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Abstract—Extracting keywords from requirements has been
done for various modelling purposes, e.g. for defining object-
oriented analysis and design models, but it has not been done for
mapping requirements directly to (executable) component-based
systems. In this paper we argue that the latter is possible if the
underlying component model provides suitable encapsulation and
hence separation of key elements of component-based systems.
We show how we can extract keywords that correspond to
elements of a component model that we have defined.

I. INTRODUCTION

In software engineering, the development process starts with
requirements gathering (from the customer). The next step
of the process is the analysis of the requirements (in natural
language). This is followed by a design of the system, based on
the analysis. The design is then implemented and tested (and
maintained and so on). The traditional example of this process
is the Waterfall Model [1], where the process is sequential,
and a system design consists of modules that interact with
one another. A modern example is the Unified Development
Process [2], where the process is iterative, and a system design
consists of classes that interact with one another (represented
by UML class and interaction diagrams).

For component-based systems, however, we believe that we
do not have to use the same development process of going
from requirements to their analysis to the final system. The
main reason is that for component-based development, we
should use a component model [23] for defining systems, and a
good component model should allow us to define component-
based systems with minimal or no coupling between the com-
ponents, but maximal cohesion within individual components
– definitely less coupling and more cohesion than modular or
object-oriented systems. This means that it should be easier to
identify elements of a component-based system individually
and separately from the requirements, so much so that we can
directly map requirements to elements of a component-based
system; that is we can go from requirements directly to system
design.

In [3], we demonstrated how this process can be carried out,
but we only briefly outlined the main elements of the process.
A key step of this process is the extraction of keywords (from
natural language requirements) that correspond to elements of
the chosen component model. Once such elements have been
identified, creating a component-based system only requires
piecing them together according to the component model.

This paper focuses on the process of extracting elements of
component-based systems from natural language requirements.
This process is made feasible by a key property of our
chosen component model, namely encapsulation, which means
components have no mutual dependencies.

II. RELATED WORK

Extracting keywords from natural language requirements is
not a new idea. Indeed it has been practised for a long time.
However, none of the existing techniques has been designed
or used for extracting keywords that correspond to elements
of component-based systems, i.e. systems defined using com-
ponent models. Rather, existing techniques have been used to
extract keywords that map to abstract concepts, intermediate
requirements models, object-oriented analysis models, and
even to skeleton programming language constructs.

[4], [5], [6], [7], [8], [9], [10], [11] extract keywords
from requirements and use them to construct object-oriented
analysis and design models (e.g. UML class diagrams and
object diagrams). [12] uses extracted keywords to define
structured models (e.g. data flow diagrams). [13], [14], [15],
[16] use extracted keywords to construct database models (e.g.
Entity Relationship Diagram, Extended Entity Relationship).
All these models are intermediate models because they are
used as input to a process of refinement into more detailed
designs which eventually lead to a final system design.

[17], [33] extracts keywords as candidates for object-
oriented concepts, and uses these concepts in the requirements
elicitation process, rather than for building the final system.
[18] extracts keywords which correspond to data types, oper-
ators, and control structures; and uses these to derive pseudo
codes.

In short, as far as we know, there is no related work that
directly maps natural language requirements to component-
based systems. The work that is the most closely related to
our work is that of Behaviour Trees [19], [20], [21], [22],
but they map requirements to behaviour trees, not directly to
component-based systems.

III. COMPONENT MODELS

A component model [23] defines components and their
composition. A good component model should enable us
to define component-based systems with minimal coupling
between components and maximal cohesion within individual
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components. Coupling results from external dependencies,
direct or indirect, between components, and is induced by the
composition mechanisms of a component model. For example,
in architecture description languages [24], components are
architectural units with ports, and are composed by port
connection. Such connections induce external dependencies
between components, albeit indirectly.

High cohesion in a component means altogether the sub-
components of the component do not have many external
dependencies. It is therefore also a consequence of the com-
position mechanisms of a component model. A composition
mechanism that allows the definition of a composite compo-
nent from sub-components will increase cohesion if it allows
the composite to have fewer external dependencies than its
sub-components.

We have defined a component model, called X-MAN, that
defines systems with no coupling at all. The complete absence
of coupling also means the components have maximum cohe-
sion.

A. The X-MAN Component Model
In our component model [26], [27], [28], we define: (i) com-

putation and (ii) control separately.1 Computation is defined
and encapsulated in components whilst control is defined and
encapsulated in composition connectors. Components do not
call one another; instead, composition connectors define and
coordinate all the control among components.

Fig. 1 shows the basic elements of our component model.
An atomic component (Fig. 1(a)) contains a computation

IA

A

(c)

IB

B

A composition

IU

UComputation

Control

(a) Atomic component Composition connector(b)

Figure 1: X-MAN component model.

unit (U), and an invocation connector (IU). A computation
unit provides methods or functions that can be invoked via
the invocation connector. When invoked, the computation unit
performs the computation entirely within itself, and is thus
encapsulated (i.e. ‘enclosed in a capsule’). As a result, an
atomic component encapsulates computation and has only a
provided interface (denoted by a lollipop) and no required in-
terface. Parameters for invocation are passed from composition
connectors via the invocation connector.

Components are composed by composition connectors
(Fig. 1(b)). A composition connector receives control and
returns control; it also defines a control structure that de-
termines the control flow between receiving and returning
control. A composition connector thus encapsulates control.
Our composition connectors define the usual control struc-
tures: sequencing and branching. For sequencing we have the
Sequencer and Pipe connectors;2 for branching we have the

1For simplicity, we assume data flows with control.
2Pipe passes results on, whereas Sequencer does not.

Selector connector (Fig. 2). In a composition (Fig. 1(c)), the
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Bank systemSequencer Selector Pipe
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Figure 2: Composition connectors.
composition connector coordinates control flow between the
sub-components. This is illustrated in Fig. 3 for the Sequencer
composition connector.

control flow

Figure 3: Hierarchical composition by Sequencer.
A simple example of a composition is the bank system

(Fig. 2) that composes an ATM with a bank consortium (BC)
by using a Pipe connector. Customer details and requests are
passed to ATM, which validates them and then pass them on
to BC.

Looping is not a composition connector since it only applies
to a single component. It is therefore an adaptor. A loop at
the top-most level of a system can be infinite, but elsewhere
it must be finite, in order that compositionality is preserved
throughout.

The result of a composition is another component with a
provided interface (Fig. 1(c) and the bank system in Fig. 2).
This means that composition in our model is hierarchical. This
is illustrated in Fig. 3 for the Sequencer. In each composition,
encapsulation of computation is preserved since components
do not call one another.

Components encapsulate their own data [29], but for lack
of space we will not discuss this.

To summarise, the key elements of our component model
are: (i) computation (computation units) (ii) control (compo-
sition connectors); and (iii) data. Computation units encapsu-
late computation; composition connectors encapsulate control;
components encapsulate their own data. Encapsulation of
control and computation (and data) allows us to separate these
elements. This makes it possible to identify these elements
individually and separately from raw requirements.

IV. EXTRACTING KEYWORDS FROM REQUIREMENTS

Now we explain how we take requirements in natural
language and extract keywords that correspond to the basic
elements of X-MAN as presented in the previous section. We
will use the requirements for a Trading System used in The
Common Component Modelling Example (COCOME)[30], a
reference example for component-based development, to illus-
trate our approach.The Trading System is used for handling
point-of-sales terminal (POST) transactions in a supermarket.
The system comprises nine main functions including: (1) Pro-
cess Sale, which handles Cash Desk operations; (2) Manage
Express Checkout, which deals with transaction modes, i.e.
normal and express; (3) Order Products, which allows the
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Store Manager to order products from suppliers; (4) Receive
Ordered Products, which allows the Store Manager to update
received orders; (5) Show Stock Reports, which permits the
Store Manager to view all available stock; (6) Show Delivery
Reports, which allows the Enterprise Manager to generate
reports; (7) Change Price, which permits the Store Manager to
update a product’s price; (8) Product Exchange (on low stock)
Among Stores, which handles product order between stores
and (9) Remove Incoming Status, which allows the Store
Manager to update the received product. Altogether, there are
47 requirements.

We will show all the keywords extracted for COCOME and
what elements of X-MAN they correspond to, as well as the
entire component-based system for COCOME. However, how
the extracted keywords are used to construct a component-
based system is beyond the scope of this paper. It is briefly
explained in [3].

The keyword extraction process is carried out for one re-
quirement at a time. This is possible because of encapsulation
in our component model. It is desirable because analysing one
requirement is more manageable than the usual practice of
analysing all requirements together. It is also desirable because
it scales to any number of requirements, and because it is
always a finitely terminating process.

For each requirement, the extraction process consists of the
following steps:

1) Run a POS Tagger on the requirement to extract verbs,
nouns, prepositions and conjunctions. A POS Tagger
is able to parse a piece of text and extract words
corresponding to parts of speech (POS) specified by
rules defined by the user.

2) Analyse the results of the POS Tagger category by
category; for each category, keywords are further anal-
ysed and filtered according to pre-defined heuristics (see
below).

3) Identify implicit computations and control. We will
discuss how we deal with such issue in the following
subsection.

We have implemented a simple tool for editing and
analysing the keywords extracted from requirements. Fig. 4
shows the screen shot of the Extractor tool. Initially, a require-
ment will be input to the tool. Each word will be syntactically
tagged using a pre-defined selected POS tagger set. In addition,
the tool includes built-in heuristics which allow filtering of
irrelevant words. For instance, articles (e.g. ‘the’, ‘a’, ‘an’)
will not be extracted. Moreover, a user can highlight words
according to verb, noun or control features (Fig. 4). The tool
thus helps by suggesting keywords that may denote control,
computation or data based on the POS tagger and some
predefined rules (see below). Nonetheless, the analyst needs
to manually filter and finalise all the selected keywords.

A. Identifying Keywords that Denote Computations

Based on the result from the POS tagging process, the next
step is to identify computations.A verb may express computation. However, not all verbs can
be considered as computations. By referring to the definition of

Figure 4: The Extractor tool.
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Figure 5: Extracting computations.

computations, we selectively identify candidates of computa-
tions based on: (1) verbs that belong to one of these categories:
Data Transformation, State or Event; (2) nouns that are
Action nouns; or (3) phrases that are Descriptive Expressions
or Predicates. The computation extraction category can be
summarised as in Fig. 5. We further discuss each element
of the computation category and demonstrate examples to
motivate and explain the identification process.

From the literature, we adopt existing categories of keyword
extraction that are relevant to computations and adapt them
according to what we want to extract. The first category is
Data Transformation verbs. A Data Transformation verb de-
notes function evaluation, which takes data as input, performs
some processes and outputs data, in order to achieve a specific
objective. A data transformation in general excludes manual
operations, i.e. physical human activities, for example arrive,
hand over, press, leave. Any database transaction can also
be considered as data transformation, e.g. search, update. We
adopt this category from Action [4], [31]. Let us look at some
examples.

Example 1: Consider the following COCOME requirement:
[UC7-R2] The Store Manager selects a product item

and changes its sale price.

Analysis. For this requirement, although we may find two
verbs i.e. select and change, we need to consider what kind
of function evaluation each of the verbs will correspond to. If
there is no processing involved, then we ignore the candidate
computation. In this case, we select change computation,
which belongs to the Data Transformation verb category. We
anticipate this computation should involve some processing of
the item’s price.

Example 2: Consider the following COCOME requirement:
[UC1-R7] The Printer writes the receipt and the

Cashier hands it out to the Customer.
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Analysis. In the second example, although we identify
writes and hands out verbs, we are not concerned with
verbs that are physically performed by human and which do
not involve any data transformation. Thus, we choose write
computation, which belongs to Data Transformation verb
category.

The second category in Fig. 5 is the State verb, which is
adopted from State [4], [31]. A State verb denotes computa-
tions that realise states, i.e. change the data that belongs to
components. Candidates of states can be identified from verbs
(that can be extracted by the POS tagger, i.e. past simple,
past participles, present participle) and adjectives [4] that may
imply system states.

Example 3: Consider the following COCOME requirement:
[UC2-1] The considered Cash Desk is in normal

mode and just finished a sale which matches the

condition of an express checkout sale.

Analysis. Here, normal is an adjective of Cash Desk that
means, normal is a data item that belongs to the Cash Desk.
We imply there must be computation that handle any data
transformation on this data.

The third category in Fig. 5 is the Event verb, which is
adopted from Emergence [31]; it denotes an event that can
trigger computations. Any triggering events must be associ-
ated with the corresponding notifications, i.e. the respective
computations. We can identify computations based on event
verb because any interaction between user and system or
hardware devices must be handled. Hence, whenever we
identify an event verb consisting of interactions between user
and the system, the system shall provide the corresponding
computations to handle these interactions.

Example 4: Consider the following COCOME requirement:
[UC2-2A] The Cashier presses the button Disable

Express Mode. The color of the Light Display is

changed from green into black color.

Analysis. The term presses is an event that triggers the
change of the Light Display from green into black. Here, we
address this Event verb as to denote computation to be dealt
i.e. change the light color.

The fourth category in Fig. 5 is the action noun, which
is adopted from Action [4]. An action noun can denote data
transformation provided by a component, e.g. authentication,
registration, initialisation.

Example 5: Consider the following COCOME requirement:
[UC1-R5b] In order to initiate card payment the

Cashier presses the button Card Payment at the

Cash Box.

i. The Cashier receives the credit card from the

Customer and pulls it through the Card Reader.

ii. The Customer enters his PIN using the keyboard

of the card reader and waits for validation.

Analysis. In this case, clearly pressing a button (i.e. an
Event verb) indicates interaction between user and the system

interface. Hence, in this requirement, when the system receives
notification that the card payment button is pressed, we need
to assign the corresponding computation that deals with such
interaction. For this requirement the relevant verbs are (1)
payment and (2) validation, which both come from Action
noun category; (3) enters,which is a Data transformation verb
(can be renamed into readPIN so that the computation is
modelled from the system’s perspective).

So far, we have used the first four categories in the table
in Fig. 5 to identify explicit computations, i.e. computations
that are explicitly identifiable from the requirements. These
computations correspond to keywords extracted by the POS
tagger. However, POS tagging alone cannot uncover all the
computations that we need. The main reason is that the
requirements may not specify explicitly some of the intended
computations. Furthermore, the functional requirements are
written from the user’s point-of-view and not from the de-
veloper’s point-of-view. Thus, apart from identifying explicit
computations, we adopt Descriptive Expression and Predicate
[18] to guide us in identifying implicit computations. These
form the last two categories in Fig. 5.

A descriptive expression phrase, e.g. “. . . the change
amount. . . ”, may denote a computation to calculate the change
amount. Abbott [18] specifies that a descriptive expression
describes a possible object whose identity (and possibly even
whose existence) must be determined by some computation.
Thus we use a descriptive expression to identify computations.

Example 6: Consider the following COCOME requirement:
[UC6-R2] A report which informs about the delivery

mean times is generated.

Analysis. The expression “. . . informs about the delivery
mean times . . . ” must somehow be determined by a compu-
tation to calculate the mean times of a delivery, hence we say
that the expression is associated with a calculate mean time
computation.

A predicate phrase denotes operations that can return true or
false, such as checking status or state (e.g., isInNormalMode,
isBlack).

Example 7: Consider the following COCOME requirement:
[UC1-11] If the Inventory is not available, the

system caches sale.

Analysis. In this requirement, we identify “is not available”
phrase that may denote computation to check the availability
of the Inventory. Hence, we provide checkAvailability compu-
tation.

To conclude, based on the guidance from this computation
category, we identify candidates for computation units. By
using the extraction tool (Fig. 4), the user can choose to
highlight the extracted verbs, and start identifying the verb
categories in order to identify computations. Next, he can
also highlight nouns, and identify any relevant action noun
for candidates of computations.

B. Identifying Keywords that Denote Control

After we identify computations in each requirement, the
next step is to look for control. A control structure such
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as if. . . then. . . else, while, iterate, loop, selection denotes
execution flow, i.e. sequential, branching, looping [18]. In
identifying control, we also follow the same strategy as in
identifying computation, in which we identify control from:
(1) explicit control from the extraction of the POS tagging
process (2) pre-defined control terms (Fig. 6) and (3) implicit
control that may imply execution flow. We will now introduce
and show examples for each of the categories. The first

branching, options,
 otherwise, choices,
alternatives, else

Terms
Loop Control

Selection Con-
trol Terms

-trol Terms
Ordering Con-

Conjunction
-Looping
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-Ordering
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Category Denotes/Implies Examples

Ordering

Ordering (with or with-
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Looping while

Selection/condition

before, after, then,
from, until

Looping

Selection

Preposition Ordering

and, once

Figure 6: Extracting control.

category is Preposition. We look for prepositions of time
that imply ordering (e.g. after, then, before), and prepositions
that may imply origin of movement or direction3 (i.e. from,
of). Prepositions that are not based on time, for instance
prepositions of place (position and direction) (e.g. in, at, under,
on, below) are of no interest to us.

Example 8: Consider the following COCOME requirement:
[UC8-9] The Enterprise Server is not available:

The request is queued until the Enterprise Server

is available and then is send again.

Analysis. The preposition then here denotes an execution
order while the preposition until implies repetition.

The Conjunction category can be detailed into three sub-
categories, i.e. conjunctions that may imply ordering, selection
(branching), and repetition (looping). According to Berry and
Kamsties [32], ‘and’ denotes: (1) concurrency of events or
actions (2) conditions to be met (3) temporal order of events
or actions or (4) enumerations which may not imply any
ordering. In our work, we do not deal with ‘and’ that denotes
concurrency.

Example 9: Consider the following COCOME requirement:
[UC1-R11] The System caches each sale and writes

them into the inventory.

Analysis. Here we identify an ‘and’ conjunction that explicitly
shows an ordering execution from caching sale transaction to
update the inventory. The conjunction and does not always
imply sequential ordering, it may also suggest concurrency
processes instead.

However, not all occurrences of ‘and’ denote ordering.
Example 10: Consider this COCOME requirement: [UC2-

R2C] Cash and also card payment is allowed and the

Costumer is allowed to buy as much goods as he

likes.

3http://www.eslcafe.com/grammar/prepositions09.html.

Analysis. The ‘and’ conjunction here does not indicate se-
quential ordering, but indicates both payment methods, i.e.
cash and card payment instead. Thus, we exclude this kind of
‘and’ conjunction from our identification process.

Control terms denote or imply predefined execution flow
which is not derived from conjunctions and prepositions, e.g.
using, based, branching, selection, loop, repeat, otherwise,
alternatives etc. We selectively identify these terms and set
them as control terms.

Example 11: Consider this COCOME requirement:
[UC1-R9] The Cashier enters the item identifier.

The system displays the description and price.

Otherwise, the product item is rejected.

Analysis. We identify the word ‘otherwise’ that explicitly
shows a branching execution from the identify item
computation.

Another example to demonstrate a looping control term is
the following.

Example 12: Consider this COCOME requirement: [UC1-
R4] Using the item identifier the System presents

the corresponding product description, price,

and running total. The steps are repeated until

all items are registered.

Analysis. The keyword ‘repeated’ explicitly shows a looping
execution for the identify item computation.

From an English language structure, we can identify and
infer control based on explicit prepositions from the text.
So far, we perform the identification of control based on
explicit control either from the POS tagging extraction (of
conjunctions or prepositions) or from the predefined control
terms. However, an implicit control may be recognised from
the requirements ordering, i.e. the way the requirements are
written.

In Example 11, there is no explicit control that we can
identify between identify item computation and display the
information. However, implicitly, we infer such an ordering is
required from identify item to display the information. This is
sensible and can be justified from the way the requirements
are written.

Apart from this, implicit control may also be identified from
descriptive expression.

Example 13: Consider this COCOME requirement: [UC2-
R1D] The maximum of items per sale is reduced to 8

and only paying by cash is allowed.

Analysis. Besides the and conjunction that denotes ordering
execution, this statement provides constraints that are useful
for a looping structure, i.e. to repeat 8 times while identifying
item transactions. Here, there are no explicit keywords that
lead us to extract a looping control structure. Nonetheless, we
can see such a loop.

C. Identify Keywords that Denote Data

In general, we extract keywords that denote data by noun
extraction. However, not all nouns are relevant or meaningful
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Figure 7: The complete COCOME system in X-MAN.

to be identified. We use the POS tagger to extract all the
nouns. Based on the result of the extraction, we further filter
only the relevant data based on values that are useful for
computations, constraints for branching mechanism, or han-
dling data dependencies between computations. This includes
storing constant and initialisation values [29]. We demonstrate
the data extraction in the following examples.

Example 14: Consider the following COCOME requirement
that shows useful data for the identified computation:
[UC1-R9] The system displays the description and

price.

Analysis. Here, we extract description and price as relevant
data to be used for the display computation.

Example 15: Consider the following COCOME requirement
that shows data useful for a branching mechanism:
[UC7-R3] The Store Manager selects a product item

and changes its sale price.

Analysis. In this requirement, apart from product item and
price as relevant data to be used for the change price compu-
tation, the Store Manager must also be verified prior to the
invocation of the computation. Hence, we need to provide data
for Store Manager account as well. This data will be used as
validation data in order to verify its authorisation level.

Example 16: Consider the following COCOME requirement
that demonstrates identification of data as a constraint:
[UC8-R5E] If the entered amount of an incoming

product is larger than the amount accounted in the

Inventory, the input is rejected.

Analysis. In this statement, we identify amount as a constraint
on the amount accounted (useful for computation rather than
for constraint) in the Inventory.

V. THE COMPLETE COCOME SYSTEM

Now we briefly discuss the complete COCOME system
derived from the keywords that we extracted from all the
COCOME requirements. As mentioned earlier, how we derive
the complete system from the extracted keywords is beyond
the scope of this paper. Nonetheless, we wish to demonstrate
two important things: firstly that the encapsulation in our com-
ponent model does indeed enable us to identify elements of
component-based systems individually and separately from the

requirements (as we claimed in Section III-A); and secondly
that the system does indeed satisfy the requirements.

Fig. 8 shows the overall architecture of COCOME.
It is a client-server architecture. Fig. 7 shows the

Communication Between Servers
Communication Between Clients and Server

Ent
Client

INV

PIPE

ACC

Server

Server
Store

Entrp
Server

Client
Store

Cash
Desk

Client

Figure 8: COCOME architec-
ture.

system in X-MAN de-
rived from keywords ex-
tracted from the require-
ments. It models only the
client side in Fig. 8. The
system comprises two sub-
architectures: Cash Desk
and Store Client. Com-
putations provided by the
servers in Fig. 8 can be
deemed as ‘remote’ com-
putation units of components in the X-MAN system. For
example, in Fig. 7, computations of the Inventory(INV) com-
ponent reside in the server. Interactions between servers in
Fig. 8 are not modelled because they are not deterministic,
e.g. interaction between Store Servers and Enterprise Server.
Nonetheless, we have covered this in our implementation as a
separate system with its own execution thread and scheduler.

Fig. 9 shows the composition in X-MAN for the COCOME
system in Fig. 7.

A. Effects of Encapsulation in Component Model

Fig. 10 shows a sample of the keywords extracted from
the requirements. They are keywords extracted from the re-
quirements for the Sale Transaction process. The table shows
clearly each extracted keyword, the requirement from which
it was extracted from, the component or connector in the
X-MAN system (Fig.7) it was mapped to, and the label of
this component or connector. For example, the keyword ‘en-
terItemID’ was extracted from requirement [UC1-R3], mapped
to the component BCR (BarCodeReader), which is labelled 7
in the X-MAN system; the keyword ‘or’ was extracted from
requirement [UC1-R3], mapped to the connector SEL, labelled
B5C3 in the X-MAN system.

This table shows clearly that each keyword is extracted
from just one requirement. Moreover, it is mapped only
once, and mapped to only one component or connector. This
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Figure 9: X-MAN composition for COCOME.

LABEL column shows the architectural elements in the system architecture (Fig. 7)

[UC1-R4] display>> Inventory(INV)

[UC1-R4] 'using' >> Ordering Ctrl Term(Pipe)
[UC1-R3] 'or' >> Conjunction-Selection(SEL)

[UC1-R5A]

enter ItemID >> CashBox(CB)  

Extracted keywords with
assigned component-based elements

B5C2
B5C3

[UC1-R3]     BCR(7)
CB(6)
INV(8)

CB(11)
CC(12)
DP(13)display >>DisPanel(DP)

open >> CashBox(CB), 
calc >>CalcChange(CC), 

enterItemID  >> BarCodeReader(BCR),

C
O

M
P

U
T

A
T

IO
N

C
T

R
L

(LABEL)Req-ID Comp.

Figure 10: Keywords extraction for Sale Transaction.

gives evidence that keywords can be extracted and mapped
individually and separately. This is important because it makes
the whole extraction and mapping process much easier to
manage and it make it scalable to any number of requirements.
B. Validating the COCOME System

To validate the COCOME system we created, we executed
a prescribed set of test cases presented in [30]. Using the final
system, which is constructed based on the derived architecture
(see Fig. 7), we managed to successfully execute all of the
provided test cases (see Fig. 11).

TC-UC1A Purchase of goods with cash payment.
TC-UC1B Concurrent purchase of goods at more than one cash desks.
TC-UC1C Purchase of goods with card payment.
TC-UC1D Invalid item id read, manual entry of item id.
TC-UC1E Wrong PIN entry for credit card, card validation fails.
TC-UC2A Manage express checkout (switch to express mode, credit

card payment is not possible.
TC-UC3A Generate report of low stock product.
TC-UC4A Order low stock products, correct delivery is recorded.
TC-UC5A Generate report of available stock in a store (Store Man-

ager).
TC-UC5B Generate report of cumulated available product in the en-

terprise (Enterprise Manager).
TC-UC6A Provide report containing mean time to delivery for each

supplier (Enterprise Manager).
TC-UC7A Change price of a product (Store Manager).
TC-UC8A Product exchange among stores.

Figure 11: List of COCOME test cases.

Fig. 12a shows the execution of Test Case-UC1A, which
tests for the purchase of goods with cash payment. The

test case is considered passed once item is entered and the
payment is made. The system shall display the amount paid
and the change amount to the Store Client. Fig. 12b shows
the execution of Test Case-UC3A, which tests for generation
of low stock products by the Store Manager. For this test
case, the Store Manager also needs to be authenticated prior
to the report generation. The test case passes if the report is
generated.

(a) Test Case-Use Case 1A (b) Test Case-Use Case 3A

Figure 12: Test cases execution.

As we have mentioned in Section V, we included the servers
in the component’s implementation. Therefore, the inter-server
communication between Store Server and Enterprise Server is
not modelled in the architecture shown in Fig. 8. That is why
Test Case UC-8A, the product exchange among stores is not
tested on this architecture.

VI. DISCUSSION AND CONCLUSION

We have presented an approach for extracting keywords
from natural language requirements. Our primary concern is
to identify elements of component-based systems as defined in
our component model, namely computations, control and data.
We use the help of POS tagging process to tag each require-
ment statement, and based on the result of the extraction, we
filter and identify the component-based elements as presented
in Section IV-A, Section IV-A, and Section IV-C.

Following this premise, we demonstrated examples of the
identification process for each category of the component-
based elements. We have also elucidated that we can actually
use the identified computations, control and data to guide us
in constructing the complete COCOME system. Although our
approach is basically heuristic, and requires human guidance
and decision making, we believe this is possible because the
underlying component model provides a way to realise such
an approach.

The main feature of our component model that enables us to
realise this approach is encapsulation, i.e. components encap-
sulate computation and have no external dependencies on other
components. As a result, while we map the extracted keywords
to component-based elements, we do not waste any effort
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on resolving issues with component dependencies. We have
demonstrated this contention by showing the link between
the extracted keywords from requirements, the component-
based elements they map to, and where they appear in the
architecture.

One possible drawback of our approach is that the granu-
larity of the components maybe too fine, as they correspond
to individual keywords. In this regard, we are investigat-
ing refactoring techniques for transforming sub-architectures
into composite components and thereby raising the level of
granularity of components. Indeed the architecture in Fig. 7
is already refactored, but not for the purpose of increasing
component granularity. In general, refactoring is an integral
part of building any architecture.

Natural language has no precedence and associativity as
in mathematics or programming concepts [32]. We provide
no rules for such precedence. However, it is important to
emphasise that our concerns are how to identify control which
encapsulates computation execution, and how this can be used
to meaningfully and correctly represent the behaviours that
satisfy a specific requirement. With this restriction, our current
work only covers functional requirements. Dealing with non-
functional requirements is another interesting and challenging
research area to be considered in the future.

To sum up, we have demonstrated the feasibility of our
approach. In future, we intend to increase the capabilities of
the extraction tool, as well as to develop tools that support the
process to derive systems from extracted keywords.
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