
An Analysis of the ‘Inconclusive’ Change Report Category in OSS Assisted
by a Program Slicing Metric

S. Counsell, T. Hall and E. Nasseri D. Bowes
Department of Computing Dept. of Computer Science

Brunel University, Uxbridge, UK University of Hertfordshire, Hatfield, UK
steve.counsell@brunel.ac.uk d.h.bowes@herts.ac.uk

Abstract

In this paper, we investigate the Barcode open-
source system (OSS) using one of Weiser’s original
slice-based metrics (Tightness) as a basis. In previous
work, low numerical values of this slice-based metric
were found to indicate fault-free (as opposed to fault-
prone) functions. In the same work, we deliberately
excluded from our analysis a category comprising 221
of the 775 observations representing ‘inconclusive’ log
reports extracted from the OSS change logs. These
represented OSS change log descriptions where it was
not entirely clear whether a fault had occurred or not
in a function and, for that reason, could not
reasonably be incorporated into our analysis. In this
paper we present a methodology through which we can
draw conclusions about that category of report.

1. Introduction

The area of program slicing has developed into a
software engineering topic spawning a range of
research studies in a number of disciplines [4, 5, 6, 14,
15, 16, 21]. Program slicing has also been used as a
basis for measuring software cohesion and a notable set
of slice-based metrics for cohesion were first proposed
by Weiser in [20]. In previous work by the authors [7],
we explored whether two slice-based metrics
(Tightness and Overlap [20]) could tell us anything
about the propensity of functions to be fault-prone or
not. The Tightness metric showed some promise in its
ability to discriminate between fault-free and fault-
prone functions; we analyzed multiple versions of the
Barcode open-source system (OSS) on the basis of
those two metrics and found that low values of the
Tightness metric were indicative of fault-free functions.
In the same study however, we were obliged to omit
221 of the 775 reports manually extracted from
Barcode logs on the basis that they were deemed
‘inconclusive’. In other words, they suggested that a

fault may have occurred in the function’s code, but we
could not say with any certainty that this was actually
the case. In this paper, we provide an analysis of the
‘inconclusive’ category and pose the question: can
statistical analysis and the earlier finding related to
Tightness help us assess whether this category was
more indicative of fault-prone rather than fault-free
functions?

2. Preliminaries
2.1. Metric definition

The metric that we explore in this paper
(Tightness) was originally proposed by Weiser [20]
and in this paper we use the same formal definition of
the metric. Before defining that metric, and in common
with our earlier work [7], we first describe the
necessary formal underpinnings of a slice’s
components proposed by Ott and Thuss [17, 18] (and
which we adopt in this paper). We denote a set of
variables used by a function K as VK and Vz as the
subset of VK representing output (return), input, global
and printf variables (i.e. variables used in printf
statements. K represents a program ‘function’, defined
as a unit of code under consideration. We further note
that in the OO paradigm, this would equate to a class,
the level at which OO cohesion metrics have tended to
be applied in past studies [1, 8, 9, 11]. We denote a
slice SLi as that obtained for vi �Vz and SLint as the
intersection of SLi over all vi � Vz.

Tightness(K) =
)(
|| int

Klength
SL

Tightness measures the extent of interaction between
the slices of a function.

2010 36th EUROMICRO Conference on Software Engineering and Advanced Applications

978-0-7695-4170-9/10 $26.00 © 2010 IEEE

DOI 10.1109/SEAA.2010.17

283

2.2. Metric/fault extraction

The CodeSurfer tool [10] was used to extract the
Tightness metric from multiple versions of Barcode, an
OSS written in C for processing barcode data. Nineteen
versions of Barcode were studied as part of our
analysis. Fault data was extracted manually using the
on-line report logs of the system by two researchers.
Henceforward, we describe functions that contain at
least one fault in any single version as ‘fault-prone’ and
those that contained zero faults (in any single version
up until the current date) as ‘fault-free’. Initially, and as
reported in [7], the dataset was partitioned into just
these two categories. However, in that previous work,
221 of the 775 functions had to be classed as
‘inconclusive’.

3. Tightness metric

The focus of the paper is to explore one key
research question, based on the three categories
extracted from Barcode: Do the characteristics of the
inconclusive category for the Tightness metric have a
greater similarity with fault-prone or fault-free
functions (or neither)? In the previous study [7], low
values of Tightness were found to be indicative of
fault-free functions. Preliminary scrutiny of the
inconclusive data revealed a disproportionately large
number of high Tightness values in that category. On
that basis, there is reason to suspect that the
inconclusive category tends more towards fault-prone
functions. In this paper, we explore that possibility
further.

3.1. Summary data

Table 1 contains the summary data (number of
functions (N) in each category, mean, maximum,
minimum, standard deviation (SD) and median) for the
Tightness metric for all functions in the three
categories (fault-prone, fault-free and inconclusive).

Table 1. Summary data for Tightness

Tightness N Mean Max Min SD Med.
Fault-prone 372 0.38 1.00 0 0.37 0.28
Fault-free 150 0.32 0.99 0 0.32 0.21
Inconclusive 221 0.36 0.99 0.02 0.28 0.33

A noticeable trend from Table 1 is the relative
closeness of the inconclusive values to the fault-prone
values. The mean for inconclusive values is 0.36,
which is closer to that of the mean for the set of fault-
prone functions by 0.02. The most revealing statistic is
that for the median for inconclusive values (it is 0.12
above that of fault-free functions, but only 0.05 above
that of the fault-prone function values). Tentatively, it
would seem that values in the inconclusive category are
more similar to fault-prone than fault-free functions.

3.2. Inconclusive values and Tightness

Figure 1 shows the values of the Tightness metric
for inconclusive functions (in the form of a scatter
plot). The relatively fewer values in the range 0-6 –
1.00 compared with those in the lower ranges (0-0.599)
is evident from the figure. Small ‘pockets’ of values are
also noticeable in the 0.2-0.4 range. Table 2 shows the
breakdown of the frequencies and the percentage of
values in each category.

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250

Function

Ti
gh
tn
es
s
va
lu
e

Figure 1. Tightness values (inconclusive
functions)

Table 2 shows that the majority of Tightness values are
in the lower range of the Tightness metric. In fact,
inconclusive values tend to occur in the range 0.2-0.4.
This is where the similarity between fault-prone and
inconclusive functions is found to be strongest (median
values in Table 1 are 0.28 and 0.33, respectively). The
low number of overall values in the range 0.60-1.00 in
the three categories is reflective of the fact that in most
industrial systems intersection of variable usage is
invariably small. Barcode is no exception in this sense.
By definition, if the SLint value is low, then the
Tightness metric value will be low also.

284

Table 2. Frequency of Tightness values (inconclusive)

Range/Category Total 0 – 0.199 0.2– 0.399 0.4– 0.599 0.6-0.799 0.8-1.00

Fault-prone 372 172 (46.24%) 65 (17.47%) 55 (14.78%) 26 (6.99%) 54 (14.52%)

Fault-free 150 63 (42.00%) 24 (16.0%) 19 (12.67%) 2 (1.33%) 42 (28.0%)

Inconclusive 221 65 (29.41%) 69 (31.22%) 52 (23.53%) 11 (4.98%) 24 (10.86%)

In the spirit of the discussion in the previous section,
sound software engineering practice for achieving high
cohesion and low fault-proneness would suggest a high
intersection of variables (i.e., all variables use each
other frequently). This is certainly in keeping with the
contemporary view of high cohesion according to both
the LCOM and CAMC metrics [1, 9, 12]. It is of note
therefore that the highest percentage of values
reflecting this characteristic of functions (0.8-1.00
category from Table 2) does actually belong to the
fault-free functions (42 functions, representing 28.0%).
That said, we believe that there is a mismatch between
theory and practice. We suggest that what the
contemporary view of cohesion does not take into
consideration is that high interaction of variables which
contributes positively to the ideal cohesion value in the
cases of LCOM and CAMC, also increases the
complexity of a function, the need to untangle the logic
of such a function and hence increase the potential for
faults. High cohesion in a function according to current
thinking and definitions does not necessarily mean that
the function will be less liable to faults. It might
actually mean the reverse.

3.3 Fault-prone versus fault-free

Figure 2 shows the relationship between fault-free
and inconclusive functions and shows very little
relationship between the two sets of Tightness values.
The R2 (Pearson’s parametric coefficient) value is just
0.02 (rounded).

Figure 3 shows the scatter plot for the fault-prone
functions and shows a stronger relationship between
the inconclusive and fault-free set of functions. The
Pearson’s R2 value in this case is 0.14, significant at the
1% level (two tailed test) [19]. The result tentatively
supports the view that the set of inconclusive functions
has more similarity with fault-prone functions than it
does with fault-free functions.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

Tightness (fault-free)

Ti
gh
tn
es
s
(in
co
nc
lu
si
ve
)

Figure 2. Inconclusive versus fault-free
(Tightness)

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

Tightness (fault-prone)

Ti
gh
tn
es
s
(in
co
nc
lu
si
ve
)

Figure 3. Inconclusive vs. fault-prone
(Tightness)

3.4. Statistical support

To support our analysis, we correlated the category
of inconclusive values against fault-prone and then
fault-free functions using Spearman’s and Kendall’s,
non-parametric, correlation coefficients. The
correlation between fault-prone and Spearman’s rank
correlation coefficient was 0.22 (significant at the 1%
level); Kendall’s coefficient was 0.17, also significant
at the 1% level. On the other hand, for the correlation
between fault-free and inconclusive values, Spearman’s
coefficient was only -0.03 and Kendall’s -0.03, neither
of which were significant. Correlation therefore

285

supports the view that the inconclusive category is
more strongly related to the fault-prone category and
what is more correlated significantly.

4. Conclusions and future work

The relevance to a developer of the research
presented is that, based on the evidence, they should
minimise the number of variables (but more
importantly the interactions) in a function so as to
obtain simple functions; by doing that, (according to
our analysis) we believe this will lead to low values of
the Tightness metric and less likelihood of a fault in
that function. They should accompany as few variables
as possible with keeping their functions small in size.

Future work will focus on extending the empirical
study to other systems and to compare the results with
other cohesion metrics for which have the data (e.g.,
the NHD of Counsell et al. [11] and the remaining
metrics from the set originally proposed by Weiser
[20]). Finally, it would be interesting to see how the
values of the Tightness metric change in the presence
of an active re-engineering or refactoring strategy [13].

Acknowledgements
The research in this paper was kindly supported by a
grant from the UK Engineering and Physical Sciences
Research Council (EPSRC) (EP/E055141/1).

References
[1] Bansiya, J., Etzkorn, L., Davis, C., and Li, W. A class
cohesion metric for object-oriented designs. Journal of
Object-Oriented Programming 11(8), pp. 47-52, 1999.
[2] Bieman, J., and Ott, L. Measuring functional cohesion.
IEEE Trans. on Software Eng. 20, 8 (1994), pp. 644-657.
[3] Binkley, D. Gold, N. and Harman, M. An empirical study
of static program slice size. ACM Trans. Software
Engineering Methodology (TOSEM) 16(2):1-32, 2007.
[4] Binkley, D., Harman, M., and Krinke, J., Empirical study
of optimization techniques for massive slicing. ACM Trans.
Program. Lang. Syst. 30(1): (2007)
[5] Binkley D and Harman M., Locating dependence clusters
and dependence pollution, IEEE International Conf. on Soft.
Maintenance, Budapest, Sept. 2005 pages 177-186.
[6] Binkley, D., Harman, M., Raszewski, I., and Smith, C.
An empirical study of amorphous slicing as a program
comprehension tool. Proc. of the Intl. Workshop on Program
Comprehension, Limerick, Ireland, pp. 161-170, 2000.

[7] Black, S. Counsell, S, Hall, T, Bowes, D, Fault Analysis
in OSS Based on Program Slicing Metrics. EUROMICRO-
SEAA 2009, pages 3-10, Patras, Greece.
[8] Briand, L., Daly, J., and Wust, J. A unified framework for
cohesion measurement in object-oriented systems. Empirical
Software Engineering Journal 3(1), 65-117, 1998.
[9] Chidamber, S., and Kemerer, C. A metrics suite for object
oriented design. IEEE Trans. on Software Engineering 20(6)
(1994), 467-493.
[10] www.grammatech.com/products/codesurfer/
[11] Counsell, S., Swift. S. and Crampton J. The
Interpretation and Utility of Three Cohesion Metrics for
Object-Oriented Design. ACM Transactions on Software
Engineering and Methodology, 15(2):123 – 149, 2006.
[12] Counsell, S., Bowes D., and Hall T., Evolutionary
Cohesion Metrics: The Empirical Contradiction. Proceedings
of The Psychology of Programming Interest Group (PPIG),
Open University, January 2009.
[13] Fowler, M. Refactoring (Improving the Design of
Existing Code). Addison Wesley, 1999.
[14] Horwitz, S, Reps, T. and Binkley, D., Interprocedural
Slicing Using Dependence Graphs. ACM Transactions on
Programming Language and Systems, 12(1): 26-60, 1990.
[15] Meyers, T and Binkley, D. Slice-based Cohesion
Metrics and Software Intervention, Proc. Working Conf. on
Reverse Engineering, Delft, Netherlands, pages 256-265.
[16] Meyers, T. and Binkley, D. An empirical study of slice-
based cohesion and coupling metrics. ACM Trans. on
Software Engineering and Methodology, 17(1), 2007.
[17] Ott L, Thuss J., (1993) Slice based metrics for
estimating cohesion; Proc Software Metrics, 71–81,
Baltimore, US.
[18] Ott L. and Thuss, J., The relationship between slices and
module cohesion. Proceedings of International Conference
on Software Engineering, Pittsburgh, US, 1989, pages 198-
204.
[19] Snedecor, G., and Cochran, W. Statistical Methods, 8th

ed. Iowa State University Press, Ames, Iowa, 1989.
[20] Weiser, M. Program slicing. Proceedings Int. Conf on
Soft Eng., San Diego, 1981. IEEE Press, pp. 439-449.
[21] Weiser M (1982) Programmers use slices when
debugging, Comm. of the ACM, 25(7):446-452, July 1982

286

