. The other attributes in [19] specify other
properties such as how the MySQL server can be reached,
required for deploying a database.

{infrastructure}: @

{
mobileeventlogs = [infrastructure.testl]; @]
MELogService = [infrastructure.test2 1];
SDS2AssetTracker = [

infrastructure.testl infrastructure.test2

1; [24]

Figure 6. Partial distribution model for SDS2

E. Distribution model

Finally, we have to specify to which machines in the
network we want to distribute a specific service. This is
defined in the distribution model illustrated in Figure 6.

The distribution model is an attribute set in which every
attribute name represents a service in the service model
and the attribute value is a list of machines from the
infrastructure model, which is provided through a function
argument in [22]. For instance, at [23] we specify that the
mobileeventlogs database should be built, distributed and
activated on machine test1. By specifying more machines
in a list it is possible to deploy multiple redundant instances
of the same service, for tasks such as load balancing. An
example of this is in which the SDS2AssetTracker is
deployed on both test1 and test2.

IV. IMPLEMENTATION

In order to deploy a system from the models we described
earlier, we need to build all the services that are mapped to a
target machine in the distribution model for the right target,
then transfer the services (and all its intra-dependencies) to
the target machines and finally activate the services (and
eventually deactivate obsolete services from the previous
configuration). In this section we will explain how this
process is implemented.

A. Building the services

The result of a build action defined in the Nix expressions
are stored in a so called Nix store, a special directory in the
file system, usually /nix/store. Each entry in the directory
are components. A notable feature of the Nix store are
the component names. The first part of the file name, e.g.
y2ssvzcd86... is a SHA256 cryptographic hash of all inputs
passed to the function that builds the component. Each
component is stored in isolation, that is because there are
no files that share the same name in the store. An example
of a component in the Nix store is: /nix/store/y2ssvzcd86...-
SDS2EventGenerator.

Nix can detect runtime dependencies from a build process,
by scanning a component for the hash codes that uniquely
identify components in the Nix store. The ELF header of
the java executable contains a path to the standard C li-
brary which is: /nix/store/nqapgr5cyk...-glibc-2.9/lib/libc.so.6.

/nix/store
[— ngapqr5eyk...-glibc-2.9
L iib
L libc.s0.6
I— ccayqylscm...-jre-1.6.0_16
L bin
L java
— n7s283c5yg...-SDS2Util
share
L java
L spsautiljar
L y2ssvzcd86...-SDS2EventGenerator

bin
I: L sps2EventGenerator

share
L java
L SDS2EventGenerator.jar

Figure 7. Runtime dependencies of the SDS2EventGenerator

For instance we know by scanning that a specific glibc
component in the Nix store is a runtime dependency of
java. Figure 7 shows the runtime dependencies of the
SDS2EventGenerator.

Nix guarantees complete deployment, which requires that
there are no missing dependencies. Thus we need to deploy
closures of components under the “depends on” relation.
If we want to deploy component X which depends on
component Y, we also have to deploy component Y before
we deploy component X. If component Y has dependencies
we also have to deploy its dependencies first and so on.

B. Transferring closures

The second step is transferring the intra-dependency clo-
sures of the services to every machine in the distribution
model. Since Nix has a purely functional deployment model
we know that the build result of a component is always
the same if the input parameters are the same, regardless
on what machine the build is performed. By using this
approach we can compare the store paths of the closure
of the component to be transferred with the store paths
present on the target system. Only the missing paths need
to be transferred, making the transfer phase as efficient as
possible.

C. Transition phase

The third step is the transition phase in which new
services are activated and obsolete services are deactivated.
During this phase the connection to the system can be
blocked/queued so that end-users cannot observe that the
system is changing.

First, all the service distributions in the old configuration
are marked as active and all the services distributions in
the new configuration not defined in the old configuration
as inactive (if no previous configuration exists all service
distributions will be marked as inactive).

In the next step all the service distributions that are no
longer in the new configuration are deactivated, including
all interdependent services to prevent breaking an inter-
dependency relationship. If the deactivation of a particular
service fails, the services previously deactivated are activated
again. Finally, it will recursively activate all the service
distributions (and its inter-dependencies) defined in the new
configuration that are marked inactive. If a failure occurs the
newly activated services are deactivated and the deactivated
services are activated again.

Using this method to upgrade a distributed system gives
us two benefits. By traversing the inter-dependency graph of
a service we always have the inter-dependencies of a service
activated before activating the service itself. This gives us
no failing services due to breaking inter-dependency rela-
tionships. Moreover, this method only deactivates obsolete
services and activates new services, which is more efficient
that deploying a new configuration entirely from scratch.

D. Service activation and deactivation

Since services can have basically any form, Disnix pro-
vides activation types which can be connected to activation
modules. In essence, an activation module is a process that
takes 2 arguments, in which the former argument is either
‘activate’ or ‘deactivate’ and the latter is the Nix store path
of the service that has to be activated/deactivated.

Moreover, an activation module often needs to know
certain properties of the system, such as authentication
credentials for a database or a port number on which a
certain daemon is running. Therefore, Disnix passes all the
properties defined in the infrastructure model as environment
variables, so that it can be used by the activation module.

The activation module for an Apache Tomcat web appli-
cation on Linux creates a symlink of the WAR file into the
webapps/ directory of Tomcat, automatically triggering a hot
deploy operation. On deactivation the symlink is removed,
triggering the hot undeploy operation.

Similar activation modules are developed for other types,
such as axis2-webservice which will hot deploy a web
service in an Axis2 container, mysql-database which will
initialise a MySQL database schema on startup or process
which will start and kill a generic process. A developer or
system administrator can also implement a custom activation
module used for other types of services or use the wrapper
activation module, which will invoke a wrapper process with
a standard interface included in the service. (Observe that
different platforms may require a different implementation
of an activation module, e.g. activating a web service on Mi-
crosoft Windows consists of different steps to be performed
than on UNIX based systems).

E. Atomic upgrading

To make the actual deployment process atomic we
mapped concepts of the two-phase commit [11] algorithm

onto Nix primitives. The first phase of the algorithm is
the distribution or commit-request phase. In this phase all
the nodes execute the transaction until the point that the
modifications should be commited. It consists of building the
services from source code and transfering the services (and
intra-dependencies) to the target machines in the network.

If all steps in the commit-request phase succeed then the
commit or transition phase will start. In this phase all the
obsolete services from the previous deployment state are
deactivated and the services in the new distribution model
are activated. During this phase access to the system can be
blocked/queued so that users are not able to observe that the
system is changing. After the transition phase is finished, the
lock is released and the services and the new configuration
are registered as used. Moreover, the deployment configura-
tion is stored on the coordinator machine, so that it has a
reference to the configuration for future upgrades.

If the commit-request phase fails then there is not much
to be done. No files are overwritten due to the concept of
unique filenames in the Nix store. The services that are
transferred to the target computers are not activated yet and
thus do not affect the running system. If the commit-phase
fails, we roll back the newly activated services and reactivate
the deactivated services from the old configuration.

V. RESULTS

We modeled all the SDS2 components (databases, web
services, batch processes and web application front-ends)
to automatically deploy the platform in a small network
of consisting of four 64-bit and 32-bit Linux machines.
The initial deployment process (building the source code
of all SDS2 components, transfering components and its
dependencies and activating the services) took about 15
minutes. At Philips, this previously took hours in the semi-
manual deployment process on a single machine. (Manually
deploying an additional machine took almost the same
amount of time and was usually too much effort.)

We were also able to upgrade (i.e. replacing and moving
services) a running SDS2 system and to perform rollbacks.
In this process only the changed services were updated and
deactivated/activated in the right order, which only took a
couple of seconds in most cases. In all the scenarios we
tested no service ran into a consistent state due to breaking
inter-dependency connections. The only minor issue we ran
into was that during the upgrade phase, the web application
in the user’s browser (which is not under Disnix’ control)
was not refreshed, which may break certain features.

Although Disnix can activate databases, we currently
cannot migrate them to other machines dynamically. Disnix
activates a database by using a static representation (i.e.
dump) but is not able to capture and transfer the state of
a deployed database. This requires more investigation in
dealing with mutable state.

VI. RELATED WORK

A number of approaches to distributed software deploy-
ment limit themselves to specific types of components,
such as the BARK reconfiguration tool [2], which only
supports the software deployment life-cycle of EJBs and
supports atomic upgrading by changing the resource attached
to a JNDI identifier; and [3], which implements a custom
infrastructure on top of the JBoss application server to
automatically deploy Java EE components.

In [12] an embedded software architecture is described
that supports upgrading parts of the system as well as having
multiple versions of a component next to each other. A
disadvantage is that the underlying technology, such as the
infrastructure and run-time system cannot be upgraded and
that the deployment system depends on the technology used
to implement the system.

Other approaches use component models and language
extensions, such as [5] which proposes a conceptual com-
ponent framework for dynamic configuration of distributed
systems. In [6] the authors developed the GILGUL exten-
sion to the Java language for dynamic object replacement.
Using such approaches requires the developers or system
administrators to use a particular framework or language.

Approaches for specific environments also exist. GoDIET
[4] is a utility for deployment of the DIET grid computing
platform. It writes configuration files, stages the files to
remote resources, provides an appropriately ordered and
timed launch of components, and supports management and
tear-down of the distributed platform. In [13] the Globus
toolkit is described for performing 3 types of deployment
scenarios using predefined types of components composi-
tions in a grid computing environment. CODEWAN [14] is a
Java-based platform designed for deployment of component-
based applications in ad-hoc networks.

Finally, several generic approaches have been developed.
The Software Dock is a distributed, agent-based deployment
framework to support ongoing cooperation and negotiation
among software producers and consumers [15]. It empha-
sises the delivery process of components from producer to
consumer site, rather than complete deployment. In [16]
a dependency-agnostic upgrade concept with running dis-
tributed systems is described in which the old and new con-
figurations of a distributed system are deployed next to each
other in isolated runtime environments. Separate middleware
forwards requests to the new configuration at a certain point
in time. TACOMA [17] uses agents to perform deployment
steps and is built around RPM. This approach has limitations
such as the inability to perform atomic upgrades or safely
install multiple variants of components next to each other.
Disnix overcomes these limitations. An earlier version of
Disnix was described in [8], which only supported web
services, did not support heterogeneous environments and
used an implicit activation model.

In practice many software deployment processes are par-
tially automated by manually composing several utilities
together in scripts and use those to perform tasks. While this
gives users some kind of specification and reproducibility,
it cannot ensure properties such as correct deployment.

VII. CONCLUSION

We have shown Disnix, a distributed deployment exten-
sion to Nix, used to automatically deploy, upgrade and roll
back a service-oriented system such as SDS2 consisting
of components of various types in a network of machines
running on different platforms. Because Disnix is extensible,
takes inter-dependencies into account, and builds on the
purely functional properties of Nix, we can safely upgrade
only necessary parts, and deactivate and activate the required
services of a system, making the upgrade process efficient
and reliable. Although we deployed SDS2 in a small het-
erogeneous network, we need to run experiments in larger
networks and more research is needed to deal with mutable
state and with upgrading web applications.

Acknowledgements: This research is supported by
NWO-JACQUARD project 638.001.208, PDS: Pull Deploy-
ment of Services. We wish to thank the contributors and
developers of NixOS and SDS2, in particular Merijn de
Jonge, who also contributed significantly to the development
of Disnix.

REFERENCES

[1] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,
“Service-oriented computing: State of the art and research
challenges,” Computer, vol. 40, pp. 38—45, 2007.

[2] M. J. Rutherford, K. M. Anderson, A. Carzaniga, D. He-
imbigner, and A. L. Wolf, “Reconfiguration in the Enter-
prise JavaBean Component Model,” in CD ’02: Proc. of
the IFIP/ACM Working Conf. on Component Deployment.
Springer-Verlag, 2002, pp. 67-81.

[3] A. Akkerman, A. Totok, and V. Karamcheti, “Infrastructure
for Automatic Dynamic Deployment of J2EE Applications
in Distributed Environments,” in CD ’05: Proc. of the 3rd
Working Conf. on Component Deployment. Springer-Verlag,
2005, pp. 17-32.

[4] E. Caron, P. K. Chouhan, and H. Dail, “GoDIET: A
Deployment Tool for Distributed Middleware on Grid
5000,” Laboratoire de I'Informatique du Parallélisme (LIP),
Tech. Rep. RR-5886, Apr. 2006. [Online]. Available:
http://www.inria.fr/rrrt/rr-5886.html

[5] X. Chen and M. Simons, “A component framework for
dynamic reconfiguration of distributed systems,” in CD ’02:
Proc. of the IFIP/ACM Working Conf. on Component Deploy-
ment. Springer-Verlag, 2002, pp. 82-96.

[6] P. Costanza, “Dynamic Replacement of Active Objects in
the Gilgul Programming Language,” in CD °'02: Proc. of
the IFIP/ACM Working Conf. on Component Deployment.
Springer-Verlag, 2002, pp. 125-140.

(71

(8]

(9]

[10]

[11]

[12]

[13]

(14]

[15]

[16]

(7]

M. de Jonge, W. van der Linden, and R. Willems, “eSer-
vices for Hospital Equipment,” in 5th Intl. Conf. on Service-
Oriented Computing (ICSOC 2007), B. Kriamer, K.-J. Lin,
and P. Narasimhan, Eds., Sep. 2007, pp. 391 — 397.

S. van der Burg, E. Dolstra, and M. de Jonge, “Atomic
upgrading of distributed systems,” in First ACM Workshop on
Hot Topics in Software Upgrades (HotSWUp), T. Dumitras,
D. Dig, and I. Neamtiu, Eds. ACM, Oct. 2008.

E. Dolstra, E. Visser, and M. de Jonge, “Imposing a memory
management discipline on software deployment,” in Proc.
26th Intl. Conf. on Software Engineering (ICSE 2004). 1EEE
Computer Society, May 2004, pp. 583-592.

E. Dolstra, “The purely functional software deployment
model,” Ph.D. dissertation, Faculty of Science, Utrecht Uni-
versity, The Netherlands, Jan. 2006.

D. Skeen and M. Stonebraker, “A formal model of crash
recovery in a distributed system,” in Concurrency control and
reliability in distributed systems. New York, NY, USA: Van
Nostrand Reinhold Co., 1987, pp. 295-317.

M. Mikic-Rakic and N. Medvidovic, “Architecture-level sup-
port for software component deployment in resource con-
strained environments,” in CD ’02: Proc. of the IFIP/ACM
Working Conf. on Component Deployment. Springer-Verlag,
2002, pp. 31-50.

G. v. Laszewski, E. Blau, M. Bletzinger, J. Gawor, P. Lane,
S. Martin, and M. Russell, “Software, component, and service
deployment in computational grids,” in CD ’02: Proc. of
the IFIP/ACM Working Conf. on Component Deployment.
Springer-Verlag, 2002, pp. 244-256.

H. Roussain and F. Guidec, “Cooperative component-based
software deployment in wireless ad hoc networks,” in CD ’05:
Proc. of the 3rd Working Conf. on Component Deployment.
Springer-Verlag, 2005, pp. 1-15.

R. S. Hall, D. Heimbigner, and A. L. Wolf, “A cooperative
approach to support software deployment using the software
dock,” in ICSE ’99: Proc. of the 21st Intl. Conf. on Software
Engineering. New York, NY, USA: ACM, 1999, pp. 174-
183.

T. Dumitras, J. Tan, Z. Gho, and P. Narasimhan, “No more
HotDependencies: toward dependency-agnostic online up-
grades in distributed systems,” in HotDep’07: Proc. of the 3rd
workshop on Hot Topics in System Dependability. Berkeley,
CA, USA: USENIX Association, 2007, p. 14.

N. P. Sudmann and D. Johansen, “Software deployment using
mobile agents,” in CD ’02: Proc. of the IFIP/ACM Working
Conf. on Component Deployment. Springer-Verlag, 2002,
pp. 97-107.

