
DiplodocusDF, a domain-specific modelling language

for software defined radio applications

Jair Gonzalez-Pina, Rabéa Ameur-Boulifa, Renaud Pacalet

Telecom ParisTech, LTCI CNRS

2229 Route des Cretes, B.P. 193, 06904 Sophia-Antipolis Cedex, France

Email: first.last@telecom-paristech.fr

Abstract—Given its intrinsic complexity, it is not efficient to
develop software defined radio (SDR) systems following traditional
methodologies. A new methodology is necessary, which should allow
the description of the applications at higher abstraction levels.
This paper describes such a methodology. It includes domain-
specific modelling languages (DSML) for SDR applications / SDR
architectures, and the mechanisms to generate automatically the
deployment code. The DSML language is described with precise
syntax and semantics to support simulation, synthesis, and formal
analysis. The potential of the modelling language is illustrated by
designing a cognitive radio application called Welch periodogram
detector.

I. INTRODUCTION

Modern radio systems are required to support multiple com-

munications standards. Software defined radio (SDR) archi-

tectures enables this functionality by providing reconfigurable

processing architectures. The SDR architectures are controlled

by embedded software applications called SDR applications (or

waveforms).

We propose a model-driven design (MDD) methodology for

SDR applications. For this, we identified and analysed the

characteristics of SDR applications and SDR architectures and

defined DiplodocusDF, a domain-specific modelling language

(DSML) that captures the semantics of waveforms/architectures

in a high level of abstraction. DiplodocusDF allows fast simula-

tion for design exploration and automatic code generation from

the abstract model.

This paper presents a precise description of the syntax and

semantics of DiplodocusDF. This language is based on the

following principles: (a) separation of application and archi-

tecture models (b) data-flow/declarative oriented modelling,

such that the applications are modelled as a set of data-dependent

tasks, without requiring a control-flow description, (c) data-

model refinement, to capture with more detail the semantics

of waveforms, (d) the use of UML, as it allows independent

description of applications and architectures. Also, UML has the

flexibility to be extended to cover data-flow models and SDR-like

data channels. Moreover, it is already well accepted as modelling

language and is supported for modelling capture and simulation

by several tools, such as TTool [1].

The research leading to these results has received funding from the European
Community’s Seventh Framework Programme (FP7/2007-2013) under grant
agreement SACRA n 249060.

II. SDR SYSTEMS

SDR systems present high-performance requirements (hard

deadlines, low-power consumption, etc.), and they are required

to be executed in highly constrained resource environments

(size, power, etc.). Considerable research has been conducted

to propose sophisticated SDR architectures, which achieve high

computation efficiency and reconfigurability. For example, the

architecture in [2] offers an asynchronous hardware network of

coarse grained operators which are configured by a main proces-

sor, and where the data is sent directly among operators, without

requiring DMA transfers. The architecture in [3] offers a group

of co-processors were each coprocessor is capable of executing

several similar operations (sequentially), e.g. component-wise

product and component-wise addition. This architecture relies on

DMA to move data between the coprocessors. The architecture

in [4] provides a set of software functions which are all executed

by a general purpose processor.

The challenge is now (as highlighted in [5], [6]) the develop-

ment of waveforms . Waveform development requires knowledge

of communications algorithms and communications standards,

but it involves also many other aspects more related to its

implementation, such as: embedded software languages, real-

time, fault tolerant, reconfigurability, security, operating sys-

tems, multi-threading, security, sophisticated SDR platforms, etc.

Besides, the waveform developer should resolve problems of

portability, interoperability, and performance.

It is not efficient to develop such systems following the

traditional methodology. It requires many design implementation

and verification cycles, trying to reconcile, resolve and unify

potentially opposite aspects. It is necessary to abstract the

waveform description from all the implementations complexity,

and automate the transformation into deployment description.

We extended DIPLODOCUS [7], a MDD methodology for for-

mal design exploration, to DiplodocusDF, a MDD methodology

for the domain of SDR: (1) to support the description of wave-

forms, which are based on data-flow, while DIPLODOCUS was

only suitable for control-based applications. (2) to support the

particularities of novel SDR architectures. (3) to support transla-

tion into C-language description. The DiplodocusDF models can

be simulated, formally verified and automatically transformed

into the final C-language representation.

This paper focuses on the precise specification of

DiplodocusDF. It is a key component of the overall methodology.

It effectively separates the pure waveform aspects from

the implementation details. The syntax and semantics of

DiplodocusDF were defined formally. Given that DiplodocusDF

models have precise semantics, they support translation

into formal languages, rapid simulation and automatic code

generation.

III. MODELLING SDR SYSTEMS

SDR systems are logically divided into two main layers:

SDR architectures and waveforms, as shown in Fig.1. SDR

architectures are based on coarse grain parametrizable operators

(POs) which are common to most of the existing telecommuni-

cations standards. POs are drawn as boxes where P1, P2, and Pn

refer to their parameters. For example a fast-fourier transform

(FFT) operator will require as parameter the number of points

used in the FFT analysis. POs can be implemented either as

SW functions, or as HW components (accelerators, application-

specific coprocessors, etc.).

The waveforms are in charge of controlling the execution of

the POs available in a given SDR architecture. As shown on

Fig.1, a waveform is a network of operations (OPs) which set

the PO’s parameters and fires the operator’s execution.

P1 P2 Pn P2P1 P2 Pn P1 Pn

SDR architecture

OP3

SDR Waveform

OP4

OP2

OP1
OPn

PO1 PO2 POn

Fig. 1: SDR system abstraction.

A. Extended SDR model-driven design methodology

The extended methodology is depicted in Fig.2. It is composed

of the following steps:

1) Abstract modelling DiplodocusDF consists of two DSML.

One for architectures, which is briefly described in Sec-

tion III-B1. A second one for waveforms, it is described

in detail in section IV.

2) Mapping the waveforms to the selected architecture.

3) Formal verification by transforming the mapped appli-

cation into its formal representation. The extended lan-

guage was specified such that retains the support of

DIPLODOCUS [7] to formally verify functional or non-

functional properties.

4) Code generation for final representation, either SystemC

code or C-language code. Each operation from the wave-

form is transformed into a C-function, the C-functions

are scheduled for execution according to the status of

its input signals, but also according to the policy of a

runtime environment, which manages the execution of

the C-functions. C-functions are based on an API which

abstracts the functionalities of the given SDR architecture.

5) Cycle-accurate simulation to validate functional require-

ments and performance requirements such as execution

time, power consumption, etc.

6) C-compiling to generate the final executable code. It

compiles the code generated automatically (C-language

code), the runtime and the architecture API to generate

a final executable.

Steps (1), (2), and (3) have been integrated into previous

design exploration methodologies, but as noted in [8], [9],

there remains a synchrony problem between the model and the

final implementation, i.e., the final implementations does not

reflect the initial model, specially since the development is done

manually. Our methodology contributes to solve the synchrony

problem by adding step (4), which is the automatic generation

from the mapped model. It also contributes to make true the

paradigm correct-by-construction, as the generated code was de-

rived from a model that was formally verified. Although, it would

be necessary to prove that the code generation mechanisms, and

the runtime does not change the properties that were verified

formally.

intermediate

SystemC
code

Formal verif.
Fast simul &

C−language
code

RunTime
C−code

executable

Code generation

Mapping

Model
capture

DiplodocusDF

(5)

(4)(3)

(1)

(2)

(6)

model
Architecture

model
Waveform

simulation
Cycle−aqurated.

Arch API

C−compiling

Fig. 2: Proposed model-driven design methodology.

B. DiplodocusDF

DiplodocusDF is a domain specific modelling language based

on UML. It extends the DIPLODOCUS profile [1] for the SDR

domain. DiplodocusDF fosters re-usability and parallelism. Re-

usability is a key aspect of diplodocusDF, it is possible to define

components that can be used in any application for any SDR

architecture that supports that particular operator. This is possible

thanks to the mixture of declarative/imperative description capa-

bilities. The network of operations and the data dependencies

among them are described in a declarative manner, using the

component based UML profile, while the internal behaviour of

each operation is described in an imperative way, using UML

activity diagrams. A second key aspect of diplodocusDF is that

is exposes the potential parallelism in a waveform. DiplodocusDF

extends the DIPLODOCUS concepts of components, ports and

data-abstraction. It also extends the semantics of several activity

diagram operators.

1) SDR architecture model: We extended the architecture

profile from [1] to support the particularities found in SDR

architectures, which were described in Section II. The exten-

sions include: (1) direct data transfer between processing nodes

(stream behaviour), (2) hardware accelerators (HWA) can execute

multiple tasks, sequentially, one after the other with no time

sharing. Normally, HWA are seen as components which can only

execute one task, but in SDR architectures they tend to be highly

configurable, (3) storage nodes are divided into memory buffers

of different characteristics.

2) Mapping waveforms to SDR architectures: The mapping

of the waveform to the SDR architecture is done manually

by the user, but directed by a set of rules that ensure a well

formed model. There are general rules applicable for any given

architecture, for example, (a) routing operations can be mapped

only to general purpose processing nodes, (b) transformation

operations can be mapped to any processing node, (c) links are

mapped to buffers (which belong to a memory node), etc. The

mapping rules will be described formally and the simulation tool

will be extended accordingly

C. Prior Art

UML is well established as a good base for MDD method-

ologies, papers [10] and [9] discuss the potential of UML for

model-driven design, in general for embedded systems (control,

communications, etc.). The authors of [11], [12], [13] propose

UML/MDD methodologies to generate the components of data-

flow systems, without considerations of the software components.

In our case, the hardware components are already available, and

we search to generate the coordination software. The paper [14]

proposes a UML based methodology for code generation of em-

bedded applications. It describes a series of transformations into

intermediate languages and assumes a last transformation into

executable code. It considers only monoprocessor architectures,

while nowadays SDR platforms are multiprocessor based, either

homogeneous or heterogeneous. The papers [15], [16] propose

MDD/MARTE methodologies for general embedded applica-

tions. A too general modelling language leads to complex models

which are difficult to maintain, and therefore get abandoned. We

define in this paper a domain-specific modelling language for

SDR systems, which can be considered data-flow systems. In

fact, UML lacks the basic constructs for data-flow applications,

this was already identified by the authors of [17], who studied the

possibility to integrate synchronous data-flow models with UML

and proposed a data-flow notation with rather documentation

purposes. The paper [18] presents an approach to use activity

diagrams of UML 2.0 for business data-flow applications, this

proposal is similar to ours in covering flat control-flow/data-

flow, also suggested in [19] for data-flow models in general, but

their objective is only modelling and no concepts of synthesis

are taken into account. Although this paper focuses on the

modelling language, its precise description involves not only

expressiveness, but also transformation semantics into formal

and deployment languages. The paper [20] proposes a methodo-

logy based on UML/MARTE/CCSL for synthesis of data-flow

applications. Its methodology considers the time constrains of

data-flow applications to statically generate code, as it is related

to the synchronous data-flow language SIGNAL. The case of

SDR systems is a particular case of synchronous data-flow, as

the number of processes samples is known, but the execution of

some operations depends on the results of previous operations,

this makes no possible to generate a static scheduling solution.

Our methodology considers this aspect and the scheduling so-

lution is an hybrid one, mixing event-driven and time-driven

operations. Other non UML-based MDD methodologies have

been proposed for SDR systems. For example, the paper [21]

proposes a proprietary data-flow XML language, used to describe

the waveforms and the parametrizable operators (they call them

kernels). They do not really separate both models, forcing to

have a generation mechanism specific for each target platform.

The papers [22], [23] describe MDD methodologies based on the

proprietary language/tool Simulink/Matlab. This is a handy ap-

proach, as it is common that communications engineers described

their algorithms in Matlab for functional validation. However,

simulink does not allows formal analysis of its models, this

extends the phase of test in the development process. Also, it is

not possible to extend the Simulink’s transformation mechanisms

for different execution architectures.

Resent design methodologies have shows positive results on

formal design exploration. The output of these methodologies

is a model with properties that are formally proved. Extending

these methodologies to automatically convert its output model

into deployment language contributes to develop systems which

are correct-by-construction. This paper presents such an extended

methodology for the domain of software defined radio.

IV. DIPLODOCUSDF WAVEFORM MODEL

A waveform in DiplodocusDF is modelled as a network of

operations which exchange signals through unidirectional links,

as seen in Fig.1. As mentioned in section II, the waveforms

are in charge of controlling the execution of SDR architectures.

Consequently, each waveform operation controls the execution of

a SDR operator. Our waveform model considers also the actual

execution of the SDR operator in an abstract way, with no details

on the behaviour of the SDR operator, but as an atomic task that

is fired for execution.

P1 P2 Pn

(a)

SDRdata

Operation

(1) Input (4) Output
data

(2) Configuration

Arch

(3) Firing

(5) execution

r

(b)

Operation

Signal(s)
Input

Signal(s)
Output

Waveform
status

data−blk

blk−par blk−par

data−blk

status

V

Firing
and

Config.

A
f

A
x

Execution

Fig. 3: SDR operation model.

A. Signals

The signals model the data-blocks produced/consumed by the

SDR operations. The signals are put in a link through ports. The

ports are tuples composed of several elements such as: name,

direction, abidance, status, data-block, and data-block parame-

ters. Some port elements are set during execution time, such

as status, data-block and data-block parameters. These elements

define a signal. Other port elements are set at declaration time,

including: name, direction, and abidance. The name identifies

the port, and is used for code-generation purposes. The direction

flag is used to identify the producer port from the consumer.

When the abidance flag is set to true, the port’s output signals

are marked as constant.

During execution, the signals are marked as new after being

produced, and are marked old when they are consumed. If the

signal was marked as constant, it will not be marked as old

after being consumed, therefore it can be reused. The signal

carries information about its data-block (data-block parameters),

for example block size and block data type. This information can

be used by the consumer operation to adjust its behaviour. It is

possible to have as many data-block parameters as necessary for

a particular waveform.

B. Operations

A waveform is composed of a number of SDR operations that

have data dependencies among them. When the data dependen-

cies of a SDR operation are met, the operation is eligible for

execution. The execution process of a SDR operation follows

the next steps: (1) Wait for the inputs conditions, (2) setting the

execution parameters, (3) firing the execution, and (4) inform

when the output data is available. The model also considers the

execution of the SDR operation, which would be step (5) in

the overall process. Fig.3-(a) depicts graphically the execution

process of an operation. In diplodocusDF, steps (1), (2), (3), and

(5) are described in a single sequential task called firing. Step (4)

is described in a different task called execution. The two tasks

are differentiated as it is possible to execute them by different

processing elements. The two tasks are depicted as components

of a SDR operation in Fig.3-(b), where Af is the firing task and

Ax is the execution of the SDR operation is requested through

the signal r. The set of variables V is accessible by both tasks,

helping to control the behaviour of the operation.

The execution of an operation starts when its fire rule is met.

This means that the input signal is marked as new. For operations

with more than one input signals, one of two rules can be used,

(1) and rule, where all the input signals are new , (2) or rule,

where at least one of the signals is new . For all cases, it is

necessary that the output signal(s) be marked as old.

We identify two types of operations: (1) transformation

operations, which in fact transform the inputs into different

outputs, e.g., Component-wise addition, Fast-Fourier transform.

(2) routing operations which help to decide what signals have

to be activated, thus what operator will be executed in order to

achieve a desired behaviour, the routing operations are used to

describe control structures, e.g., Loop and conditional structures.

Routing operations do not have an execution task associated.

1) Activity diagrams: The behaviour of the operations is de-

scribed using UML activity diagrams (ADs). ADs are defined by

the OMG as graphical representations of step-by-step activities

and actions that are part of a logical process. Activities and

actions are called in general ”instructions” along this paper. In

diplodocusDF we use ADs to describe the behaviour of each

SDR operation that belongs to a waveform. In fact, they require

two activity diagrams, one for firing and a second one for

execution:

• Ax describes the actual execution of the operation. The

instructions used in this activity diagram are described in

the Table I.

• Af describes the parameter generation and fire of operation

execution. The Af instructions are described in the Table II.

The firsts columns of tables II and I show the activity diagram

(AD) instructions extended for SDR applications. The second

columns show its representation, which will be used to state

formally the diplodocusDF syntax and operational rules, for

example,

−→
B
◮ p represents the write instruction, which writes a

signal to the port p with a vector of parameters
−→
B . The thirds

columns give the semantics of each activity diagram instruction.

For illustration purposes of ADs use and operation, we use

the activity diagram DMA.Af from Fig.5 (in the second dotted

square). The first instruction is the initial instruction denoted by

• from where the AD proceeds to the next state, the read instruc-

tion denoted by

−→
O∫
◭ DMA in, where the execution of DMA.Af

AD blocks until receiving a signal through the DMA in port.

Once the signal is received, the Os variable receives the value

carried by the first (and only) parameter DMA.DMA in.
−→
B , and

the AD proceeds to the next instruction, which is the request

instruction denoted by
xDMA

⊲⊳ . The request instruction starts the

execution of DMA.Ax.

C. Waveform syntax

We describe in this section the formalisation of our proposed

UML profile DiplodocusDF waveform. The Fig.4 shows an

example of waveform, which model the Welch periodogram

detector application, discussed in Section V.

1) Notations: We introduce some notations which will be

used along the formal description of diplodocusDF. We denote

a tuple with n elements by 〈e0, e1, ..., en〉. Given a tuple S, the

ith element is reached by S.ei. We represent a vector A by
−→
A .

−→
A ⊑

−→
B is true if the vector

−→
A is sub-vector of

−→
B .
−→
A ⊑ V is

true if all the elements of vector
−→
A are found in V .

We denote by ⇑ a (resp. ⇓ a) a boolean indicating a rising

(resp. falling) edge on a signal a.

We denote by v : τ the fact that variable v has been defined

with the particular type τ .

We assume each instruction in an activity diagram is uniquely

tagged with a label st. The label of the instruction which follows

st in the activity diagram can be fetched with next(st).
We also provide auxiliary functions: check ⊥(a) (resp.

check ⊤(a)) that returns true when a = false (resp. a = true)

otherwise it returns false. We use ← to denote the assignment

of a value to a variable or flag. We use⇐ to denote the multiple

assignment. We also use a = cond?b :c to denote that the variable

a gets the value b if the condition cond is true, else it gets c.

Definition 1. Waveform A waveform is a network of operations

interconnected by links, W = 〈O,L〉

The operations form a hierarchical collection of composite and

primitive (basic) operations. As mentioned in Section IV-B, the

basic operations can be the routing operations or data transfor-

mation operations, i.e., O = Ob ∪ Oc and Ob = Ot ∪ Or.

• Data transformation operations ∀Ot ∈ Ot, Ot =
〈Af ,Ax,P,V, req〉 consisting of:

Fig. 4: DiplodocusDF waveform for Welch periodogram detector.

– An activity diagram Af for firing process.

– An activity diagram Ax for execution process.

– A set of ports P . Where ∀P ∈ P,P = 〈l, d, a, e, c,B〉,
consisting of:

∗ l is a label from the alphabet A.

∗ d is a direction flag with d ∈ {in, out}..
∗ a is an abidance flag a ∈ {true, false}..
∗ e is a status flag, with e ∈ {true, false}.
∗ c is an abstract data-block channel.

∗
−→
B is a vector of data-block parameters, where ∀Bi ∈−→
B ,Bi : t ∈ {int, char}. B can be empty.

– A set of local variables V , where ∀V ∈ V,V : t ∈
{int , char}. These variables are used in Ax and Af .

– a flag req, with req ∈ {true, false}.

• Data routing operations. The data routing operation is

similar to the transformation operation, except that it does

not have execution activity diagram. So, ∀Or ∈ Or, Or =
〈Af ,P,V, req〉.

• Composite operations. ∀Oc ∈ Oc,Oc = 〈Wc, Pc, Vc〉
consisting of:

– Wc is a set of waveforms as defined in Definition 1.

– Pc is a set of ports.

– Vc a set of variables.

• Links. A link defines a data dependency between two

operations. ∀L ∈ L, ∃O,O′ ∈ O, L ={O.p,O′.p′}.

By abuse of notation we denote by O.p the fact that p ∈ O.P .

To define a hierarchical structure we need the concept of

inner port, which dictates the direction of the data dependency

modelled by the link. If a port is not an inner port, then it is an

outer port.

Definition 2. Inner port. Let ∃Oi ∈ O
c be an operations such

that Oi = 〈Wi,Pi,Vi〉. If ∃Oj ∈ O such that Oj ∈ Wi.O and

∃ L ∈ L L = {Oi.p,Oj .p
′}, then Oj .p

′ is called the inner port

of L.

The inner port concept is attached to the link, therefore we

say ”the inner port of L”.

The linking of operations is driven by rules. For two operations

which are not contained one in the other, a link between them

shall include ports with different directions, we apply the rule of

complementary ports. In fact, the values of the parameters l, d,

and a of the most internal ports are declared by the user, while

the outer ports inherit the values from the inner ports.

Rule 1. Complementary ports Let Oi,Oj ∈ O be two oper-

ations. If ∃ L = {Oi.p,Oj .p
′} and L has no inner port, then

Oi.p.d 6= Oj .p.d.

The ports can be part of only one link, i.e., broadcast is not

permitted. We follow the Point-2-Point rule in this case.

Rule 2. Point-2-Point Let L and L′ two links. If ∃Oi.p ∈ L ∧
Oi.p ∈ L′ and if Oj .p

′ ∈ L ∧Ok.p′ ∈ L′ are both inner ports or

both outer ports then L = L′.

To connect two ports they should have the same number

of function parameters and the corresponding type of each

parameter should be the same. We follow the matching ports

rule in this case.

Rule 3. Matching ports Let Oi and Oj two operations. If

∃ L ∈ L such L = {Oi.p,Oj .p
′}, then

∣

∣

∣
Oi.p.

−→
B

∣

∣

∣
=

∣

∣

∣
Oj .p.

−→
B

∣

∣

∣

and ∀k,Oi.p.Bk : t = Oj .p.Bk : t.

For composite operations, the direction of ports is computed

recursively form the inner ports.

Rule 4. Direction inheritance of ports Let Oi ∈ O
c be an

operation such that Oi = 〈Wi,Pi,Vi〉. Let Oj ∈ O be an

operation such that Oj ∈ Wi. If ∃ L = {Oi.p,Oj .p
′}, then

Oi.p.d = Oj .p
′.d.

Among the ADs instructions we find read and write, denoted

as

−→
S
◭ p and

−→
S
◮ p respectively (see Table II). The instructions mean

that the operation reads/writes a signal from/to the port p, the

signal has a vector
−→
S of data-block parameters. The following

rule enforces that the number of variables (

∣

∣

∣

−→
S

∣

∣

∣
) written (resp.

read) should match in number and type, the data-block vector of

the writing (resp. reading) port (Oi.p.
−→
B).

Rule 5. Signal write parameters (resp. Signal read

parameters) ∀Oi ∈ O, if (
−→
S
◮ p) ∈ Oi.A

f (resp.

(
−→
S
◭ p) ∈ Oi.A

f) where
−→
S ⊑ Oi.V then

∣

∣

∣

−→
S

∣

∣

∣
=

∣

∣

∣
Oi.p.

−→
B

∣

∣

∣

and ∀k,
−→
S k : t = Oi.p.

−→
B k : t.

D. Waveform semantics

Executing an SDR operation consists, on each step, in pro-

cessing the instructions which are part of the operation’s activity

diagram(s) (ADs). This processing can modify the value of

variables and flags in the environment. It can also change the

operation itself as it may change the activity state if a transition

occurs.

We propose a SOS semantics for the language. This semantics

expresses precisely the sequence of actions involved in the

processing an instruction of an AD. It is made of rules with

the following general form: E ⊢ [[〈A, st, E〉]], 〈A, st, E〉
〈A, st′, E ′〉

TABLE I: Selected Ax instructions and semantics.
UML Symb Description Semantics

pi

x
⋊⋉ po

Non-blocking read from port pi, processing
of a data-block of size x. Non-blocking
write to port po, clear request. Execute

Oi ∈ O Oi.pi.d = in Oi.po.d = out s ∈ Oi.
−→
V

E ⊢ [[〈Oi.A
x, st〉]] = pi

s
⋊⋉ po

〈Oi.A
x, st, E〉 〈Oi.A

x, next(st), E〉

∗ Start instruction. Is the initial state, it is
executed when the Ax is requested.

Start
Oi ∈ O ⇑ Oi.r E⊢[[〈Oi.A

x, st〉]] = ∗

〈Oi.A
x, st, E〉 〈Oi.A

x, next(st), E〉

⊛ Return instruction. Returns from the exe-
cution of Ax.

Return
Oi ∈ O [[〈Oj .Ax, next(st)〉]] = ∗ E ⊢ [[〈Oj .Ax, st〉]] = ⊛

〈Oj .Ax, st, E〉 〈Oi.A
x, next(st), E[Oj .req ← false]〉

TABLE II: Selected Af instructions and semantics.
UML Sym Description Semantics

−→
B

◮ p

Write instruction. Writes an event and
its
−→
B parameters through port p. It

marks the signal as new (e ← true).
The instruction blocks until e gets
cleared.

Write

Oi ∈ O Oi.p.d = out
−→
S ⊑ Oi.

−→
V

E[check ⊥(Oi.p.e)]⊢[[〈Oi.A
f , st〉]] =

−→
S

◮ p

〈Oi.A
f , st, E〉 〈Oi.A

f , st, E[Oi.p.
−→
B ⇐

−→
S , Oi.p.e← true]〉

−→
B

◭ p

Read instruction. Reads an event from
port p. Copies the values into the cor-

responding set of variables
−→
B , then it

proceeds to the next instruction.
Read

Oi ∈ O Oi.p.d = in
−→
S ⊑ Oi.

−→
V

E[⇑ Oi.p.e] ⊢ [[〈Oi.A
f , st〉]] =

−→
S

◭ p

〈Oi.A
f , st, E〉 〈Oi.A

f , next(st), E[
−→
S ⇐ Oi.p.

−→
B]〉

⊳ p
Clear instruction. If the abidance a of
port p is not set to true, the port event
flag is cleared (e← false).

Clear
Oi ∈ O Oi.p.d = in E ⊢ [[〈Oi.A

f , st〉]] = ⊳ p

〈Oi.A
f , st, E〉 〈Oi.A

f , next(st), E[Oi.p.e← Oi.p.a?true : false]〉

op
⊲⊳

Request instruction. Requests the ex-
ecution of operation op. It blocks until
the operation was finished, i.e. the event
r gets cleared.

Request
Oi ∈ O E[check ⊥(Oi.req)] ⊢ [[〈Oi.A

f , st〉]] =
op
⊲⊳

〈Oi.A
f , st, E〉 〈Oi.A

f , st, E[Oi.req ← true]〉

•
Initial instruction, It is the starting
point, from here the AD proceeds in-
conditionally to the next instruction.

Start
Oi ∈ O E⊢[[〈Oi.A

f , st〉]] = •

〈Oi.A
f , st, E〉 〈Oi.A

f , next(st), E〉

+

Increment instruction. The variable a
is incremented by b, there are other
similar actions for multiplication, sub-
straction, comparison, etc.

Increment
Oi ∈ O a, b ∈ Oj .

−→
V E ⊢ [[〈Oj .Af , st〉]] = +

〈Oi.A
f , st, E〉 〈Oi.A

f , next(st), E[Oi.a← Oi.a + Oi.b]〉

≪ p, p′

Select instruction. It takes the branch
of the port that has an event. If two
ports have an event at the same time,
this operator selects one branch in un-
determined order.

Select

Oi ∈ O ∃Oi.p.d = in ∃Oi.p
′.d = in

−→
B ⊑ Oi.

−→
V

E[⇑ Oi.p
′.e] ⊢ [[〈Oi.A

f , st〉]] = ≪ p, p′

〈Oi.A
f , st, E〉 〈Oi.A

f , next(st), E[
−→
B ⇐ Oi.p

′.
−→
F]〉

E p, p′ Wall instruction. It blocks until all
ports p1, p2 . . . pn have an event. Wall

Oi ∈ O ∃Oi.p.d = in ∃Oi.p
′.d = in

−→
B ,
−→
B′ ⊑ Oi.

−→
V

E[check ⊤(Oi.p.e), check ⊤(Oi.p
′.e)] ⊢ [[〈Oi.A

f , st〉]] = E p, p′

〈Oi.A
f , st, E〉 〈Oi.A

f , next(st), E[
−→
B ⇐ Oi.p.

−→
F ,
−→
B′ ⇐ Oi.p

′.
−→
F]〉

⊙
End instruction Ends the sequence of
execution of Af . The next instruction is
the initial instruction.

End
Oi ∈ O [[〈Oi.A

f , next(st)〉]] = • E⊢[[〈Oi.A
f , st〉]] = ⊙

〈Oi.A
f , st, E〉 〈Oi.A

f , next(st), E〉

Executing an instruction labelled st, within an environment E
(a binding of variables and flags to values) through an activity

diagram A produces a new environment, E’ and a new label st’.

For example, the write instruction rule WRITE from Table II

is executed if the current state (st) of the fire activity diagram

(Oi.A
f) corresponds to the write instruction (

−→
S
◮ p) and the status

flag is set to false(check ⊥(Oi.p.e)) and the direction flag of the

port on which is done the writing is set to out (Oi.p.d = out),

then the signal parameters are wise-copied to the port parameters

(Oi.p.
−→
B ⇐

−→
S), the event flag Oi.p.e is set to the true value

(Oi.p.e ← true). The activity diagram remains blocked in the

same instruction WRITE until the status flag of the writing port is

set back to false. The purpose of this behaviour is to prevent the

execution of the producer operation before its previous output

was consumed.

We take the wall instruction from Table II as a second example.

We use the wall instruction in operations such as CWA from

Fig.4. CWA has two inputs, and it is necessary to have new

signals in both inputs to start execution. The WALL rule is

executed when the current state (st) of the fire activity diagram

(Oi.A
f) corresponds to the wall instruction (E p, p′), and the

direction flags are both set to in(Oi.p.d = in and Oi.p
′.d = in),

and the status flags are both set to true (check ⊤(Oi.p.e) and

check ⊤(Oi.p
′.e)), and the corresponding vectors of port block

parameters belong to the set of variables (
−→
B ,
−→
B′ ⊑ Oi.

−→
V). The

execution of the WALL instruction rule copies by position the

contents of the port parameters (
−→
B and

−→
B′) to the corresponding

variables (Oi.
−→
V).

E. Data Transfer

The SEND rule is used to propagate a signal through a link.

Every time a WRITE rule is applied on a port Oi.p. This latter

is marked as new (Oi.p.e← true) and the signal is propagated

by the SEND rule through the link L = 〈Oi.p,Oj .p
′〉 to which it

is attached. This rule will set to true the status flag Oj .p
′.e, and

will copy the block parameters by position among both ports. Our

model does not consider infinite storage, therefore the operations

should not produce a new signal if the previous signal has not

been consumed yet. Thus the WRITE rule blocks until the sent

signal was marked as old (Oj .p
′.e ← false) by the ACK rule.

This prevents the operation from continue processing signals.

Send

Oi,Oj ∈ O L = {Oi.p,Oj .p
′}

Oi.p.d = out ⇑ Oi.p.e

Oj .p
′.
−→
F ⇐ Oi.p.

−→
F Oj .p

′.e← true

When a signal is consumed the CLEAR rule marks this signal

as old in the consumer operator. This setting is propagated by

the ACK rule through the link to the producer operator.

Ack

Oi,Oj ∈ O L = {Oi.p,Oj .p
′}

Oi.p.d = in ⇓ Oi.p.e

Oj .p
′.e← false

V. EXAMPLE: WELCH PERIODOGRAM DETECTOR

This section demonstrates the use of DiplodocusDF by de-

scribing the application: Welch periodogram detector [24]. Welch

periodogram is used for opportunistic spectrum sensing, it helps

to identify the significance of the frequency contributors to a

wireless signal by calculating the energy of the sub-bands of

interest (statistics). The calculated energy is then compared to a

designated threshold (decisions).

The Welch detector is described in the Algorithm 1 and

its DiplodocusDF waveform model is shown in Fig.4. The

operations in the Algorithm 1 lines 3, 4, 5, and 10 correspond to

common SDR operations, these operations are part of a library of

DiplodocusDF operation models that the user can use as is, they

correspond to the transformation operations FFT, MOD, CWA,

and SUM of Fig.4. The activity diagrams of the Fast-Fourier

transform FFT.Af and FFT.Ax, are shown in the Fig.5 (last

dotted square), the diagrams for the other 3 operations are similar.

The overlapping operation in the Algorithm 1 line 2 reorganizes

the r input, to deliver data segments overlapped by Os positions.

It is a routing operation (as it does not transform the data), which

is particular to this waveform and has to be described by the user.

Its activity diagram OVLP.Af is also shown in Fig.5.

The data loop operation in the Algorithm 1 line 1 is modelled

in DiplodocusDF with the mux-like operations DMUX1, MUX,

and DMUX2. This arrangement allows to load the CWA with two

valid signals before starting execution for the first time. Another

solution would be to make a first CWA operation between a valid

signal and a constant zero signal. These mux-like operations are

described in such a way that they activate the right output signal

according to the number of input signals received. For example,

DMUX2 will activate the feedback signal as long as the number

of its input signals be less than m, then it will activate the signal

going to the REP operation.

The routing operation in Algorithm 1 line 8 does not imply

a data loop, but rather the multiple use of the Rs signal. Rs is

accessed L times at different offsets. The REP operation in Fig.4

models this behaviour. It will not mark as old its input signal at

each execution but after L executions. At each execution it will

mark as new its output signal, which will enable the execution

of the SUM operation. REP is a routing operation as it does

not transform its inputs but only enables in a particular way its

outputs. DES is a routing operation. It decides if given sub-band

is occupied by comparing the outputs from SUM to predefined

decision levels. The outputs from DES (decisions) are sink at the

SINK operation.

The Fig.5 shows the activity diagrams for the first four

operations of Welch diplodocusDF (SRC, DMA, OVP, and FFT)

shown in Fig.4:

Algorithm 1: Welch detector algorithm

in : m number of segments.
in : r input data
in : rk kth input data segments of size Ns, k = 1,2,. . . ,m.
in : L number of sub-bands of interest.
in : f i

off
is the list of sub-band central frequencies.

in : Li is the list of sub-band widths.
in : Ywd is the list of sub-band thesholds.
out : Twd is the list of statistics per sub-band.
out : Dwd list of decisions per sub-band.
tmp: X, Y, Z, Rs buffers of size Ns.
tmp: k, j control counters.

1 for k ← 1 to m do
2 rk ← [r(kOs), r(1 + kOs), . . . , r(kOs + Ns + 1)];
3 X ← FFT(rk);
4 Y ← MOD(X);
5 Z ← CWA(Z, y);
6 end

7 Rs ←
Z
m

;
8 for j ← 1 to L do

9 start← f
j
off
−

L
j

i

2
;

10 T
j
wd
← SUM(Rs, start, start + L

j
i) ;

11 if T
j
wd

> Y
j
wd

then

12 D
j
wd
← 1;

13 else

14 D
j
wd
← 0;

15 end
16 end

VI. CONCLUDING REMARKS AND FUTURE WORK

In this paper we address the challenge of developing complex

SDR systems in an efficient way. We propose a model-driven

design methodology that isolates the description of the SDR

applications from its implementation details. Our methodology

contributes to develop correct-by-construction SDR systems.

We extended DIPLODOCUS to DiplodocusDF in order to

support SDR applications. For this, we added data-flow/KNP

alike semantics. This allows to express all possible parallelism

and results in deterministic behaviour as in KNP. We added SDR

semantics by extended the task operator from DIPLODOCUS

to express complex transformation operands. They are now

composed of two activity diagrams, one of them resolves the

SRC.Af

1

OVLP.Af FFT.Af
DMA.Af

DMA.Ax FFT.Ax

Fig. 5: Example activity diagrams from Welch periodogram waveform.

fire rule and request the execution of the operation. The second

activity diagram represents the actual execution of the operation,

which can be delayed with respect to the request. The delay

can happen if the operator is being used by another operation.

We also extended the notion of abstract channels to the concept

of SDR signals. DiplodocusDF supports also automatic code

generation from the abstract representation to C-language.

This paper focuses on the formal description of the

DiplodocusDF language and its semantics. Thanks to this de-

scription, we can transform our models into formal representation

(FSM, LOTOS, etc), which can be analysed and used to perform

formal verification by model-checking. We can validate safety

and functional properties (e.g. absence of deadlock) .

Currently, we are developing the code generation mechanisms.

The final code is composed of (1) a runtime environment (the

one that executes the rules), (2) a set of functions that reflect the

behaviour of the operations, (3) a platform specific architecture-

support package in the form of an API.

As part of the future work, we will develop a mechanism

for automatic mapping based on constraint rules, this will re-

quire designing a constraint profile to direct the mapping of a

waveform to a SDR architecture. Also, we will define another

profile to describe performance requirements (execution time,

power consumption, etc). The information from the performance

requirements model will be added to the mapped model and will

be considered for the formal analysis.

REFERENCES

[1] L. Apvrille, W. Muhammad, R. Ameur-Boulifa, S. Coudert, and R. Pacalet,
“A uml-based environment for system design space exploration,” in Elec-

tronics, Circuits and Systems, 2006. ICECS ’06. 13th IEEE International

Conference on, dec. 2006, pp. 1272–1275.

[2] D. Lattard, E. Beigne, F. Clermidy, Y. Durand, R. Lemaire, P. Vivet, and
F. Berens, “A reconfigurable baseband platform based on an asynchronous
network-on-chip,” Solid-State Circuits, IEEE Journal of, vol. 43, no. 1, pp.
223–235, jan. 2008.

[3] D. Nussbaum, K. Kalfallah, R. Knopp, C. Moy, A. Nafkha, P. Leray, M. De-
lorme, J. Palicot, J. Martin, F. Clermidy, B. Mercier, and R. Pacalet, “ropen
platform for prototyping of advanced software defined radio and cognitive
radio techniques,” in Digital System Design, Architectures, Methods and

Tools, 2009. DSD ’09. 12th Euromicro Conference on, 27-29 2009, pp.
435–440.

[4] G. Radio, “The gnu software radio.” [Online]. Available: http://gnuradio.org

[5] T. Ulversoy, “Software defined radio: Challenges and opportunities,” Com-

munications Surveys Tutorials, IEEE, vol. PP, no. 99, pp. 1–20, 2010.

[6] A. Tribble, “The software defined radio: Fact and fiction,” in Radio and

Wireless Symposium, 2008 IEEE, Jan. 2008, pp. 5–8.

[7] D. Knorreck, L. Apvrille, and R. Pacalet, “Formal system-level design space
exploration,” in New Technologies of Distributed Systems (NOTERE), 2010

10th Annual International Conference on, 31 2010-june 2 2010, pp. 1–8.
[8] D. Schmidt, “Guest editor’s introduction: Model-driven engineering,” Com-

puter, vol. 39, no. 2, pp. 25–31, feb. 2006.
[9] B. Selic, “The pragmatics of model-driven development,” Software, IEEE,

vol. 20, no. 5, pp. 19–25, sept.-oct. 2003.
[10] R. France, S. Ghosh, T. Dinh-Trong, and A. Solberg, “Model-driven

development using uml 2.0: promises and pitfalls,” Computer, vol. 39, no. 2,
pp. 59–66, feb. 2006.

[11] Y. Zhu, Z. Sun, W.-F. Wong, and A. Maxiaguine, “Using uml 2.0 for system
level design of real time soc platforms for stream processing,” in Embedded

and Real-Time Computing Systems and Applications, 2005. Proceedings.

11th IEEE International Conference on, aug. 2005, pp. 154–159.
[12] J. Vidal, F. de Lamotte, G. Gogniat, J.-P. Diguet, and P. Soulard, “Uml

design for dynamically reconfigurable multiprocessor embedded systems,”
in Design, Automation Test in Europe Conference Exhibition (DATE), 2010,
march 2010, pp. 1195–1200.

[13] J. Vidal, F. de Lamotte, G. Gogniat, P. Soulard, and J.-P. Diguet, “A
co-design approach for embedded system modeling and code generation
with uml and marte,” in Design, Automation Test in Europe Conference

Exhibition, 2009. DATE ’09., april 2009, pp. 226–231.
[14] G. Papadopoulos, “Automatic code generation: A practical approach,” in

Information Technology Interfaces, 2008. ITI 2008. 30th International

Conference on, june 2008, pp. 861–866.
[15] I. et al Perseil, “An efficient modeling and execution framework for complex

systems development,” in Engineering of Complex Computer Systems

(ICECCS), 2011 16th IEEE International Conference on, april 2011, pp.
317–331.

[16] M. Brun, J. Delatour, and Y. Trinquet, “Code generation from aadl to
a real-time operating system: An experimentation feedback on the use
of model transformation,” in Engineering of Complex Computer Systems,

2008. ICECCS 2008. 13th IEEE International Conference on, 31 2008-april
3 2008, pp. 257–262.

[17] P. Green and S. Essa, “Integrating the synchronous dataflow model with
uml,” in Design, Automation and Test in Europe Conference and Exhibition,

2004. Proceedings, vol. 1, feb. 2004, pp. 736–737 Vol.1.
[18] H. Störrle, “Semantics of uml 2.0 activities with data-flow,” 2004.
[19] J. Dennis, “Data flow supercomputers,” Computer, vol. 13, no. 11, pp. 48–

56, nov. 1980.
[20] H. Yu, J. Talpin, L. Besnard, T. Gautier, H. Marchand, and P. Le Guernic,

“Polychronous controller synthesis from marte ccsl timing specifications,”
in Formal Methods and Models for Codesign (MEMOCODE), 2011 9th

IEEE/ACM International Conference on, july 2011, pp. 21–30.
[21] P. Kourzanov and H. Sips, “C modulo dsl,” in ITSLE 2011, 2011. [Online].

Available: http://www.pds.ewi.tudelft.nl/pubs/papers/itsle2011.pdf
[22] M. Ahmadian, Z. Nazari, N. Nakhaee, and Z. Kostic, “Model based design

and sdr,” in DSPenabledRadio, 2005. The 2nd IEE/EURASIP Conference

on (Ref. No. 2005/11086), sept. 2005, p. 8 pp.
[23] D. M. Schwall and D. S. Nagel, “Model-based waveform design for

heterogeneous sdr platforms with simulink,” Communications, 2011.
[24] A. Hekkala, I. Harjula, D. Panaitopol, T. Rautio, and R. Pacalet, “Cooper-

ative spectrum sensing study using welch periodogram,” in Telecommuni-

cations (ConTEL), Proceedings of the 2011 11th International Conference

on, june 2011, pp. 67–74.

