Bringing Scientific Workflows to Amazon SWF

Matthias Janetschek, Simon Ostermann and Radu Prodan
Institute for Computer Science, University of Innsbruck, Austria
{matthias,simon,radu} @dps.uibk.ac.at

Abstract—In response to the ever-increasing needs of scientific
applications for resources, Cloud computing emerged as an
alternative on-demand and cost-effective resource provisioning
approach. In this context, Cloud providers have recognised the
importance of workflow applications to science and provide their
own native solutions, such as the Amazon Simple Workflow
Service (SWF). Nevertheless, an important downside of SWF is its
incompatibility with existing workflow systems, and lack of means
for reusing scientific legacy code. Similarly, existing workflow
middlewares and applications require non-trivial extensions to
take advantage of Cloud resources. We present in this paper a
software engineering solution that allows the scientific workflow
community access the Amazon Cloud through one single front-
end converter, and propose a legacy wrapper service for executing
legacy code using SWF. Empirical results using a real-world
scientific workflow demonstrate that our automatically generated
SWF application performs almost as fast as a native manually-
optimised version, and outperforms other workflow middleware
systems using the Amazon Cloud.

Keywords—scientific workflows; cloud computing; Amazon
SWF; legacy code; workflow converter

I. INTRODUCTION

Today, scientific applications require an ever-increasing
number of resources to deliver results for growing problem
sizes in a reasonable amount of time. In the last 20 years, while
the largest projects were able to afford expensive supercomput-
ers, the smaller ones were forced to opt for cheaper resources
such as commodity clusters or, more challenging to build,
computational Grids. To program such large-scale distributed
heterogeneous infrastructures, scientific workflows emerged as
an attractive paradigm by allowing the programmers to focus
on the composition of existing legacy code fragments to create
larger and more powerful applications. Therefore numerous ef-
forts have been spent on researching and developing integrated
programming and computing environments [1] to support the
workflow lifecycle and meet scientists’ needs.

Nowadays, Cloud computing proposes an alternative such
that resources are no longer owned by the application sci-
entists, but leased from large specialised data centers on-
demand and in a cost-effective fashion according to tem-
poral needs. This separation frees research institutions from
the permanent costs of over-provisioning, operation, mainte-
nance and depreciation of resources. Nevertheless, existing
workflow systems cannot senselessly take advantage of this
new infrastructure without appropriate middleware support
that often requires non-trivial extensions to the scheduling,
enactment, resource management, and other runtime execution
services. At the same time, existing Cloud providers such as
Amazon recognised the importance of workflows to science
and engineering and started to provide highly-tuned solutions

WS-PGRADE

AGWL IWIR Converter 1
gUSE IWIR Converter 2

GWENDIA

IWIR

IWIR Converter 3
DAX IWIR Converter 4

Fig. 1. SHIWA fine-grained interoperability.

integrated into their native platforms such as the Amazon
Simple Workflow Service (SWF). However, existing workflow
systems [1] cannot immediately take advantage of this support
because of different, incompatible languages, interfaces and
communication protocols. Another downside of SWF is that
it requires applications to be written in Java and to imple-
ment specific interfaces, which is problematic for scientific
workflows based on the composition of legacy code fragments.
Using SWF requires scientists to learn a new development and
execution platform in addition to the one they regularly use.

To address this heterogeneity in workflow systems and
underlying computing infrastructures, the SHIWA European
project (http://www.shiwa-workflow.eu/) researched and de-
veloped the Interoperable Workflow Intermediate Represen-
tation (IWIR) [2] that enables fine-grained interoperability
between workflow systems through transparent translation of
workflows applications programmed in different languages.
IWIR is a generic and system-neutral workflow representation
able to sufficiently describe the large majority of existing
workflow constructs. The common representation reduces the
complexity of porting n workflow systems on m computing
platforms from O(m-m) to O(n+m). Additionally, it enables
the integration of new workflow systems and new computing
platforms with constant O(1) complexity by implementing
IWIR importers/exporters. This ensures not only interoperabil-
ity across workflow systems, but also enables workflows to be
executed on new external foreign (or non-native) computing
infrastructures. IWIR provides additional tools and libraries
to ease the development of language translators, and is cur-
rently supported by five major workflow systems: ASKALON
(AGWL language) [3], Moteur (GWENDIA language) [4],
WS-PGRADE (gUSE language) [5], Pegasus and [6] Triana
(DAX representation) [7] (see Figure 1).

In this paper, we take advantage of IWIR and present a
scalable software engineering solution that provides existing
scientific workflows access to the Amazon Elastic Compute
Cloud (EC2) infrastructure. By designing and implementing
one single IWIR-to-SWF converter, we automatically allow all
IWIR-compliant workflow systems to benefit from the SWF
features and to access the EC2 infrastructure with native per-

©2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: https://doi.org/10.1109/SEAA.2013.13

formance. We present a method for automatically converting a
scientific workflow specified in IWIR into Amazon SWF, and
a supporting architecture for reusing and executing existing
legacy code on EC2. We illustrate the integration and the
advantages of our architecture with the help of a real-world
scientific workflow originally programmed in the ASKALON
integrated development and computing environment.

The paper is organised as follows. We discuss related work
in Section II. Section III introduces the IWIR workflow model,
followed by an introduction to Amazon SWF in Section IV.
Section V introduces our pilot workflow application used for
validation. Section VI describes the conversion process of an
IWIR workflow into an Amazon SWF workflow. Section VII
presents experimental results from porting our pilot application
to SWF. Section VIII concludes the paper.

II. RELATED WORK

Since the advent of Cloud computing, the scientific com-
munity showed increasing interest in bringing scientific work-
flows on this new infrastructure. This trend increased with the
availability of commercial Clouds featuring nearly the same
performance as traditional Grid parallel computers [8]. There
exist two major approaches in this community effort: pure
Cloud and hybrid combining Grid and Cloud infrastructure.

FutureGrid [9] provides a Cloud test-bed that allows scien-
tists explore the features of Cloud computing and experiment
without charging real costs, as commercial providers do.
[10] shows a proof-of-concept astrophysics workflow called
Montage using the Pegasus Grid workflow system adapted
for Clouds. Similarly, [11] shows a meteorological workflow
executed in combined Grid and Cloud infrastructures using
the ASKALON environment. A hybrid approach for extending
clusters with additional Cloud resources during peak usage
for better throughput, transparent to the end-users is presented
in [12]. [13] presents a similar approach using the Torque
job manager. The work in [14] presents a workflow engine
purposely developed for Clouds and extended Cloud federa-
tions. The Megha workflow system [15] provides a portal for
submitting workflows to combined Grid and Cloud resources.

A drawback of all these efforts is that they provide
custom non-interoperable solutions that isolate scientists on
specific workflow system and Cloud infrastructures. In this
paper, we show how the IWIR-based approach opens the
Amazon EC2 infrastructure and its SWF workflow system to
the scientific community through one single IWIR-to-SWF
translator. The idea of a single intermediate language has
been explored in other domains, for example by the UNiversal
Computer Oriented Language (UNCOL) [9] proposed in 1958
by Melvin E. Conway as a solution for making compiler
development economically viable. Following the UNCOL idea,
the Architecture Neutral Distribution Format (ANDF) is a
technology defined by the Open Software Foundation allowing
common “‘shrink wrapped” binary programs be distributed for
use on Unix systems running on different hardware platforms.
Unfortunately, ANDF was never widely adopted either. IWIR
is the first effort to investigate this idea on scientific workflows
in distributed Grid and Cloud computing infrastructures.

III. TWIR WORKFLOW MODEL

In IWIR, a workflow application is represented
by a composite activity A = (I,0,G) consisting
of n input vports I = U',{L}, m output ports

0 = U {0;}, and a directed acyclic graph (DAG)
G = (A,D) consisting of k activites A = U, {A;}.
interconnected through data flow dependencies: D =
{(Ai,A},(Oim.Lin)) | (Ai,Aj) €AXAN (O, Lin) € Oi x 1;},
where (Oim,lj,) represents a data transfer from the output
port Oy, of activity A; to the input port I;, of activity
Aj;. A data flow dependency between two activities
implies a control flow precedence too. A pure control
flow dependency between A; and A; has D;; = (A;,A;,0). We
use pred (A;) = {Ax| (A, Ai, (O, iin)) € DV (A, A;,0) € D}
to denote the set of predecessors of activity A; (i.e. activities
to be completed before starting A;).

There are two categories of activities in IWIR: atomic and
composite. An atomic activity, represented by A = (I,0,0),
is characterised by an activity type, uniquely defined by
a name and a signature. For example, activity names are
PreparelLM, LinearModel, PostProcessSingle and
PostprocessFinal for our pilot workflow introduced in
Figure 2 and Section V. The signatures of LinearModel and
PostProcessSingle are shown in lines 8 and 19 of List-
ing 1. A composite activity, represented by A = (I, 0, G), where
G # 0, can be of four kinds: conditional (if), sequential loop
(while, for, forEach), parallel loop (parallelFor,
parallelForEach), and sub-workflow (or DAG, intro-
duced for modularity reasons).

IV. AMAZON SWF BACKGROUND

Amazon SWF provides a high-level method for imple-
menting workflow applications and for coordinating their
synchronous and asynchronous task executions on multiple
systems, which can be cloud-based, on-premises, or both. SWF
implements a work-stealing approach consisting of three parts:
decider, task queues, and activity workers.

The decider implements the logic of the workflow. Unlike
schedulers in scientific workflow systems, the decider only
decides which activity to execute next based on the history of
already executed tasks, and not where to execute it. However,
one still has limited control by using several task queues where
the decider puts the activities to be executed next.

The task queues hosted by Amazon are identified by their
name and can be accessed via an HTTP API. There are
two types of tasks. First, decision tasks are generated by
Amazon SWF and executed by the decider every time a state
change exists (e.g. start of workflow instance or activity task
termination). The result of a decision task is usually a set
of activity tasks that can be executed next. Second, activity
tasks are executed by the activity workers and represent the
individual pieces of work which comprise the workflow.

The activity workers execute the individual workflow ac-
tivities. The decider and the activity workers actively listen
to one or more task queues and, when a task is received,
execute the corresponding code and report back the execution
status to Amazon SWF. All input values of an activity are
contained in the task request received from the task queue.

Unlike traditional workflow systems, Amazon SWF provides
no means to transfer files or prepare the execution environment.
If an activity requires some input or produces some output files,
it has to transfer them by itself. For Amazon SWF, workflow
activities are simply remote asynchronous procedure calls.

Developing a workflow with Amazon SWF requires the
following steps: (1) develop a decider implementing the logical
workflow coordination; (2) develop activity workers imple-
menting the individual activities; (3) register the workflow at
Amazon SWF; (4) start the decider and activity workers and
let them listen to the SWF endpoint; (5) start the workflow.

AWS Flow Framework allows the development of Amazon
SWF workflows through the AWS SDK for Java by specifying
its coordination steps as a sequential Java program, where the
workflow activities are represented as function calls. Func-
tions representing activities and functions used to handle or
manipulate data produced or consumed by activities need to
have the @Asynchronous annotation (called in the following
asynchronous functions) and their input arguments and return
values need to be of type Promise. A Promise object
acts as a handle to the actual data that will be available as
soon as the corresponding asynchronous function has been
executed. When used as input argument, a Promise object
can also be used to represent data dependencies between
several asynchronous functions. An asynchronous function,
having a Promise object produced by another asynchronous
function as input, will only be executed when the actual data
referenced by the Promise object is available.

Amazon SWF executes a workflow application through
repeated invocations of the decider program, which is executed
every time a state change occurs (signaled via a decider task),
and a history of all decider executions is recorded. To intercept
all calls to asynchronous functions in the decider program,
AWS uses Aspect], a Java implementation of aspect-oriented
programming [16]. An asynchronous function is instantiated
only once during the entire workflow execution, and its return
value is saved into the execution history. In every subsequent
decider execution, the same function is not re-executed, but
its result extracted from the execution history and returned
as Promise object. An asynchronous function that has not
been executed yet, is put into a queue and a Promise object
with no actual data is returned. This data will be instantiated as
soon as the corresponding asynchronous function has produced
it. Before the decider finishes its execution, it examines all
asynchronous functions in the queue, executes those whose
dependencies are satisfied, and records their results in the
execution history. The workflow execution finishes if there are
no more non-executed asynchronous functions.

V. RAINCLOUD WORKFLOW

We introduce in this section the RainCloud workflow used
in this paper for illustrating and validating our approach. Rain-
cloud is a meteorological workflow for investigating and sim-
ulating precipitations in mountainous regions using a simple
numerical linear model of orographic precipitations [17]. The
workflow has been developed in the ASKALON environment
by the Institute of Meteorology of the University of Innsbruck
to analyse certain meteorological phenomena by extending the
linear model theory. The workflow is also is used by the

38

39
40
41
42

LinearModelHPostprocessSingle

LinearModeIHPostprocessSingle

Simplified view of the RainCloud workflow.

PrepareLM PostprocessFinal

Fig. 2.

Tyrolean avalanche service (“Tiroler Lawinenwarndienst”) for
their daily issued avalanche bulletin.

Figure 2 shows a simplified architecture of the RainCloud
workflow. The first activity PreparelLM prepares and par-
titions the data for the linear model. Each partition is then
processed in a parallel loop iteration by a pipeline of two
activities: LinearModel and PostprocessSingle, the
last one being optional. The number of parallel loop iterations
can be configured by setting the appropriate input parame-
ter. The last activity collects the output data and produces
the final result. Listing 1 shows the specification of the
parallelForEach loop in IWIR. Inside this loop, we first
have the atomic activity linearModel (line 8), followed
by an if-construct (line 14) containing the atomic activity
postProcessSingle (line 19).

Listing 1. RainCloud’s varallelForEach loop in IWIR.
<parallelForEach name="ParallelForEach_1">
<inputPorts><inputPort name="isPPS” type="boolean”/>
<loopElements><
loopElement name="PLMTars” type="collection/file”/>
</loopElements></inputPorts>
<body>
<task name="linearModel” tasktype="linearModel”>
<inputPorts><inputPort name="PLMTar” type="file”/>
</inputPorts>
<outputPorts><outputPort name="LMTar” type=""file”/>
<outputPort name="outfile” type="file”/></outputPorts>
</ task>
<if name="DecisionNode_1">
<inputPorts><inputPort name="LMTar” type=""file”/>
<inputPort name="isPPS” type="boolean”/></inputPorts>
<condition>isPPS = true</condition>
<then>
<task name="postProcessSingle” tasktype="
postProcessSingle”>
<inputPorts><inputPort name="LMTar” type="file”/>
</inputPorts>
<outputPorts><outputPort name="PPSTar” type="file”/>

</outputPorts>
</task>
</then>
<outputPorts><outputPort name="PPSlistTars” type="file”/>
</outputPorts>
<links>
<link from="DecisionNode_1/LMTar” to="postProcessSingle/
LMTar” />
</links>
</if>
</body>
<outputPorts>

<outputPort name="PPSlistTars” type="collection/file”/>
<outputPort name="outfiles” type="collection/file”/>
</outputPorts>
<links>
<link from="ParallelForEach_1/PLMTars” to="linearModel/
PLMTar” />

</links>
</parallelForEach>

Decider (Scheduler)

l 1. Put task into queue

Amazon SWF (Task queues)

I
Filestorage | (T
]

J

2. Fetch task from queue
7. Report execution status

Worker node "

Architecture of a generated Amazon SWF workflow.

4./6. Transfer files)
3. Prepare environment

5. Execute legacy code

Fig. 3.

VI. IWIR-TO-SWF CONVERSION

Figure 3 shows the architecture of our solution, consisting
of four parts: the decider, Amazon SWEF, the legacy code
execution service on each worker node, and the file storage.
With Amazon SWE, the decider and workflow activities are
individual Java programs, purposely designed for Amazon
SWF. The goal of this paper is to present a method for
translating scientific workflows from the interoperable IWIR
representation to Amazon SWF with as little effort for the pro-
grammer as possible. While the abstract workflow coordination
can be automatically translated into an SWF decider Java
program, there is no practical way to automatically convert
the legacy code implementing the concrete workflow activities
into a SWF-compatible Java program. To still achieve this goal
with minimal programmer involvement, we implemented an
execution service that interfaces with Amazon SWF and acts
as a Java wrapper for existing legacy code.

The only requirement imposed by Amazon SWF on the
worker nodes is an outgoing HTTP connection to Amazon
SWE. This makes Amazon SWF easy to setup with no fire-
wall reconfiguration. Technically, direct file transfers between
worker nodes are possible, but this requires a corresponding
service running on the worker nodes and the firewall to be
reconfigured accordingly. As we did not want to loose the
advantage of an easy setup, we decided to use an intermediate
file storage for the file transfers, so that there is no need
for incoming connections on the worker nodes. Currently, we
support only Amazon S3 as an intermediate file storage, but
other file storage technologies can be easily added too.

A. Decider generation

As presented in Section III, an IWIR workflow is con-
structed from a top-level DAG activity which explicitly de-
scribes the data flow between its activities. Control flow
constructs such as loops and conditionals are represented by
composite activities. To convert an IWIR workflow into an
Amazon SWF decider, we have to transform the data flow-
driven IWIR DAGs and the semantics of the composite activity
types into a control flow-driven Java program. Moreover, we
also have to take care that the concepts of the AWS Flow
Framework, namely asynchronous functions and semantics of
the returned Promise objects, are correctly applied.

The basic principle of the conversion is that every atomic
or composite activity is represented by its own activity function
in the Java program. Algorithm 1 shows the generation process

Algorithm 1 SWF decider generation algorithm.

Input: Scientific workflow: A = (1,0,G)

Output: SWF decider (Java program)

1: function GENDECIDER(A = (/,0,G))

Queue <+ 0

GENWESTART(A, Queue)

while Queue # 0 do
A < PoP(Queue)
GENACTIVITYFUNCTION(A, Queue)

end while

8: end function

9: function GENWFSTART(A, Queue)

Input: A= (1,0,G)

10: GENWFSTARTPROLOG(/, O)

11: GENACTIVITYFUNTIONCALL(A, Queue)

12: PUT(Queue,A)

13: GENWFSTARTEPILOG(O)

14: end function

A o

of the decider. The first step is the generation of a function
representing the start of the workflow (line 3). The signature
of this function represents the input and output ports of the
workflow (line 10). In the function body, the top-level activity
function is called with the appropriate input arguments (line
11). Afterwards, the results of the top-level activity function
are presented to the user in an appropriate way (line 13). Every
activity encountered during the conversion process with no
activity function created yet is put into a queue (e.g. in line
12). After the workflow entry function has been generated, the
algorithm iterates through this queue (line 4) and generates an
activity function for each queue element (line 6).

B. Activity function generation

Algorithm 2 shows the generation of an activity function
representing a workflow activity. The function signature of an
activity function corresponds to the input and output ports,
while the function body implements its semantic behaviour,
including any associated DAG. For atomic activities, we only
have to generate the function signature with the Activity
annotation and an empty function body (lines 9-10). The AWS
Flow Framework will then automatically generate function
stubs, which allow us to communicate with the SWF task
queue. For composite activities, we need to additionally gen-
erate, besides the function signature, a function body imple-
menting the activity behaviour (lines 4-6). In the following, we
describe in detail how the activity functions are generated. To
facilitate understanding, we divided the code generation of the
composite activity function bodies in three logical sections: (1)
activity semantics, (2) DAG control flow, and (3) DAG data
flow. However, these steps are not distinct, but interleaved with
each other (e.g. the function call in line 5 generates not only
the control flow but also the data flow).

1) Function signature: The first step in generating an
activity function is the function signature. The arguments of
the activity function represent the input ports and the return
value the output ports of the associated workflow activity.
However, this representation has some inadequateness. In a
workflow representation, the input and output ports of an
activity are usually identified by their names, and the number
of output ports is not limited. In contrast, the arguments of
a Java function are identified by their order and the return
argument is restricted to one. Moreover, returning values
by call by reference does not work in an SWF program
because the activity functions are executed asynchronously

©o—

©o—

Algorithm 2 Activity function generation algorithm.

Input: Workflow activity: A = (1,0,G)

Output: Activity function (in Java)

1: function GENACTIVITYFUNCTION(A, Queue)
Input: A= (1,0,G)

2: if G # 0 then > Composite activity
3: N < GETACTIVITYNAME(A)

4: GENFUNCTIONPROLOG(N,A)

5: GENDAGCONTROLFLOW(G, Queue)

6: GENFUNCTIONEPILOG(A)

7. else > Atomic activity
8: N < GETACTIVITYTYPENAME(N, I,0)

9: GENFUNCTIONSIGNATURE(N, I, 0)

10: GENEMPTYFUNCTIONBODY()

11: end if
12: end function

from the rest of the program (see Section IV). In practice,
the first inadequateness can be neglected when generating
the decider by consistently maintaining the same parameter
order. However, this may pose a problem for the legacy
wrapper service, as changes in the order of the input arguments
cannot be automatically distributed to this service. To address
this problem, we implemented a wrapper class for the input
arguments of atomic activity functions with a field for the name
of the input port and a field for the actual value. The legacy
wrapper service can then assign the input values to the correct
input port by looking at the name field. To address the second
inadequateness, we implemented another wrapper class that
stores several output values into an array which is returned by
the activity functions.

For example, Listing 2 shows a function signature
representing the atomic activity linearModel of Rain-
Cloud. Because the activity has more than one output
port, the corresponding function returns an object of type
PortWrapperArray encapsulating the output values. All
input values have the type PortWrapper because the func-
tion represents an atomic activity and, therefore, needs to
interface with the legacy wrapper service. The AWS Flow
framework automatically generates a stub function for inter-
facing with the task queues declared as asynchronous and
returning a Promise object.

@Activity (name="RainCloudActivities.linearModel”)
public PortWrapperArray linearModel (PortWrapper PLMTar)

Listing 3 contains another example of a function signature
representing the composite activity ParallelForEach_1.

@Asynchronous
private Promise parallelForEach_1 (Promise<Boolean> isPPS,
Promise<String[]> PLMTars);

2) Activity semantics: The next step is the generation of
code that implements the semantics of the three types of
composite activities: container, conditional, and loop. Con-
tainer activities only contain other activities without additional
semantics. Conditional activities consist of an 1 f-else con-
struct and separate activity function control flows for the two
branches. The conditional expression may contain input port
values that can be easily referenced by specifying the appro-
priate function argument. Loop activities are the hardest to
implement because of the several IWIR loop flavours: while,

AW -

© = o v

10
11
12

for, forEach, parallelFor and parallelForEach.
We exploited the asynchronous function invocation feature
of SWF to implement parallel loops as simple sequential
loops in the decider program. Because activity functions are
executed asynchronously, the decider does not wait for an
activity function to finish before starting the next loop iteration.
To force sequential execution of activity functions inside a
non-parallel loop, we have to introduce artificial dependencies
between activity functions called in different iterations using
Promi se-objects.

Listing 4 shows an example of a function body representing
the composite activity ParallelForEach_1 of RainCloud.
The number of loop iterations is first calculated in line 3. Lines
5-10 represent the actual for loop, while lines 12—-13 deal
with the construction of the return value.

Listi A p llelForEach 1 activitv semantics
private Promise parallelForEach_1 (...) {
/!l Get number of elements.
int maxIter = PLMTars. get () .length;
// Iterate over the given array.
for (int i = 0; i < maxIter; i++) {
// Get current element
Promise<String> p = Promise.asPromise (PLMTars. get () [i];
// Activity function control flow goes here

// Build return value.
Promise[] retval = new Promise[2];
return Promise.asPromise(retval);

3) DAG control flow: The workflow activities of a given
DAG are sorted according to their topological order that
preserves the original data flow. In the topological order, a
workflow activity can only be executed after all its predeces-
sors have been completed and produced the required input data.
As a workflow may consist of several DAGs, we calculate the
topological order for each DAG independently.

For example, RainCloud’s ParallelForEach_1 loop
calls the activity 1inearModel whose results are fed into
the activity PostProcessSingle depending on the value
of the input parameter i sPPS. Listing 5 shows the equivalent
Java activity with calls to the contained activity functions in
lines 6 and 8. The if statement, which determines whether
PostProcessSingle should be executed, is represented by
the decisionNode_1 function in line 8, with the missing
parameter added in the data flow step (Listing 6, line 14).

Listine 5. Control flow inside ParallelForFach 1 activitv.
private Promise parallelForEach_1 (...) {
int maxIter = PLMTars. get () .length;
for (int i = 0; i < maxIter; i++) {
Promise<String> currEl = Promise.asPromise (PLMTars. get ()
[il;
// Call to atomic activity ”LinearModel”
activityClient.linearModel (currEl);
// Call to composite if—activity
decisionNode_1 (..., isPPS);

Promise[] retval = new Promise[2];
return Promise.asPromise(retval);

}

4) Data flow: The last step in generating the body of
an activity function is to introduce variables that model the
data flow between the enclosed activity functions. To ease
the variable handling, we use the single static assignment

1

S o ® a9 v s W

12
13

14
15
16
17
18
19
20
21
22
23
24
25
26

technique employed in compiler construction, which requires
every variable be written once and not reused afterwards.
Every value returned by an activity function is assigned to
its own unique variable and passed as input to each activity
function with a connected input port. The main idea is that the
implementation of an activity function does not need to know
how the preceding activity functions produced and stored their
output values. This is also reflected in the activity function
signatures (see Section VI-B1) which only consists of the input
arguments from the original workflow specification. Activity
functions returning more than one value return a wrapper
object (see Section VI-B). The individual values contained in
this wrapper object need to be extracted before they are fed to a
subsequent activity function. Unfortunately, Promise objects
can only be accessed inside asynchronous functions, otherwise
an exception will be thrown. To address this problem, we
implemented several asynchronous helper functions for data
manipulation and conversion.

Listing 6 presents the data flow of the activity function
representing the composite activity ParallelForEach_1.
First, an array for holding the results of each loop iteration
is created for each activity in lines 4 and 6. The activities’
output ports are directly connected to a corresponding output
port of the surrounding composite activity. Then, the return
value of each activity function is stored in its own variable in
lines 10 and 14. Since the activity linearModel returns a
wrapper object, we have to convert it (line 12) before using the
actual return values (lines 14 and 16). At the end of each loop
iteration, the values produced in the iteration are stored into
the corresponding variables (lines 16 and 18). At the end of
the function body, we construct the return object and convert
the variables into a more suitable form (lines 22 and 24).

Listine 6. T q ithin . ..
private Promise parallelForEach_1 (...) {
int maxIter = PLMTars. get().length;
// Holds output values of linearModel activity
Promise[] outl = new Promise[maxIter];
// Holds output values of decisionNode_1
Promise[] out2 = new Promise[maxIter];
for (int i = 0; i < maxIter; i++) {
Promise<String> p = Promise.asPromise (PLMTars. get ()[i];
// Save linearModel return value of in Imol
Promise<PortWrapperArray> Imol = activityClient.
linearModel (p);
// Convert Imol in a format for further processing
Promise[] lmo2 = Utils.convertPWA2Pa(lmol, 2);
// Input first value stored in lmo2; save return value
into dnol
Promise dnol = decisionNode_1(lmo2[0], isPPS);
// Store linearModel return value in a collection
outl[i] = Imo2[1];
// Store if return value in a collection
out2[i] = dnol;

activity

Promise[] retval = new Promise[2];
// Convert collection to a suitable
retval[0] = Utils.convertAoP (outl);
// Convert collection to a suitable
retval[1] = Utils.convertAoP (out2);
// Return the output values

return Promise.asPromise(retval);

return format

return format

VII. EXPERIMENTS

The goal of our experiments is to compare the perfor-
mance of the RainCloud workflow in three configurations:
automatically-generated SWF workflow (using the technique

described in Section VI), manually-optimised SWF work-
flow, and original ASKALON version executed using the
ASKALON middleware. To be able to interface with the
EC2 infrastructure, we pragmatically extended the ASKALON
middleware services such as security with Amazon credentials,
information service with virtual machine image manipulation,
and enactment engine with SSH-based job submission.

A. Setup

We run the experiments on 16 Amazon instances of type
ml.medium. For the SWF workflow, we used S3 as inter-
mediate file storage. We executed the SWF decider and the
ASKALON scheduler on a dedicated host with an Intel i7-
2600K quad-core processor running at 3.4 GHz and 8 GB of
memory, outside of Amazon EC2. For ASKALON we used a
just-in-time scheduler which maps the next ready activities on
the machines delivering the earliest completion time, because
it mostly resembles the SWF operation. We executed the
RainCloud workflow in two scenarios: non-congested with
16 parallel loop iterations and two problem sizes (small and
large) and congested with 64 parallel loop iterations and a
small problem size. The small problem size corresponds to a
18 x 18 simulation grid and the large one to a 36 x 36 grid.
For each scenario and workflow version, we calculated the two
metrics: average total execution time and cumulative execution
time of all workflow activities plus the scheduling time. To
get an understanding on the amount of overhead present in a
workflow execution, we further split its cumulative execution
time into processing time (performing actual computation),
scheduling time, waiting time (in an engine internal queue) due
to insufficient free resources, queuing time due to middleware
and external load latencies, and file transfer time.

B. Results

Figure 4 shows the total execution times for the three work-
flow versions with 16 parallel iterations and small and large
problem sizes in the non-congested scenario. The manually-
written SWF workflow is only marginally faster than the au-
tomatically generated version. We expected this result because
the two versions only differ in the implementation of the
decider, whose overhead is negligible compared to the total
workflow execution time. Surprisingly, the ASKALON version
suffers from significantly higher execution times due to the
much higher overhead for transferring files between the worker
nodes, as shown in Figure 5(a). We found out that this overhead
is caused by the Java CoG Kit [18] employed by ASKALON
as a black-box library for interfacing with Grids (through
Globus plugin) and Clouds (through SSH plugin), which uses
an ASKALON middleware machine outside Amazon EC2

Small problem size
T

Large problem size
T i
13

n
o]

~
S

3
3
T
"
L

N
S
T

1
T

3
T
L

o
T
—
-
L
3
T
L

3
T
.

S
T
L

@
T
|

Execution time [min]

P T)
8
T
L

Execution time [min]
3
T
|

o
o

SWI SWF ASKALON SWF SWF ASKALON
(manual) (automatic) (manual) (automatic)

Fig. 4. RainCloud execution time in non-congested scenario.

Small problem size

Large problem size

n
a
3

£

E 200

o

E 150

2

2 100

5

]

E 50

=

© 0

SWF SWF ASKALON SWF SWF ASKALON
(manual) i (manual) i

5 ' "
[B = rltaen =
(a) Cumulative times.

Small problem size Large problem size

9 9
Ear 1 Esr —
E7} {1 E7p ,
ger 1 Eer]
=5 4 =5} 4
CERS 1 Esp 1
22f 1 Ef]
0 0
SWF SWF ASKALON SWF SWF ASKALON
(manual) (automatic) (manual) (automatic)
[Scheduling == Queueing =]
(b) Cumulative overheads except file transfer.
Fig. 5. RainCloud cumulative times in non-congested scenario.

as an intermediary for transferring files between two remote
machines. In the following, we disregard the file transfer times
to make the experiments more comparable.

The other reasons for ASKALON’s performance losses
are the scheduling and queuing overheads shown in Figure
5(b). The scheduling overhead in ASKALON is approximately
three times higher than in SWF because it is tuned for
highly heterogeneous and distributed Grid infrastructures, as
opposed to Clouds that tend to be more homogeneous and
located within one data centre. Because of this, the ASKALON
Grid scheduler needs to interact with a resource manager
for discovering the available shared resources which is not
a requirement in static Clouds owned by a single organisation.
Moreover, the ASKALON scheduler also needs to evaluate the
external load generated by scientists sharing a specific Grid
resource, not required for dedicated Cloud resources. Finally,
the ASKALON scheduler is also responsible for preparing
the remote execution environments (and directories) through
multiple SSH connections, not required for SWF that delegates
the setup of the environment to the locally running legacy
wrapper service.

Also, the workflow activities wait three times longer in the
queue of ASKALON compared to SWE. The average overhead
per workflow activity without file transfer is approximately
4 —5 seconds for SWF and around 15 seconds for ASKALON,
which is comparable for scientific workflows with long running
activities. The queuing time is larger for ASKALON than
for SWF because of the higher middleware stack required by
ASKALON for supporting a broader range of heterogeneous
infrastructures (i.e. clusters, Grids, Clouds), as opposed to
SWEF tuned for running in the native EC2 infrastructure only.
In addition, ASKALON actively pushes workflow activities to
be executed onto the worker nodes which introduces higher
overhead than the pull approach used by Amazon SWF where
the worker nodes actively fetch tasks from a task queue.

Figure 6 shows the total execution times in the congested
scenario. The SWF version performs slightly better for 64
parallel loop iterations than for 16, however this improvement

Small problem size
T

»
o

N
S
T

T
3

o @
T T
—_—
U
L L

o
T
L

Execution time [min]

£}

SWF ASKALON
(automatic)

[Non-congested (16 parallel loops) = Congested (64 parallel loops) ==

Fig. 6. RainCloud execution time with 16 and 64 parallel loops.

Small problem size
2

800 _
=
—_ S 80 - 4
F700 £
E 600 = 70+]
£ 500 geor 1
e 400 gsor]
2 O 4
S 300 g
S £ 30 - 1
E 200 S0l 4
S 100 Eol |
0 S
SWF ASKALON SWF ASKALON SWF ASKALON SWF ASKALON
non-congested congested
Processing == _Queuein% —
Sch\%iulm == File transfer =
aiting ==

Fig. 7. Cumulative RainCloud execution times with 16 and 64 parallel loops.

due to load imbalance on the 16 iteration parallel loop and
coarse-grain activity sizes is still within the standard deviation.
Using 64 iterations produces a finer-grained parallelisation
and smaller activity sizes that enables a better schedule with
smaller load imbalance overhead. The ASKALON version
with 64 parallel iterations performs worse than with 16, but
this degradation is again within the standard deviation.

Figure 7 shows the cumulative execution time for 64
parallel loop iterations. As expected, the waiting times in the
internal engine queue are extremely high because there are four
times as many workflow activities ready to execute than worker
nodes. Again, the queuing time of ASKALON is larger than
of SWF because of the higher middleware stack and the batch-
mode access to resources. The average overhead per workflow
activity without the file transfer and waiting overheads is of
17 seconds for SWF and 40 seconds for ASKALON, which is
an increase by a factor of 3.4 for SWF and 2.7 for ASKALON
compared to the previous scenario. The slight increase in
execution time of the ASKALON version in the congested
scenario is mainly caused by the file transfer overhead.

C. Discussion

To conclude, ASKALON has been designed to support
a variety of heterogeneous and distributed computing envi-
ronments, including Globus, glLite, EC2 and GroudSim [19]-
based. This heterogeneity in the supported infrastructures is
achieved through a modular architecture consisting of several
layers and comprising complex services such as enactment
engine, scheduling, and resource management. Although we
paid high attention at tuning the ASKALON overheads when
building the Cloud plugins, we exhibit a performance drop due
to the higher middleware stack compared to SWF, tuned for
working with the local, simpler, and more homogeneous EC2
infrastructure. For this reason, SWF features a much simpler
architecture where the decider only decides which workflow
activities can be executed next and not on which resources. The
tasks of preparing the execution environment and transferring

local files from S3 need to be manually implemented by
the programmer incurring a lower execution overhead, at the
cost of a higher programming effort. Workflows consisting of
numerous relatively short activities will mostly suffer from the
larger ASKALON middleware overheads.

VIII. CONCLUSION

In this paper we proposed a method for automatic porting
of scientific workflows to Amazon SWEF, able to exploit the
native performance of the EC2 infrastructure. The solution is
based on the SHIWA fine-grained interoperability technology
for translating workflows written across different languages
through the common IWIR representation. This scalable soft-
ware engineering solution enables five major workflow systems
currently supporting the IWIR representation access the EC2
infrastructure through the SWF service: ASKALON, MO-
TEUR, Pegasis, Triana, and WS-PGRADE.

We presented in this paper the difficulties we encountered
in translating an data flow-oriented ASLALON workflow into
a control flow-oriented SWF decider program. The method is
based on an algorithm that automatically generates the SWF
decider Java program and the underlying activity functions
in four phases: function signature, activity semantics, DAG
control flow and data flow generation.

We presented experimental results for porting an original
real-world ASKALON workflow to the EC2 infrastructure
in two configurations: conversion to a Java SWF decider or
execution through the ASKALON middleware connected to
EC2 via an SSH plugin. The results demonstrate that the
SHIWA fine-grained interoperability solution that translates
an ASKALON workflow into an SWF version through the
common IWIR representation is a promising alternative for
porting workflows to a new infrastructure and able to exploit
its native performance. Amazon SWF represents an attractive
environment for running traditional workflow applications,
especially those consisting of numerous relatively short ac-
tivities affected by the large Grid middleware overheads.
This is demonstrated by the performance of the automatically
generated SWF workflow, which is similar to the manually
optimised version. In contrast, porting existing Grid workflow
middleware environments such as ASKALON to the Cloud,
although effective, have performance drawbacks compared to
the translated SWF version. The reasons of performance losses
lie in the high middleware stack required for supporting a
wider range of distributed and heterogeneous cluster, Grid, and
Cloud computing infrastructures.

A downside of Amazon SWF is its proprietary implemen-
tation hosted by a commercial vendor who charges costs and
may abandon this service anytime if it is lacking success.
Another difference to clusters and Grids is the pull-based
assignment of tasks to an unknown number of activity workers
that requires different scheduling methods.

ACKNOWLEDGMENT

Austrian Science Fund project TRP 237-N23 and Stan-
dortagentur Tirol project RainCloud funded this research.

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

REFERENCES

1. J. Taylor, E. Deelman, D. Gannon, and M. Shields, Eds., Workflows
for e-Science. Scientific Workflows for Grids. Springer, 2007.

K. Plankensteiner, J. Montagnat, and R. Prodan, “IWIR: a language
enabling portability across grid workflow systems,” in Proceedings of

the 6th workshop on Workflows in support of large-scale science. ACM,
2011, pp. 97-106.

T. Fahringer, R. Prodan, R. Duan, J. Hofer, F. Nadeem, F. Nerieri,
S. Podlipnig, J. Qin, M. Siddiqui, H. Truong et al., “Askalon: A
development and grid computing environment for scientific workflows,”
Workflows for e-Science, pp. 450-471, 2007.

T. Glatard, J. Montagnat, D. Lingrand, and X. Pennec, “Flexible and
efficient workflow deployment of data-intensive applications on grids
with moteur,” International Journal of High Performance Computing
Applications, vol. 22, no. 3, pp. 347-360, 2008.

P. Kacsuk, “P-grade portal family for grid infrastructures,” Concurrency
and Computation: Practice and Experience, vol. 23, no. 3, pp. 235-245,
2011.

E. Deelman, G. Singh, M. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. Berriman, J. Good ef al., “Pegasus: A framework
for mapping complex scientific workflows onto distributed systems,”
Scientific Programming, vol. 13, no. 3, pp. 219-237, 2005.

I. Taylor, M. Shields, I. Wang, and O. Rana, “Triana applications
within grid computing and peer to peer environments,” Journal of Grid
Computing, vol. 1, no. 2, pp. 199-217, 2003.

G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B. Berman,
and P. Maechling, “Scientific workflow applications on amazon ec2,”
in E-Science Workshops, 2009 5th IEEE International Conference on.
IEEE, 2009, pp. 59-66.

P. Riteau, M. Tsugawa, A. Matsunaga, J. Fortes, T. Freeman, D. LaBis-
soniere, K. Keahey et al., “Sky computing on futuregrid and grid5000,”
in 5th Annual TeraGrid Conference: Poster Session, vol. 68, 2010, p.
119.

C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B. Berriman,
and J. Good, “On the use of cloud computing for scientific workflows,”
in eScience, 2008. eScience’08. IEEE Fourth International Conference
on. IEEE, 2008, pp. 640-645.

G. Morar, F. Schueller, S. Ostermann, R. Prodan, and G. Mayr, “Meteo-
rological Simulations in the Cloud with the ASKALON Environment,”
in Euro-Par 2012: Parallel Processing Workshops. Springer, 2013, pp.
68-78.

M. De Assungdo, A. Di Costanzo, and R. Buyya, “Evaluating the cost-
benefit of using cloud computing to extend the capacity of clusters,”
in Proceedings of the 18th ACM international symposium on High
performance distributed computing. ACM, 2009, pp. 141-150.

P. Marshall, K. Keahey, and T. Freeman, “Elastic site: Using clouds
to elastically extend site resources,” in Proceedings of the 2010 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid Com-
puting. 1EEE Computer Society, 2010, pp. 43-52.

D. Franz, J. Tao, H. Marten, and A. Streit, “A workflow engine for
computing clouds,” in CLOUD COMPUTING 2011, The Second Inter-
national Conference on Cloud Computing, GRIDs, and Virtualization,
2011, pp. 1-6.

S. Pandey, D. Karunamoorthy, K. Gupta, and R. Buyya, “Megha
workflow management system for application workflows,” IEEE Science
& Engineering Graduate Research Expo, Melbourne, Australia, 2009.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin, “Aspect-oriented programming,”
ECOOP’970bject-Oriented Programming, pp. 220-242, 1997.

I. Barstad and F. Schueller, “An Extension of Smith’s Linear Theory

of Orographic Precipitation: Introduction of Vertical Layers,” Journal
of the Atmospheric Sciences, vol. 68, no. 11, pp. 2695-2709, 2011.

G. von Laszewski, I. Foster, J. Gawor, and P. Lane, “A Java commodity
Grid kit,” Concurrency and Computation: Practice and Experience,
vol. 13, no. 89, pp. 643-662, 2001.

S. Ostermann, K. Plankensteiner, and R. Prodan, “Using a new event-
based simulation framework for investigating resource provisioning in
Clouds,” Scientific Programming, vol. 19, no. 2, pp. 161-178, 2011.

