
!!!!!!!!!!!
This is an author-generated version.!!
The final publication is available at ieeexplore.ieee.org!!
DOI: 10.1109/SEAA.2011.62!!
Link: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6068366!!
Bibliographic information:!!
Michael Kläs, Constanza Lampasona, Jürgen Münch. Adapting Software Quality Models: Practical
Challenges, Approach, and First Empirical Results. In Proceedings of the 37th EUROMICRO
Conference on Software Engineering and Advanced Applications (SEAA 2011), pages 341-348,
Oulu, Finland, August 30 – September 2 2011.

Adapting Software Quality Models: Practical
Challenges, Approach, and First Empirical Results

Michael Kläs, Constanza Lampasona
Fraunhofer Institute for Experimental Software Engineering

Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
{michael.klaes, constanza.lampasona}@iese.fraunhofer.de

Jürgen Münch
University of Helsinki, Department of Computer Science
 Gustaf Hällströmin katu 2b, 00014 Helsinki, Finnland

juergen.muench@cs.helsinki.fi

Abstract—Measuring and evaluating software quality has become
a fundamental task. Many models have been proposed to support
stakeholders in dealing with software quality. However, in most
cases, quality models do not fit perfectly for the target
application context. Since approaches for efficiently adapting
quality models are largely missing, many quality models in
practice are built from scratch or reuse only high-level concepts
of existing models. We present a tool-supported approach for the
efficient adaptation of quality models. An initial empirical
investigation indicates that the quality models obtained applying
the proposed approach are considerably more consistently and
appropriately adapted than those obtained following an ad-hoc
approach. Further, we could observe that model adaptation is
significantly more efficient (~factor 8) when using this approach.

Keywords-software quality; customizing quality models; meta-
model; tailoring process; empirical study

I. INTRODUCTION
Nowadays, the definition and evaluation of software quality

is a fundamental task for many organizations: Objective
statements about software quality are needed, i.e., for defining
and fulfilling software-related contracts, for controlling and
adjusting development and quality assurance processes, or for
managing quality-related risks. Many organizations refer to so-
called quality models (QMs) when addressing these issues.

A plethora of software QMs and quality modeling
approaches intended to support product quality stakeholders in
dealing with software quality have been developed over the
past decades. Most of them can be assigned to one of two
strategies for modeling software quality [17], namely fixed-
model approaches, e.g., ISO9126 [14], and define-your-own-
model approaches, e.g., GQM [3]. The former usually specify a
prescriptive set of quality characteristics or metrics, whereas
the latter use methods to guide the experts in the derivation of
customized QMs. The fixed models are often very abstract and
therefore not directly applicable [28][29] or their applicability
is limited to contexts that are very similar to the one in which
the model was developed. In contrast, define-your-own-model
approaches can be applied to obtain QMs fitting one’s own
needs but require the labor-intensive involvement of
experienced experts, who are typically one of the most limited
resources in a company.

An initial step towards overcoming the gap between fixed-
model and define-your-own-model approaches and making the
modeling of customized QMs more efficient can be seen in

choosing an existing model that is most appropriate for one’s
own needs and reusing parts of the model during the
application of a define-your-own-model approach as suggested,
e.g., by [16]. However, this implies that an appropriate model
must be identified, which, considering the high number of
existing QMs, is a non-trivial task for practitioners. In previous
work, we have addressed this challenge by developing a
classification schema for QMs that can be used to identify
appropriate QMs in a goal-oriented way [18] and by providing
classifications for about 80 QMs.

Still, identifying a (partially) reusable QM is only the first
step. In most cases, the identified QM does not fit perfectly to
the target application context and needs to be adapted in a next
step. For instance, irrelevant parts have to be removed, other
parts require some modification, and missing parts have to be
created. Although such customization is a complex, fault-
prone, and effort-intensive task for real-world QMs, work
dealing with the efficient adaptation of software QMs is largely
missing. This is especially remarkable since the adaptation of a
QM is not a one-time task. It is performed when QMs are
defined and introduced, but also as part of ongoing
maintenance to keep the applied QMs consistent with the needs
of the organization and thus have a sustainable instrument for
quality management.

Based on the requirements stated by practitioners and
scientists in [27], we condensed three major requirements with
respect to a QM adaptation approach:

 (R1) Correctness – An adapted QM must be syntactically
correct in that it remains conformant to its underlying structure
and a set of defined consistency rules.

(R2) Appropriateness – The adaption of a QM should be
driven by organizational needs and capabilities. In particular,
organization-specific and project-specific software quality
objectives should be considered.

(R3) Efficiency – This requirement is concerned with the
overhead (e.g., personnel, time, and budget) needed for
adapting a QM. Acceptable overhead would differ depending
on the organizational level (e.g., more overhead will be
allowed for adapting a QM at the level of the whole
organization, where such adaptation has a larger scope and is
performed relatively rarely).

In the following, we present an adaptation method
addressing the listed requirements. One major challenge
regarding the definition of such a QM adaptation method is to

make it as independent as possible of a particular model and
type of adaptation, i.e., to define a set of adaptation rules that
will be universally applicable to any model and adaptation
scenario. However, making no assumptions about the
underlying structure of the QMs that should be adapted would
avoid the operationalization of the adaptation method;
therefore, we assume that the adapted QM should conform to
the structure and consistency rules defined by the Quamoco
quality meta-model [19]. This meta-model was developed in a
joint effort by academic and industrial partners in a publicly
funded project and addresses all conceptual elements
recommended in [18] for specifying and assessing software
quality. Recent empirical evaluations have shown that the
meta-model is general enough to describe many different QMs
applied in practice [19] and specific enough to define QMs that
can be used for valid product quality evaluations [21].

This paper consolidates and extends the work presented by
the authors at the SQMB workshops in 2010 [20] and 2011
[23]. In the following, we provide an overview of related work
in QM adaptation and take a brief look at adaptation
approaches in related areas. Then, we give an introduction to
the adaptation method and the underlying meta-model. Next,
we present an initial study we performed to evaluate the
approach and discuss the study’s findings. Finally, we
summarize our current work and sketch planned research
directions.

II. RELATED WORK
Most of the literature on adapting QMs deals with

adaptations of the QM proposed by the ISO9126 standard [14].
Many authors concentrate their work on extending the
ISO9126 QM with quality attributes, such as in the adaptations
in [24] and [8]. Behkamal et al. [5] add domain-specific quality
characteristic to a model for B2B applications; Andreou and
Tziakouris [2] do so for component-based software
development, and Calero et al. [8] for eBanking applications.
Unfortunately, these specific adaptations focus on the resulting
adapted QMs and not on a reproducible customization process.

Another practice for adapting QMs consists of using define-
your-own-model tools to refine specific models. Andersson and
Eriksson [1], e.g., present a process for the construction of a
QM founded on a basic QM with existing metrics (SOLE QM).
They illustrate how to customize the model to the specific
needs of an organization, including how to identify quality
factors and mapping them down to metrics. Their model [9]
has the factor-criteria-metric [24] structure. Bianchi et al. [6]
used GQM to refine a specific model. They focus on QM
reuse, namely, which changes can be requested when a QM is
reused, how to verify that the changes made in the reused QM
keep it suitable for its goals, and which are the side effects on
the QM caused by changing the metrics. Khaddaj and Horgan
[15] use as input the adaptable QM (ADEQUATE), which
provides a set of standard quality factors. Any decisions are
made by experts. Franch and Carvallo [12] present a general
process for building an ISO9126-based QM. These
customizations focus on a specific QM or do not assume a
common underlying structure and therefore their adaptation
guidelines are only rough and difficult to operationalize for
adaptation in practices. Plösch et al. [26] present a tool-

supported approach to adapting QMs focused on code
evaluation. They tailor a set of rules provided by static code
analysis tools based on a set of criteria. Although the scope and
structural complexity of their model is limited compared to
more universal QMs, the general idea of providing a well
detailed and comprehensive model that is primarily reduced
during adaptation following certain criteria seems promising in
terms of ensuring efficient adaptation.

For the refinement of our solution, we also considered
concepts related to software process adaptation and studied
their transferability to software product QMs. Software process
tailoring emerged from the need to reuse process definitions, a
motivation analogical to that of software QM adaptation.
Software processes had to be developed from scratch or
projects had to be forced to fit prescriptive processes. This
problem has been managed by defining standard software
processes and tailoring them to obtain project-specific
processes in accordance with project needs [13], project goals,
and context characteristics [4].

Budlong et al. [7] propose steps for adapting a standard
software process for use in a specific project. The first step
involves identifying project characteristics (size, complexity,
formality, and control). Afterwards, relevant building blocks
are selected from an inventory and subsequently tailored to the
project characteristics. Fitzgerald et al. [11][10] describe
development process components across three levels: industrial
level, organizational level, and project level. The tailoring
process consists of refining these components first from the
industrial to the organizational level. Then, the organizational
process can be customized for individual projects. The German
V-Modell is a tailorable process model [22] based on a meta-
model that defines a language for the V-Modell and supports an
adaptation on an organizational and project-specific level.

Münch [25] proposes context-oriented alignment of process
patterns, an abstract description of one or more software
development processes, to project goals and project
environment characteristics. Fundamental challenges for
successful process pattern adaptation are the identification of
the necessary initial changes and the consistent performance of
concrete consequential changes.

III. QUALITY MODEL ADAPTATION METHOD
Our approach makes use of many adaptation concepts,

which are scattered across different application domains and
not necessarily focused on tailoring QMs. The main concepts
in our approach are that (1) all the QMs used and produced
respect the same general structure, given by a quality meta-
model, which is required to provide specific rules and
automation; (2) adaptations can be performed to refine models
on different levels, e.g., for the organization or for individual
projects, reducing the adaptation effort by increasing the reuse
potential; (3) the goal and the application context of the
adapted model are explicitly considered to obtain an
appropriate model; (4) a preliminary adaptation (tailoring) is
performed based on the goal and context to simplify the
remaining adaptation work; and (5) task-specific guidelines are
provided to improve the consistency and completeness of the
performed adaptation.

A. The Quamoco Quality Meta-Model
In order to comprehend the adaptation method, a rough

understanding of the structuring principals assumed for the
adapted QMs is required. Based on the Quamoco meta-model,
a QM can be logically separated into two parts: a mandatory
specification part, where quality is described qualitatively, and
an optional evaluation part, which is needed if quality
assessments are to be performed (Fig 1).

quantifies

evaluates

evaluates

Figure 1. Quamoco meta-model for software QMs

Six types of elements are used to specify quality: A tree of
Quality Aspects provides information on the quality focused on
in the model, e.g., the “maintainability” of a product, and can
be used to decompose it into sub-aspects (e.g., analyzability,
testability, etc.). Entity Types represent the different classes of
elements that are part of the software product, e.g.,
specification, source code, functions, identifiers. Elements of a
specific entity type typically exhibit certain Properties (such as
consistency, conciseness, or redundancy) that influence one or
more quality aspects. Hence, Factors combine an entity type
and a measurable property, e.g., “consistency of identifiers” or
“understandability of source code comments”. Impacts specify
which factors influence which quality aspects, their assumed
effect (positive or negative), and provide a justification for the
relationship. For example, a good “consistency of identifiers”
has a “positive” impact on the “maintainability” of the product.
Finally, Quality Requirements can be used to group a set of
related impacts.

For the evaluation of quality, three additional constructs are
provided: Measures define methods for quantifying factors
using a certain measurement rule and scale. Examples of
measures are “number of incompletely documented use cases”
or “number of architecture violations”. Impact Evaluations
provide rules for determining the impact of a factor on a quality
aspect using the data collected for associated measures. This
means that the impact evaluation maps the measurement values
to a value on an evaluation scale (e.g., school grades). Quality
Aspect Evaluations provide rules for assessing quality aspects
based on the evaluation results provided for (1) the impacts that
influence the considered quality aspect and (2) its subordinated
aspects. This means they aggregate several evaluation results
into one result (e.g., by averaging or using a weighted sum).

B. The Adaptation Process
We can distinguish three categories for QMs:

– Public-level QMs are intended for general use or use in a
specific domain. Most of the models at this level are very
generic; they are usually not operational and need to be
customized. Using and tailoring these models could be
useful for showing adherence to some standard.

– Organization-level QMs focus on satisfying the interests of
a specific organization. They can focus on the whole
organization, a business unit, or a project portfolio. They
are intended to provide a common basis for project-specific
model tailoring.

– Project-level QMs are applied to specify and assess quality
for a specific project. Adaptation is limited to minor
adjustments driven by project-specific requirements,
without drastic changes to the organizational QM.
The general adaptation process we propose is applicable for

adapting public models to obtain organizational models,
refining an organizational model for business units or project
portfolios, and deriving QMs addressing the needs of a specific
project. The reuse potential is increased by means of step-wise
refinement, which decreases the effort needed in further QM
adaptations. The general adaptation process is illustrated in Fig.
2 and comprises four major steps:

1. Specify goal of adapted QM: The process begins by
defining the goal of the QM that should result from the
adaptation. To define this goal, the organization/project needs
with respect to software quality and context information are
used. In order to describe the goal in a structured way and not
to forget important aspects, we use an adapted GQM goal
template [3] with five goal parameters for the adapted model
(GA), which is illustrated here with an example:
GA Object (i.e., considered artifact): Source code

Purpose (of the QM): Evaluation of product quality
Viewpoint (i.e., the perspective): User
Focus (i.e., the qualities of interest):
 Reliability, Safety, Usability
Context (of planned model application):

Domain=Embedded; Language=Assembler
2. Identify reference QM: The goal is used to identify a

model and adapt it to the needs of the project or organization.
This model, on which the model adaptation is based, is called
reference model. Finding the right reference model consists in
finding the model whose goal parameters best fit the defined
goal. In our example, we assume the following goal parameters
characterizing the best fitting reference model (GR):
GR Object: Requirements specification, Source code

Purpose: Evaluation of product quality
Viewpoint: Developer, User
Focus: Maintainability, Reliability, Safety
Context: Dom.=Embedded; Paradigm=OO; Lang.=C, C++

Specify goal
of adapted QM

Identify (fitting)
reference QM

Adapted QM goal

Tailor QM

Iterative changes

DEL ADD MOD

Adapted and
consistent QM

Lists are
empty?

Modified QM

List of adaptation
tasks

List of consistency
tasks

Quality needs

Context information

General QMs

Domain-specific QMs

Organization’s QMs

Reference QM

yes

no
Test QM

Figure 2. Overview of the adaptation process with key activites (gray).

3. Tailor QM: Once a reference model is chosen, elements
that are not needed in the final model are discarded. The
unnecessary components are eliminated at the beginning in
order to reduce the size and thus the complexity of the model.
Sometimes, specific elements in the model can be reused in
part but need some adjustments. During tailoring, such
elements can be selected to stay in the model but are marked
for detailed inspection and modification in the next step.
Further, stubs for missing elements such as missing quality
aspects can be added to provide reminders for needed model
refinements in the next step. The adaptation rules used during
the tailoring step make use of the goal parameters (GA/GR)
and the structure provided by the Quamoco meta-model. They
are summarized in Table I.

TABLE I. TAILORING RULES (TR) FOR GOAL-BASED TAILORING

TR1: ∀ entity types ∉ GA.object: DEL(EntityType)
TR 2: ∀ elements of GA.object ∉ GR.object: ADD(EntityTypeStub)
TR3: IF(GA.purpose==specification): ∀ measures: DEL(Measure), ∀ impact
evaluations: DEL(ImpactEval.), ∀ quality aspect eval.: DEL(QAspectEval.)
TR4: ∀ quality aspects ∉ GA.viewpoint: DEL(QualityAspect)
TR5: ∀ quality aspect eval. ∉ GA.viewpoint: DEL(QualityAspectEval.)
TR6: ∀ quality aspects not part of GA.focus: DEL(QualityAspect)
TR7: ∀ elements of GA.focus ∉ GR.focus: ADD(QualityAttributeStub)
TR8: ∀ factors not applicable based on their tags in GA.context: DEL(Factor)
TR9: ∀ measures not applicable based on tags in GA.context: DEL(Measure)
TR10: [opt.] add stubs for factor and measures introduced due to GA.context

Example: For our goal definitions (GA) and (GR), the rules
would propose and initiate the following actions: (TR1)
Entities considering the requirements specification are
removed since not needed. (TR4) All quality aspects and
quality aspect evaluations considered only in the developer
perspective are removed (“maintainability”). (TR7) All quality
aspects not considered in the reference model (“usability”) are
added as dummies for further refinement. (TR9) Measures
relevant only for “C” or “C++” (e.g., “depth of inheritance
tree”) and (PT8) factors relevant only for “object-oriented”
programming (e.g., “documentation of classes”) are removed.

(TR10) Stubs for measures relevant for assembler code should
be added.

4. Iterative Changes: After sorting out irrelevant
information, the model obtained might not be consistent or
operational anymore. Therefore, the actions performed during
the tailoring (e.g., removal of model components) triggers
further consistency and adaptation tasks. These tasks help to
bring the model back to a consistent, operational state. Some
tasks can be automated (consistency tasks). Other tasks will
require user interaction, as they are based on user decisions
(adaptation tasks). The remaining adaptation work can be
performed incrementally by processing open adaptation tasks
in a user preferred order. Completing a task may initiate
further consistency and adaptation tasks (see Table II), since
completing an adaptation task usually requires deleting (DEL),
adding (ADD), or modifying (MOD) elements in the model. The
extent to which these operations are used depends on the
suitability of the reference model. Accomplishing all
adaptation tasks will lead to a consistent model customized to
the user’s needs. At this point, the QM should be piloted to
test its suitability for the specified application purpose.

TABLE II. TYPE OF ITERATIVE QM CHANGES AND CONSEQUENCES

Element
& Op.

Consequential Adaptation and Consistency Tasks
Consistency tasks can be automatically performed without user interaction
Adaptation tasks require an explicit user decision and are collected in a To-do list

E
nt

ity
 T

yp
e

DEL ∀ associated factors: DEL(Factor) C
∀ subordinated entity types: DEL(EntityType) C

ADD “Set name and description of entity type” [MOD(EntityType)] A
Associate with 1 superordinate entity type [MOD(EntityType)] A
“Check which factors influencing the quality of interest can be
built for entities of this type and create them.” [ADD(Factor)] A

Fa
ct

or

DEL ∀ associated impacts: DEL(Impacts) C
IF(associated property is not used by other factor): “If the property
is no longer needed, delete it.” [DEL(Property)] A
IF(associated entity type is a leaf in its hierarchy AND is not used
by other factors): “…, delete it.” [DEL(EntityType)] A

ADD Associate with 1 property A and with 1 entity type A
IF(GA.purpose = = evaluation): Associate with �1 measure A
“Provide a description for the factor” [MOD(Factor)] A
“Define �1 impacts for the factor” [ADD(Impact)] A

MOD MOD(isQuantified): ∀ associated impacts: IF(impact has an
impact evaluation): “Check that all relevant measures of the factor
are associated with the impact evaluation.”
[MOD(ImpactEvaluation.uses)] A

Im
pa

ct

DEL ∀ associated impact evaluations: DEL(ImpactEvaluation) C
IF(associated factor has no other impacts): “If the associated factor
is no longer needed, delete it.” [DEL(Factor)] A
IF(associated quality requirement is not connected to other impact):
“…, delete it.” [DEL(QualityReq,)] A
IF(associated quality aspect is a leaf in its hierarchy AND is not
influenced by any impact): “…, delete it.” [DEL(EntityType)] A

ADD Associate with 1 QualityAspect A, 1 QualityReq. A, and 1 Factor A
 “Set justification and effect of added impact” [MOD(Impact)] A
IF(GA.purpose == evaluation): Associate with 1impact eval. A

MOD MOD(isImpacted): IF(impact has an impact evaluation): “Check
that all relevant measures of all associated factors are associated
with the impact evaluation” [MOD(ImpactEval.uses)] A

P
ro

pe
rty

 DEL ∀ associated factors: DEL(Factor) C

ADD “Set name and description of property.” [MOD(Property)] A
“Check which factors that influence quality in focus can be built
with this property and add them.” [ADD(Factor)] A

Q
ua

lit
y

A
sp

ec
t

DEL ∀ associated impacts: DEL(Impact) C
∀ associated Q aspect eval.: DEL(QualityAspectEvaluation) C
∀ subordinated quality aspects: DEL(QualityAspect) C

ADD “Set name and description of Q aspect.” [MOD(QualityAspect)] A
Associate with 1 superordinate Q aspect [MOD(QualityAspect)] A
 “Refine aspect with sub-aspects, if necessary.” [ADD(QAspect)] A

IF(GA.purpose == evaluation): Associate with 1 Q aspect eval. A
“Check which factors influences the added aspect, add impact
relationships for them.” [ADD(Impacts)]. A

MOD MOD(QA.refinedBy): IF (evaluateBy!=null): “Assure that all Q
aspect evaluations of sub-aspects refining the aspect are considered
in the Q aspect evaluation.” [MOD(QAspectEval.)] A
MOD(QA.influencedBy): IF (evaluateBy!=null): “Assure that all
impact evaluations of impact influencing the aspect are considered
in the Q aspect evaluation.” [MOD(QAspectEval.)] A

R
eq

 DEL ∀ associated impacts: DEL(Impact) C

ADD “Set name and description of added Q req.” [MOD(QReq.)] A

M
ea

su
re

DEL “Delete the measure from the evaluation rule of the impact
evaluations that used it.” [MOD(ImpactEvaluation)]. A

ADD “Provide name and measurement rule.” [MOD(Measure)] A

Associate with �1 factor A and �1 impact evaluation. A
MOD MOD(measurement_rule): ∀ associated impacts: IF(impact

evaluation exists): “Check that the modified measure is correctly
used in the evaluation rule” [MOD(ImpactEval.)] A

Im
pa

ct
 E

va
l DEL IF(GA.purpose == evaluation): “Delete associated impact or add

new impact evaluation” [DEL(Impact)|ADD(ImpactEvaluation)] A
ADD Associate with 1 impact A and with �1 measure A

MOD MOD(uses): “Assure that the evaluation rule of the impact
evaluation considers all used measures” [MOD(ImpactEval.)] A

Q
 A

sp
ec

t E
va

l DEL IF(GA.purpose == evaluation): “Delete associated aspect or add
new aspect evaluation” [DEL(QAspect)|ADD(QAspectEval.)] A

ADD Associate with 1 quality aspect A
“Provide an aggregation rule for the Q aspect evaluation that
considers all evaluations of influencing impacts and subordinated
quality aspects.” [MOD(QAspectEval.)] A

Example: We illustrate the iterative adaption of a small
model excerpt (Fig. 3). Based on our tailoring example, one
open task is to refine the stubs added for measures addressing
assembler code (PT10). In this case we consider only one stub
M1, which was added to quantify the factor F1
“Documentation of source code”. Open tasks for the added
measure M1 are (a) “Provide name and measurement rule.”
and (b) “Associate with �1 impact evaluation”. In addition, for
the impact evaluations IE1 and IE2 of F1, there are open tasks,
since an association between F1 and M1 was defined
[MOD(F1.isQuantified)]: (c) “Check that all relevant
measures of the factor F1 are associated with the impact
evaluation IE1.” and (d) “Check that all relevant measures of
the factor F1 are associated with the impact evaluation IE2.”
In a first step, we complete task (a) by providing a name for
M1, e.g.,”% of documented assembler lines” and a fitting
measurement rule that returns a value between 0 and 100%
=>MOD(M1.measurement_rule). Since M1 is not associated

with an impact evaluation, the corresponding rule does not
create any new task. In a next step, we complete task (c) by
associating the new measure of F1 with the impact evaluation
IE1 =>MOD(IE1.uses). This also completes task (b)
“Associate M1 with �1 impact evaluation” but results in a new
adaption task (e) “Assure that the evaluation rule of the impact
evaluation IE1 considers all used measures”. We complete this
task by specifying an evaluation rule for IE1 that maps the
measurement results of M1 onto the evaluation scale. Task (d)
can be completed in a similar way as task (c) and results in
task (f) “Assure that the evaluation rule of the impact
evaluation IE2 considers all used measures” which can be
completed in a similar way as task (e). After completion, we
have a consistent and complete model excerpt.

F1: Documentation of
source code

Impact 1 (+)

Impact 2 (+) QA2: Reliability

QA0: Quality

QA1: Safety

M1: % of documented
assembler lines

IE2

IE1 QAE1

QAE2

QAE0

explicit relationship
implicit relationship

element with adaptation tasks
element only for illustrative purpose

Step 0 (Pre-tailoring):
new relationship

Step 3:
mod

Step 0 (Pre-tailoring):
new (stub)

Step 4:
new relationship

Step 2:
new

Step 5:
mod

Step 1: mod

Figure 3. Sample QM excerpt to illustrate the iterative QM adaption

IV. EMPIRICAL EVALUATION
In order to empirically evaluate the adaptation method, we

compared QM adaptations performed ad-hoc using an existing
QM Editor (E) against adaptations performed applying the
adaptation method operationalized by an Adaptation Assistant
(AA). The existing editor provides the capability to create and
edit QMs but does not explicitly guide QM adaptations. The
Assistant is implemented as a plug-in extending the Editor and
supports the definition and comparison of QM goals, the
tailoring, and updating of the list of open adaptation tasks.

A. Study Goals
In the study, we wanted to investigate the quality of the

proposed adaptation method; in particular, the following
question was to be answered: ‘Does the implemented
adaptation method support the achievement of the three major
requirements stated for quality model adaptation (R1-R3)?’
Thus, we defined three corresponding study goals:

(G1) Formal Quality Model Consistency: Evaluate whether
the adaptation approach can improve the syntactical
correctness of the adapted QMs. Consistent means the model
conforms to the structure defined by the quality meta-model
and a set of consistency rules. This means G1 addresses R1.

(G2) Quality Model Appropriateness: Evaluate whether the
adaptation approach can improve the appropriateness of the
adapted QMs. Appropriate means that the model is correct and
complete with respect to its goal as specified during the specify
goal activity (i.e., it is suitable for use with the object, purpose,
viewpoint, quality focus and context), i.e., G2 addresses R2.

(G3) Efficiency of Adaptation: Evaluate whether the
adaptation approach improves the efficiency of the adaptation.
Efficient means the adaptation of the QMs can be performed in
an effort-efficient manner. Consequently, G3 addresses R3.

B. Study Context and Participants
The target population comprises people working as

software quality managers in a company or in similar positions
where part of their job is to adapt, set up, or maintain software
QMs. We conducted the study in a workshop setting. The four
participants were a mixture of practitioners and researchers
experienced in working with QMs. In addition, they had
experience with the Quamoco meta-model and the
corresponding Editor. They had only rudimental knowledge
regarding the proposed adaptation method and no experience
with the Adaptation Assistant. To prepare the participants for
the study, we presented the adaptation method together with
brief examples. After that, we introduced its implementation
provided by the Adaptation Assistant add-on.

C. Concept Operationalization
We collected subjective judgments to investigate the three

major study goals by asking the study participants closed
questions related to the goals. Each question had to be
answered on a 7-point Likert scale: {1: strongly disagree … 7:
strongly agree} plus the answer option “I don’t know”.
– Perceived_consistency: “Do you consider the QM obtained

to be syntactically correct?” This is a subjective assessment
by the participants of formal QM consistency (G1).

– Perceived_appropriateness: “Do you consider the QM
obtained to be appropriate with respect to its goal (i.e., the
model is complete and correct with respect to its goal)?”
This is a subjective assessment of appropriateness (G2).

– Perceived_efficiency: “Do you think that the adaptation can
be performed efficiently?” This is a subjective assessment
of the efficiency of the adaptation (G3).
Besides evaluating the goals based on the perception of the

participants, we also wanted to evaluate them in a more
objective way. Since it is difficult to objectively determine the
degrees to which R1 and R2 are fulfilled directly, we addressed
them indirectly by identifying the minimum set of model
elements that need to be adapted (i.e., added, modified, or
deleted) in order to obtain a consistently and appropriately
adapted QM. This allows us to define measures regarding the
completeness and correctness of the performed adaptation and
use the measurement results as a more objective indicator for
the model’s consistency and appropriateness: A more
completely and correctly adapted model is more consistent and
appropriate.

Completeness: We say that a QM is completely adapted if
all of its elements are adapted that needed to be adapted to
obtain a model that is consistent with the structure described by
the meta-model and appropriate for addressing its goal. We
measure this concept using two base measures: the total
number of elements that should be adapted in the QM based on
the provided adaptation scenario and the number of elements in
the QM that were adapted by the study participant:

adaptedbeshouldthatelementsofnumber
adapted be should that elementsadaptedofnumbersscompletene =

Correctness: We say that a QM is correctly adapted if all of
its elements that need to be adapted are correctly adapted with
respect to the goal of the adapted QM and defined consistency
rules. This means that we measure the degree of correctness as
the percentage of correctly adapted elements:

adaptedbeshouldthatelementsofnumber
elementsadaptedcorrectlyofnumberscorrectnes =

Efficiency: We measured efficiency in a more objective

way by relating the number of correctly adapted elements and
the time needed for the adaptation:

adaptationforrequiredtime
elements adaptedcorrectly ofnumber efficiency =

D. Hypotheses
During the study, we tested the following six hypotheses:
HSub1 (Perceived consistency): The participants consider
the QMs obtained using the Adaptation Assistant (AA) to
be more correct syntactically than the QMs obtained using
the Editor (E):

ȝ(perceived_consistency(AA)) > ȝ(p_con(E))
HSub2 (Perceived appropriateness): The participants
consider the QMs obtained using the Adaptation Assistant
to be more complete and correct with respect to their goals
than the QMs obtained using the Editor:

ȝ(perceived_appropriateness(AA)) > ȝ(p_app(E))
HSub3 (Perceived efficiency): The participants consider the
adaptation to have been more efficiently performed using
the Adaptation Assistant than using the Editor:

ȝ(perceived_efficiency(AA)) > ȝ(p_eff(E))
HCmp (Completeness): The adapted QMs obtained using the
Adaptation Assistant are more completely adapted than the
adapted QMs obtained using the Editor:

ȝ(completeness(AA)) > ȝ(completeness(E))
HCrr (Correctness): The adapted QMs obtained using the
Adaptation Assistant are more correctly adapted than the
adapted QMs obtained using the Editor:

ȝ(correctness(AA)) > ȝ(correctness(E))
HEff (Efficiency): QM adaptation is more efficiently
performed when using the AA than when using the Editor:

ȝ(efficiency(AA)) > ȝ(efficiency(E))

E. Study Design and Implementation
In the study, each participant assumed the role of a quality

manager and was asked to perform the following activities:
– Finding most suitable reference model: The participants

had to select a reference model from a pool of QMs based
on a provided adaptation scenario. Most suitable means that
the model meets most of the characteristics requested.

– Producing an adapted QM: The participants had to execute
adaptation tasks based on a provided adaptation scenario.

TABLE III. STUDY DESIGN

 QM Editor Adaptation Assistant

Group 1* Adaptation Scenario A Adaptation Scenario B

Group 2* Adaptation Scenario B Adaptation Scenario A

*Both groups had the same number of randomly assigned participants.

Both activities were performed by the four participants
twice: once with one scenario and the Editor and once with a
second scenario and the Adaptation Assistant. We chose a
cross-design with two different adaptation scenarios (Table III)
in order to deal with the low number of participants while
keeping the design-inherent learning effects low. After each
adaptation scenario, the participants provided their feedback by
filling out a questionnaire, which asked them to subjectively
rate the formal consistency and appropriateness of the obtained
QM as well as the efficiency of the adaptation. After the
execution of both scenarios, the entire work-space of each
participant was collected and saved for subsequent analysis.
Based on this analysis, the completeness, correctness, and
efficiency values were determined.

For the study, we provided each participant with the
following input: (1) two QM application goals that should be
used by the participants to find the most appropriate reference
model, (2) two pools of QMs from which the most appropriate
reference model should be selected by the participants on paper
and in the adaptation tool, (3) two adaptation scenarios
including practical adaptation task descriptions, (4) two
example QMs that should be adapted by the participants.

F. Study Results
In this subsection, we present the descriptive statistics for

the variables measured and the results of hypotheses testing.
Descriptive Statistics: Table IV shows the mean, median,

and standard deviations (stdev) for the eight adaptations
performed during the study, separated into applications of the
Editor (our baseline) and the Adaptation Assistant.

TABLE IV. STUDY RESULTS

 QM Editor Adaptation Assistant
 mean median stdev mean median stdev

Completeness
(in %) 15.00 15.78 6.76 78.55 76.52 7.46

Correctness
(in %) 8.93 9.98 3.87 70.34 69.17 8.82

Efficiency
(elements/min) 0.37 0.41 0.18 2.90 2.84 0.54

Perceived
Consistency* 3.50 3.50 2.38 6.00 6.00 0.82

Perceived
Appropriateness* 2.00 2.00 0.82 5.75 6.00 0.50

Perceived
Efficiency* 1.25 1.00 0.50 5.75 5.50 0.96

*measured using a 7-point Likert scale with 1: strongly disagree, 2: disagree, 3: somewhat disagree,
4: neither agree nor disagree, 5: somewhat agree, 6: agree, 7: strongly agree.

Hypotheses: As our sample was not large enough to assume

a normal distribution, we applied non-parametric one-sided
Wilcoxon signed-rank tests with alpha=0.05.

– HSub1 (perceived_consistency): accepted (p=0.032)
– HSub2 (perceived_appropriateness): accepted (p=0.033)
– HSub3 (perceived_efficiency): accepted (p=0.034)
– HCmp (completeness): accepted (p=0.034)
– HCrr (correctness): accepted (p=0.034)
– HEff (efficiency): accepted (p=0.034)

G. Threats to Validity
The two major threats to the validity of our results are the

small sample size and the potential learning effects.
Convenience sample and sample size: The participants were

chosen due to their experience in quality modeling in general
and with the quality meta-model as well as with the Editor in
particular. Therefore, there were only a limited number of
potential participants, resulting in a convenience sample of
limited size. However, the participants are more representative
of the target population (i.e., professionals performing QM
adaptations as part of their job) than, for example, graduated
students of computer science or software engineering.

Potential learning effects: Although the participants were
not requested to follow a particular process for adapting the
first model using the Editor and were confronted with two
different adaptation scenarios, they may have learned from the
first adaptation, which may have positively influenced their
performance during the second adaptation using the Assistant.

Further threats are that only a limited timeframe was
available for the participants to conduct the adaptation tasks
and that the attitude of the participants toward the well-known
Editor or the newly introduced Adaptation Assistant may have
influenced their subjective evaluation result.

H. Interpretation
Not only could all stated hypotheses be accepted, but the

magnitude of the improvement using the tool-supported
adaptation method also seems to be high when compared to
performing the adaptation without explicit adaptation support
using only the Editor. Completeness and correctness could be
improved by an average of ~60%. The efficiency of the
adaptation could be increased by ~factor 8. Moreover, the
effect was perceived by the participants and could be measured
by analyzing the adapted models. Therefore, although several
threats to the study’s validity exist, we conclude that the
proposed adaptation method can increase the efficiency of
adaptation tasks and the quality of their results in terms of
consistent and appropriate models. Further, the study results
indicate that typical QM adaptations are difficult to handle
adequately without a tool-supported adaptation method. The
main reason for these results appears to be that even at first
glance, manageable adaptation tasks result in many subsequent
sub-tasks that must be performed in order to assure the
completeness and correctness of the adapted model. In part,
these sub-tasks are hard to identify without support due to the
complexity of a typical QM, and even harder to remember until
they can be resolved due to their large number, especially if
there is no process providing guidelines throughout the
adaptation.

V. SUMMARY AND FUTURE WORK
We illustrated that adapting models is important for getting

QMs that fit the needs of a concrete application context without
building each model from scratch. However, in many cases the
adaptation of a QM is a complex and error-prone task.

Therefore, we presented a flexible but rigorous approach to
adapting QMs under the assumption that they conform to a
principal structure provided by an appropriate meta-model. The
proposed method addresses the need for efficiently adapting
QMs in a way that results in consistent and appropriate models.
The consistency of the adapted QM is covered by the definition
of elementary adaptation operations and corresponding
consistency rules; further, the method integrates a structured
definition of the QM goal and addresses the efficiency of
adaptation through automation (goal-oriented) tailoring.

The conducted study indicates that the performance of a
QM adaptation can be significantly improved when using a
well-defined and tool-supported adaptation method such as the
one presented in this paper. Not only were the consistency and
appropriateness of the adapted QM significantly improved, but
so was the efficiency of performing the adaptation tasks.

In a next step, the adaptation method including the rules for
identifying the required adjustment tasks should be transferred
to an updated QM structure and get evaluated in an industrial
field study in order to ensure its applicability in practice.

ACKNOWLEDGMENT
Parts of this work have been funded by the BMBF project

Quamoco (grant no. 01IS08023C). We gratefully acknowledge
Jens Göddel for his contributions and thank Sonnhild
Namingha for reviewing a first version of this article.

REFERENCES
[1] Andersson T and Eriksson IV (1996): Modeling the quality needs of an

organization’s software. In: Proc. of the 29th Hawaii Int. Conf. on
System Sciences Vol. 4: Organizational Systems and Technology, 139.

[2] Andreou AS and Tziakouris M (2007): A quality framework for
developing and evaluating original software components. In: Inf. Softw.
Technol., 49(2), 122-141.

[3] Basili V and Weiss D (1984): A methodology for collecting valid
software engineering data. In: IEEE Transactions on Software
Engineering, 10(3), 728-738.

[4] Basili VR and Rombach HD (1987): Tailoring the software process to
project goals and environments. In: Proc. of the 9th International
Conference on Software Engineering, 345-357.

[5] Behkamal B, Kahani M, and Akbari MK (2009): Customizing ISO 9126
quality model for evaluation of B2B applications. In: Inf. Softw.
Technol., 51(3), 599-609.

[6] Bianchi A, Caivano D, and Visaggio G (2002): Quality models reuse:
experimentation on field. In: Proc. of the 26th International Computer
Software and Applications Conference on Prolonging Software Life:
Development and Redevelopment, 535-540.

[7] Budlong FC, Szulewski PA, and Ganska RJ (1996): Process tailoring for
software project plans. Available: http://www.stsc.hill.af.mil/resources
/tech_docs/process_plan [Last accessed: 2011 Mai 02].

[8] Calero C, Cachero C, Córdoba J, and Moraga M (2007): PQM vs.
BPQM: studying the tailoring of a general quality model to a specific
domain. In: Advances in Conceptual Modeling – Foundations and
Applications, 192-201.

[9] Eriksson I and Törn A (1991): A model for IS quality. In: Software
Engineering Journal, 6(4), 152-158.

[10] Fitzgerald B, Russo N, and O‘Kane T (2003): Software development
method tailoring at Motorola. In: Commun. ACM, 46(4), 64-70.

[11] Fitzgerald B, Russo N, and O'Kane T (2000): An empirical study of
system development method tailoring in practice. In: Proc. of ECIS
2000. Available: http://aisel.aisnet.org/ecis2000/4

[12] Franch X and Carvallo JP (2003): Using quality models in software
package selection. In: IEEE Software, 20(1), 34-41.

[13] Humphrey WS and Kellner MI (1989): Software process modeling:
principles of entity process models. In: Proc. of the 11th International
Conference on Software Engineering, 331-342.

[14] ISO/IEC 9126-1 (2001): Software Engineering - Product Quality - Part
1: Quality Model.

[15] Khaddaj S and Horgan G (2005): A proposed adaptable quality model
for software quality assurance. In: Journal of Computer Science, 1(4),
482-487.

[16] Kitchenham BA, Linkman S, Pasquini A, and Nanni V (1997): The
SQUID approach to defining a quality model. In: Software Quality
Control, 6(3), 211-233.

[17] Kläs M and Münch J (2008): Balancing upfront definition and
customization of quality models. In: Wagner S (Ed.) et al.: Tech. Univ.
München: Proc. of the 1st Workshop on Modeling and Assessment of
Software Quality SQMB’08, 26-30.

[18] Kläs M, Heidrich J, Münch J, and Trendowicz A (2009): CQML
Scheme: A classification scheme for comprehensive quality model
landscapes. In: Proc. of 35th EUROMICRO Conference Software
Engineering and Advanced Applications, 243-250.

[19] Kläs M, Lampasona C, Nunnenmacher S, Wagner S, Herrmannsdörfer
M, and Lochmann K (2010): How to evaluate meta-models for software
quality? In: Abran A (Ed.) et al.: Proc. of the joined International
Conferences IWSM/ MetriKon/ Mensura, 443-462.

[20] Kläs M, Lampasona C, Trendowicz A, and Münch J (2010): Goal-
oriented adaptation of software quality models. In: Proc. of the 3rd
Workshop on Modeling and Assessment of Software Quality SQMB’10.

[21] Kläs M, Lochmann K, and Heinemann L (2011): Evaluating a quality
model for software product assessments – A case study. In: Wagner S
(Ed.) et al.: Tech. Univ. München: Proc. of the 4th Workshop on
Modeling and Assessment of Software Quality SQMB’11, 14-24.

[22] V-Modell XT: HTML Documenation v1.3 [Online]. Available: http://v-
modell.iabg.de/v-modell-xt-html-english/index.html [Last accessed: 2011
May 02].

[23] Lampasona C and Kläs M (2011): Supporting the adaptation of software
quality models – An empirical investigation. In: Proc. of the 4th
Workshop on Modeling and Assessment of Software Quality SQMB’11.

[24] McCall JA, Richards PK, and Walters GF (1977): Factors in software
quality. Concept and definitions of software quality: Final Technical
Report Springfield: National Technical Information Service (NTIS),
Reportnr. RADC-TR-77-369 (I, II and III).

[25] Münch J (2005), Goal-oriented Composition of Software Process
Patterns, Proc. of the 6th Int. Workshop on Software Process Simulation
and Modeling (ProSim 2005), 164-168

[26] Plösch R, Gruber H, Körner C, Pomberger G, and Schiffer S (2010):
Adapting quality models for assessments - Concepts and tool support.
In: Proc. of the 3rd Workshop on Modeling and Assessment of Software
Quality SQMB’10, 12-21.

[27] Quamoco: Software quality standard for Germany. http://www.
quamoco.de [Last accessed: 2011 Mai 02].

[28] Wagner S, Broy M, Deißenböck F, Kläs M, Liggesmeyer P, Münch J,
and Streit J (2010): Softwarequalitätsmodelle. Praxisempfehlungen und
Forschungsagenda. In: Informatik Spektrum. 33(1), 37-44.

[29] Wagner S, Lochmann K, Winter S, Goeb A, Klaes M, Nunnenmacher S
(2010): Software Quality in Practice Survey Results [Online]. Available:
https://quamoco.in.tum.de/wordpress/wp-content/uploads/2010/01/Sof
 ware_Quality_Models_in_Practice.pdf [Last accessed: 2011 Mai 02].

