
Towards Component-based Domain Engineering

Asmaa Alayed, Kung-Kiu Lau, Petr Štěpán and Cuong Tran

School of Computer Science, The University of Manchester

Manchester M13 9PL, United Kingdom

Email: aalayed,kung-kiu,pstepan,ctran@cs.manchester.ac.uk

Abstract—Domain engineering is the first phase of product
line engineering. The key artefact created by domain engineer-
ing for product engineering is a reference architecture for all
possible systems or products in the domain. In existing domain
engineering techniques, there are no well-defined methods for
constructing reference architectures. Existing domain engineering
tools mostly stop short of constructing reference architectures. In
this paper, we show how a component-based approach to domain
engineering can provide a remedy.

I. INTRODUCTION

Domain Engineering is the first phase of Product Lines

Engineering [10]; the second phase being Product Engineer-

ing. Domain Engineering is concerned with analysing and

modelling domain requirements as well as implementing the

results. The latter feed into Product Engineering, which is

concerned with constructing actual products or systems in the

domain. In this paper, we focus on Domain Engineering only.

For terminology, we follow [17], [16], [19], [11].

Domain Engineering starts with domain analysis. Domain

analysis results in domain models such as a feature model,
which defines feature composition and variability in products,

and a functional model, which defines the behaviour of all pos-

sible products (containing all possible variations of features).

Domain analysis is followed by domain design. In domain

design, the feature model and the functional model together

are used to create a reference architecture for all possible

systems or products in the domain. The reference architecture

contains variation points (as defined in the feature model)

where different features may be selected for a specific product.

It should also provide a blueprint for generating all possible

products (containing all possible variations of features) whose

behaviour is defined by the functional model.

The reference architecture is thus the key artefact for Prod-

uct Engineering. However, constructing a reference architec-

ture is not straightforward, and in existing domain engineering

techniques, there are no well-defined methods for doing it.

Existing domain engineering tools [30] mostly stop short of

constructing reference architectures.

In this paper, we show how a component-based approach

to Domain Engineering can provide a remedy. In particular,

we show how the functional model can be defined in a

component-based manner, using a suitable component model,

as an architecture that contains all the variation points defined

in the feature model. Such an architecture is of course a

reference architecture, and so by defining the functional model

in this way we automatically get a reference architecture as

well.

II. DOMAIN ENGINEERING

The feature model represents the mandatory and optional

features of a product, together with any dependencies between

optional features. Fig. 1 shows the feature model for vehicle

���

����	
��
 ������
��
����������
	��������
��

�����
����� ����	
��
������

���
�
��
�����	������

�����������
�
	����
����
��

�������
���������

����������	
��
����������������������������
�
	��������
��

Fig. 1. Feature model for vehicle control systems.

control systems (VCS). Circles denote optional features, and

composition rules define dependencies between these features.

In a VCS product, the optional feature Object Detection can

only be present if (the optional feature) Cruise Control is also

present.

The functional model describes the data (or structural)
model and the control model. The functional model specifies

functional structure and behaviour in terms of a data model
and a control model respectively. The data model describes

data flow in the domain, starting from data I/O to the domain,

as a hierarchical decomposition of functionality in the domain

where each node is a data flow diagram (DFD). Within a DFD

(Fig. 2), functions are specified as data transformations (DTs)

interconnected by data flows. The decomposition process of

����������	
�

�������

���

������
�

������

�	� ����������
�

������

���

��������������
�
���
�����

��������

��������

����������������

��������

����������

�������������

�����������

Fig. 2. Hierarchical decomposition of DFDs.

data transformations ends with primitive data transformations

(PDTs). Each primitive data transformation is associated with

a specification for data access or general data processing.

Data transformations are activated by control transforma-

tions (CTs). A control transformation receives input control

2013 39th Euromicro Conference Series on Software Engineering and Advanced Applications

978-0-7695-5091-6/13 $26.00 © 2013 IEEE

DOI 10.1109/SEAA.2013.44

106

signals, processes or transforms them, outputs them, and

activates data transformations in the corresponding DFD. For

example, in Fig. 2, CT2 activates the primitive data transfor-

mations PDT2 and PDT3.

��

��

��

���

��
��

	

��

��

� �

Fig. 3. A simple functional
model.

To complete the definition of

a functional model, a state tran-

sition diagram (STD) needs to be

given for each control transforma-

tion and its associated data trans-

formations. Fig. 3 shows a simple

functional model, which defines the sequential invocation of

two PDTs (F1 and F2). The STD specifies that CT1 activates

first F1 then F2.

Once the feature and functional models have been defined,

the next step is to construct a reference architecture for all

possible products in the domain. This is difficult for existing

domain engineering techniques, because feature and functional

models do not readily translate to architectures.

The feature and functional models described above follow

feature-oriented domain analysis methods, the best-known of

which is FODA [19]. In these methods, data models define

structured data transformations, i.e. functions, that correspond

to features in the feature model. However, data models do not

capture feature variability.

Control models define activations of functions correspond-

ing to features by means of state transition diagrams. Such

diagrams do not readily translate into architectures. Conse-

quently, creating a reference architecture becomes a separate

task: the task of using the feature and functional models as a

specification and coming up with product architectures with

all possible feature variations.

III. RELATED WORK

According to the survey in [1], domain engineering based on

feature-oriented analysis (as opposed to object-oriented analy-

sis) is best suited to component-oriented Product Engineering.

The survey includes an analysis of how well these methods

support the construction of a reference architecture, given

the feature and functional models. These methods [19], [23],

[20], [13], [15] define processes and guidelines for modelling

and designing architectures. They do not derive reference

architectures directly from the feature and functional models,

and do not construct products (and variants) as executable

systems.

Another survey [14] also concludes that in existing domain

engineering approaches, it is not clear how the reference

architecture should be built.

Other feature-oriented approaches take a programming ap-

proach, i.e. they define features as programming language

constructs and define architectures by putting features together.

In generative programming, for example, an architecture is

represented as nested templates (which contain features) based

on GenVoca grammar [6], and code for different products can

be generated from instances of such templates.

Feature-oriented software development (FOSD) [2] uses

object-oriented languages with special classes that define fea-

tures, and develop object-oriented systems by putting feature

objects together.

Component-based product line engineering approaches in-

clude, for instance, Koala [31], [29] and KobrA [4], [5]. Koala

is a component model which is an architecture description lan-

guage [28], [25]. Components have interfaces and may contain

other components. A configuration is a special component

that has no interface and is not part of another component.

Koala uses a configuration as a specific product in a family

of products (constructed from components). However, Koala

does not define variation points, so it cannot define reference

architectures. Koalish [3] adds variation points to Koala, but

it also does not define reference architectures; rather it is used

for configuring products directly from components.

KobrA uses object-oriented analysis, so according to [1]

it would not be as good as feature-oriented approaches. In

KobrA, components are UML components as defined in [9].

(These are different from UML2.0 [26] components. The

former are just classes/objects whereas the latter are archi-

tectural units.) Their behaviour and interactions are defined by

sequence diagrams. Products are aggregations or compositions

of objects, and their structure is modelled by class diagrams.

However, these UML diagrams do not directly define products

or architectures. Neither do they define explicit functional

models as in feature-oriented domain analysis. In KobrA,

variability is defined by a decision model with links to the

UML modelling diagrams. Nonetheless, to define reference

architectures explicitly would require another task.

IV. A COMPONENT-BASED APPROACH

All the feature and functional models (and parts thereof)

in Section II are defined according to FODA. In this section,

we present a component-based approach to domain engineer-

ing which enables us to define the functional model in a

component-based manner (i.e. using a component model),

which directly yields a reference architecture, unlike FODA.

We use VCS as a running example.

A component-based approach has an underlying component

model. We use the X-MAN component model.

A. The X-MAN Component Model

In the X-MAN component model [22], [21], [18] (Fig. 4),

there are two basic entities: (i) components, and (ii) composi-
tion connectors.

��������	�

��
����

�

�����

����	�������
�
�

������	�	�
���

�����

����� �����
��� ���

������	��������
�
�

�����
��� ��������
�

��

�

��	 �

�	 	�

Fig. 4. The X-MAN component model.

Components are encapsulated units of behaviour: a com-

ponent defines computation (methods) which have no external

107

dependencies on other components, i.e. a component does not

call methods in other components.

A component’s behaviour is exposed through its interface as

provided services (lollipops in Fig. 4). Composition connectors

invoke components’ provided services, and initiate and coor-

dinate such invocations and their results; as such, composition

connectors are composition mechanisms for components.

Components can be atomic or composite. An atomic com-

ponent consists of an invocation connector (IU) linked to

a computation unit (U). The computation unit contains an

implementation of some behaviour (methods) in a chosen

programming language. The computation unit’s computation

does not call the methods of another computation unit (of

another component). The invocation connector exposes the

methods of the computation unit via the provided services in

the component’s interface and allows them to be invoked by

composition connectors.

Composition connectors are control structures. They are

used to compose (atomic or composite) components into

composite components. In a composite component, sub-

components do not call each other. Instead, the composition

connector coordinates the sub-components’ execution.

Two basic composition connectors are Sequencer (SEQ) and

Selector (SEL). Sequencer provides sequencing, whilst Selec-
tor offers branching. For instance, the composite component in

Fig. 4 could be a bank system, where the sequencer SEQ first

calls an ATM (component A) to get customer inputs and then

calls the customer’s bank branch (component B) to handle the

inputs.

In addition, there are special connectors that are not used

for composition, but for adapting single components. These

connectors are called adaptors; examples are Loop and Guard.

Loop allows for iteration1 (over a single component) and

Guard offers gating.

The execution semantics for X-MAN is control-driven.

Component execution is initiated and coordinated by compo-

sition connectors. Composition connectors initiate control to

invoke components. At each component, control then triggers

read and write operations on data channels (not shown in

Fig. 4, but can be seen in Fig. 5) associated with the com-

ponent in order to supply the component’s inputs from other

components and data stores, and distribute the outputs from

the component.

B. Functional Model using X-MAN

The basic idea of using X-MAN to define the functional

model is that in X-MAN an architecture actually defines

a behaviour which is the result of computations (on data)

triggered by control flow. Thus an X-MAN architecture defines

all the elements of the functional model: data model (data

transformations: data and functions), control model (control

transformations) as well as the associated STDs. In other

words, using X-MAN to define a functional model gives us

not only a functional model, but also an architecture containing

1Finite iteration only, except for adaptors at the top-level of a system.

all the features in the feature model (though not the variation

points therein).

1) Primitive Data Transformations: An atomic X-MAN

component defines a primitive data transformation (PDT).

More precisely, the methods of a component define functions

(data transformations), and the data channels of a component

define data flow in/out of the component. Fig. 5 shows two X-

MAN components that define 2 PDTs connected by data flow.

Fig. 5. X-MAN components define PDTs.

In component X , data

values a and b are on its

input data ports, and data

value c is on its output

data port. In component

Y , data value c is on its input data port, and data value d is on

its output data port. Data value c is passed from component X
to component Y . These two components and their data flow

define the two PDTs PX and PY in Fig. 5.

2) Control Transformations: A composition connector in

X-MAN defines control flow between the composed com-

ponents. The behaviour of the composite can be described

by an STD. The composition connector therefore defines a

control transformation on the data transformations (functions)

corresponding to the components.

For example, the sequencer composition connector passes

control sequentially among the composed components. It

therefore defines a control transformation that activates or

invokes a sequence of data transformations, with a sim-

ple ‘linear’ STD. This is shown in Fig. 6, where n
(atomic) components are composed by a sequencer.2 In

the composite, the behaviour starts in the initial state (S1)

��

��

� � �
���

�	 �	
�

��

��
�	

�
�

� �
�

�
��

�	
�

�
�

�

��

�	

� � �

� �

�

�

���

Fig. 6. Control transformation defined by sequencer.

when the

sequencer

starts control

flow, invokes

component

1 (function

F1), transits

to the next

state (S2), invokes component 2, . . . , transits to the next state

(Sn), invokes component n (function Fn), transits to the final

state (Sn+1). This composite thus defines the same behaviour

defined by the control transformation CT1 and the associated

STD in Fig. 6.

Similarly, a selector composition connector also defines a

control transformation. A selector invokes a selected compo-

nent, therefore it defines a control transformation that activates

a selected data transformation, with a simple ‘branching’ STD.

This is shown in Fig. 7, where a selector composes n (atomic)

components. In the composite, the behaviour starts at the

initial state (S1). The next transition is one of n alternative

transitions depending on the evaluation of the condition c to a

range of values v1 . . . vn. If c evaluates to vi then component

i is invoked (function Fi) and the next state is the final

state (Si+1). This composite thus defines the same behaviour

2For simplicity we omit the data channels.

108

�
���

� � �	

	

�� � � �
�

�	�

���

	

�

� � �� � �

� � �

� � �	

�
�

�
�

�

� � �

	

�	
�� �

�

�

�
��

Fig. 7. Control transformation defined by selector.

defined by the control transformation CT2 and the associated

STD in Fig. 7.

Adaptors in X-MAN also define control transformations,

on single data transformations. Fig. 8 shows an adaptor (AD)

�

� ��

���

�
	

�

 �

��

����

�
�
 ����

�����

��
��
�����

�

�

� 	

��

����

��
�����

��
������

Fig. 8. Control transformation defined by an adaptor.

applied to a single (atomic) component. If the adaptor is

a guard then it invokes the component (function F) if the

condition (c) is true. If the adaptor is a loop then it repeatedly

checks the condition (c) and invokes the component (function

F) if the condition is true; it terminates when the condition is

false. Both a guard and a loop adaptor define the same control

transformation (CT3) but they have different STDs as shown

in Fig. 8.

3) Non-primitive Data Transformations: Non-primitive

data transformations contain hierarchical levels of decom-

position, with control transformations activating data trans-

formations at different levels (as shown in Fig. 2). At the

bottom level of decomposition, data transformations are finally

decomposed into primitive data transformations (PDTs). In

the last section, we have shown how X-MAN composition

connectors define control transformations for activating PDTs.

Now we show how composition connectors also define control

transformations for activating non-primitive data transforma-

tions.

The key thing to observe is that in X-MAN, a composite

component has exactly the same outward appearance, i.e.

interface, as an atomic component. This can be seen in Fig. 4.

As far as composition connectors are concerned, it makes no

difference whether the components they compose are atomic

or composite.

Thus we could easily extend our discussion of X-MAN

composition connectors as control transformations to non-

primitive data transformations. For example, the composite

��

��
��

��

�� ��
� 	
�

� 	
�

��

��

� �

��

��

��

��

��
� �

�

�

�
���

� �

� ���

��

�
���

��
��

� �

�

�

�
���

��	�
� ��	�
�

�� ��

�

�

Fig. 9. Composing composite components.

in Fig. 9 is the result of a selector composing an atomic

component with a composite component. The latter, the cor-

responding non-primitive data transformation, and the corre-

sponding compound state are all indicated by an enclosure

of dashed lines. The control transformation CT2 activates the

non-primitive data transformation that contains the control

transformation CT1 that in turn activates the PDTs F1 and

F2. This example thus shows how composition connectors

define control transformations that activate non-primitive data

transformations and do so in a hierarchical manner (as depicted

in Fig. 2).

4) The VCS Example: Fig. 10 shows the top level of the

X-MAN functional model for the VCS domain, created by

using a modelling tool we have implemented for X-MAN.3

The system level loop adaptor (Sys Loop) and the composition

Fig. 10. X-MAN functional model for VCS.

connectors (a selector (Task Selector) and four sequencers

drawn as rounded rectangles) combine control transformations

and their STDs.

The five components at the bottom of the architecture are

composite components. As an example, the MeasureMotion

component is shown in Fig. 11. It is a composition of three

atomic components by a sequencer connector. Fig. 11 also

shows how our modelling tool depicts features of X-MAN

that have not been shown in other diagrams so far: (i) services

are shown as (purple) round rectangles; (ii) data channels are

arrows; (iii) data stores – shared places storing inputs and

outputs of services – are cylinders; and (iv) external entities –

a special kind of data stores for sensor readings and actuator

commands – are represented as triangles.

�����
�����	
�

��
�������	
��	���	�

����
�����
�����	
�

�����	�
����

�����	�
�����

����
����

�������������
�������	�
��	�����

�����
��	���

Fig. 11. The Measure Motion composite component.

3For clarity, we omit data channels and services in Fig. 10.

109

C. Reference Architecture using X-MAN
In most approaches to functional modelling (see Sections II-

III), including FODA, elements of the functional model do

not readily translate to elements of a software architecture;

creating a reference architecture is usually a separate step

that follows the creation of the feature and functional models,

and that requires substantial human knowledge, experience,

ingenuity and effort. By contrast, a functional model based on

X-MAN yields a reference architecture immediately if it also

incorporates variation points as defined in the feature model.

Variation points define places where optional features may or

may not be present in a product.
To define variation points explicitly in the functional model

would require a meta-level extension to X-MAN to represent

variant behaviours. Nonetheless, we can define variability

via the absence or presence of components in an X-MAN

architecture.
1) Defining Variability: In general, a functional model

specifies the behaviour of all the features in the domain. An

individual product, however, impleme nts only some subset

of the features; its behaviour is therefore specified by some

subset of the functional model. In the case of X-MAN, since

the functional model is an architecture, an individual product

also has an architecture that is some subset of the functional

model.
To be able to derive a product architecture, we need a way

of mapping the product’s features to a subset of the functional

model; in particular we must establish links between parts of

the functional model and features from the feature model. The

reference architecture is just the functional model with these

links.
Functional models in our approach have the structure of an

X-MAN system architecture; they are trees in which leaves

are formed by atomic components and every inner node cor-

responds to a composition connector (forming a corresponding

composite component). Likewise, feature models form trees in

which features can comprise sub-features (inner nodes) or be

on their own (leaves). To establish the mapping between a

functional model and a feature model, we use the fact that

both models are trees: we associate leaves in the feature tree

– features – with the leaves in the functional model tree –

atomic components implementing the features’ behaviour (see

Fig. 12). We rely on an assumption (similar to the one FODA

makes in creating its functional models) that it is possible for

each atomic component to identify a feature or features whose

behaviour it implements. One feature can be implemented by

more than one atomic component; and conversely, an atomic

component can implement the behaviour of multiple features.
To establish links between atomic components and features,

we annotate each atomic component with the feature or

features whose behaviour it represents, as soon as we have

modelled the corresponding primitive data transformation.
Having manually defined the correspondence between the

leaves of the functional and feature models, we can use

composition mechanisms defined in both models to auto-

matically propagate the correspondence to the whole trees.

�� �� �� ��� � ��� �

� � �

� � �

���

��

	
��
���������

����

��� ����

���

����

��� ����

��� ����

��� ����

���

���������	
��

���
��	�����	
��

��
�������������

��
��������

��

��

���������� �����

��� �!��������������

" ������

����
����#�

�� ��

�� ��

Fig. 12. Creating a reference architecture.

In a functional model, a composite component implements

the union of the features of all the children of its top-level

composition connector. For example, in Fig. 12, the composite

component comprising AC1 and AC2 implements features 3

and 4.

In a feature model, the variation links to a super-feature

comprise variation links to all its sub-features. For instance,

Feature 2 in Fig. 12 is the target of the four variation links

going to its sub-features 5 and 6. The mapping can be

computed as part of the product derivation process described

in Section IV-D.

2) The VCS Example: Fig. 13 shows the reference architec-

ture for the VCS domain. It illustrates the fact that a reference

Fig. 13. X-MAN reference architecture for VCS.

architecture in our approach corresponds to a functional model

linked to a feature model. There is no one-to-one mapping

between features and components. Annotations for composite

components can be generated automatically from those for

atomic components; however, atomic components have to be

110

Fig. 14. X-MAN reference architecture for ACCS.

annotated manually. For instance, in Fig. 14, which shows the

reference architecture for Adaptive Cruise Control (ACCS), all

the sub-components of the ACCS component that implements

the behaviour of Adaptive Cruising are atomic and have to be

annotated manually.

Fig. 14 shows that not every feature can be encapsulated as a

separate composite component: components implementing the

Cruise Control feature (F1) form one composite component

together with atomic components implementing the Object

Detection feature (F2). It would be unreasonable to expect the

opposite. After all, related features in the feature model may

not have any behavioural relations, whereas components in X-

MAN are composed precisely because their behaviours need

to be composed into the desired behaviour of the resulting

composite component.

D. Deriving Product Variants

A product variant derivation takes two inputs: the reference

architecture and a valid selection of (the product’s) features

from the feature model; and produces an architecture that

implements the behaviour of the product with the selected

features. To derive each product variant, it is necessary to

disentangle its architecture from the reference architecture. In

our approach, product variant derivation consists of three steps:

1) mark all atomic components linked with the selected

features (to be included in the product architecture);

2) trace all dependencies, both control and data flow, be-

tween marked components and unmarked components;

3) extract architecture for product variant from reference

architecture according to all the above dependencies.

Step 1 ensures that the product architecture implements only

the behaviour of the selected features. It uses the links defined

in the reference architecture between atomic components and

the features they implement.

Step 2 allows us to construct control flow and data flow

for the product architecture from the reference architecture.

It identifies all flows of data and control that will not be

present in the product architecture because their targets are

components implementing features that are absent in the

product.
Step 3 extracts the product architecture that contains the

atomic components marked in Step 1, and defines control

flow and data flow derived from the reference architecture by

excluding dependences identified in Step 2.
The extraction of control flow from the reference architec-

ture amounts to deriving a composition connector tree. Its

structure may differ from the composition structure of the

reference architecture since some coordination behaviour is

not needed in the product, but the coordination behaviour

related to the marked components must be preserved. The

fixed set of basic composition connectors in X-MAN enables

the derivation to be guided by the following set of rules.
Because no coordination behaviour is added during the

product derivation (it is defined in the reference architecture),

a control connector from the reference architecture can be

replaced by its children in the product architecture, its arity

can decrease, or it can be omitted altogether. In general there

are two cases.

• A connector in the reference architecture does not have

enough parameters present in the product architecture (i.e.

no parameters for an adapter and less than two parameters

for a composition connector) and cannot be therefore

copied as is. If such connector has one parameter left,

then the parameter (an atomic or composite component)

takes the place of the connector in the composition tree

of the product. Here, the designer has to ensure that such

a change is valid, e.g., by comparing pre-conditions of

the connector and the parameter. If the connector in the

reference architecture has no parameters left, the arity of

its parent connector in the product architecture must be

decreased according to the following rule.

• A composition connector in the reference architecture has

some parameters missing in the product architecture, but

at least two of its parameters are present. The composition

111

connector only needs to have its arity decreased. If

it is a sequencer, its present parameters may need re-

numbering. If it is a selector, the present parameters may

need reformulating in terms of their selection conditions.

Again, the designer needs to make sure that such changes

are valid.

1) The VCS Example: The feature model for the VCS

(Fig. 1) allows the three possible products to be derived from

the VCS reference architecture (Fig. 13):

Product Features

Product 1 F1, F2, F3, F4, F5, F6

Product 2 F3, F4, F5, F6

Product 3 F1, F3, F4, F5, F6

The architecture of Product 1 corresponds directly to the

reference architecture (Fig. 13). In general, it may not always

happen that a product corresponds to the whole reference

architecture: the main role of a reference architecture is to

aggregate the behaviour of all the features of the domain; it

may not define a sensible system behaviour.

Product 2 does not contain the ACCS feature. In Step 1

of the product derivation, all atomic components but those

realising Cruise Control (F1) and Object Detection (F2) from

the ACCS composite component (Fig. 14) have been marked

for inclusion in the product architecture. In Step 2, all data

and control flows to the ACCS have been identified, and

excluded in the extraction of the product architecture in Step

3. The derivation of the connector tree of the product resulted

in excluding the Sequencer Z connector and decreasing the

arity of the Task Selector connector in the product architecture

(Fig. 15).

Fig. 15. Top level of Product 2 architecture.

Product 3 contains the Cruise Control feature (F1), but does

not have the Object Detection capability (F2). As a result, the

top level of the product architecture is the same as the one

in Fig. 10. The difference is in the composition of the ACCS

composite component. In Step 1 of the product derivation,

atomic components linked to the Object Detection feature (F2)

are not marked for inclusion (Fig. 14). In Step 2, control

flow and data flow dependencies of these components are

identified. In Step 3, the above mentioned dependencies are

removed; therefore, the ACCS composition connector tree

in the product does not contain GRD 6 and the parameters

of Sequencer 2, Sequencer 3, Sequencer 4 and Sequencer 5

have been renumbered.4

V. DISCUSSION AND CONCLUSION

We have presented an approach to domain engineering that

we believe potentially extends FODA. Our approach constructs

the functional model as an executable architecture, and thus

enabling the reference architecture to be defined as such a

functional model with variability as defined in the feature

model. Furthermore, our reference architecture enables all

product variants to be extracted from it; and these products

are all executable. By contrast, FODA (and FORM) does

not construct explicit reference architectures; neither does

it construct explicit product variants. According to surveys

on domain engineering such as [1] and [14], other domain

engineering methods have similar shortcomings. Therefore we

believe our approach is a potential advance on the state-of-the-

art in domain engineering [8], [12], [7].

Using the X-MAN component model to construct a func-

tional model has a couple of advantages. Firstly such a func-

tional model is executable and this means that we can verify

the reference architecture against the domain requirements

earlier in the analysis phase, and this would reduce the cost

of development.

Secondly, X-MAN construction is strictly hierarchical, and

this means increased scalability in software design. In other

words, the reference architecture will have the ability to

include large numbers of components and interactions among

them during the analysis and design phase.

The high level of encapsulation in X-MAN model offers

other advantages, compared with other component-based prod-

uct line engineering, e.g. KobrA and Koala. One advantage

is that it is a recognised factor in modelling high quality

reference architectures, see e.g. [24].

Additionally, it helps to mitigate the problem of unintended

feature interactions [27], [2]. These occur when two features

behaving correctly on their own exhibit incorrect behaviour

once combined in a product, due to certain implementation

interferences (e.g. sharing some data). They are difficult to

discover, especially in approaches with components with many

(even undocumented) interdependencies. In X-MAN, the more

restricted communication between components provides a

check against unintended feature interactions.

Our domain engineering approach also addresses the issue

of cross-cutting features, which is another problem that arises

in product line engineering. Unlike aspects, which deal with

cross-cutting features by definition, the traditional black-box

components are ill-suited to representing such features [2],

4For lack of space we do not show the final form of ACCS in Product 3.

112

because they are monolithic blocks without variability. In our

domain engineering approach, cross-cutting features can be

realised by fine-grained components instantiated across the

composition hierarchy of the reference architecture. During

a product derivation according to the product’s features, com-

posite components composing these cross-cutting features in

the reference architecture may or may not compose them in

product architecture, according to the variability defined in the

reference architecture.

We have evaluated our approach qualitatively. We showed

(as summarised in Section II) that there exists a mapping

between basic constructs of X-MAN and FODA functional

models; this demonstrates that our method is as expressive as

FODA-based domain engineering approaches.

As the focus of this paper is on domain engineering, we did

not validate the run-time behaviour of the derived products;

nonetheless we validated their design by informal design

reviews in our research group. Also, the product derivation al-

gorithm needs more empirical evidence to establish its validity.

As future work, we have to validate our approach formally.

Such validation has to be done against existing approaches,

in particular FODA. This may not be straightforward, since

current approaches, including FODA, have no formalisation.

We have implemented a modelling tool, used in this paper,

for domain engineering. The tool was developed using the

Eclipse Modelling Framework (and other related frameworks).

As a result, all the designs produced by the tool conform to the

meta-model of X-MAN, which guarantees their structural va-

lidity. For product line engineering, we need to link this tool to

the X-MAN tool described in [18], [21] that allows execution,

simulation and testing. The latter is also implemented using

Model-driven Engineering. This should facilitate linking the

two tools, via model exchange.

Finally, we plan to extend X-MAN to allow explicit repre-

sentation of variation points in the reference architecture by

augmenting the existing meta-model. Such a reference archi-

tecture explicitly defines all possible product architectures, as

opposed to product architectures extracted by the derivation

procedure described in this paper.

REFERENCES

[1] GMV Aerospace and Defence S.A. Domain Engineering Methodologies
Survey. A CORDET (Component Oriented Development Technology)
report, 2007.

[2] S. Apel and C. Kästner. An overview of feature-oriented software
development. Journal of Object Technology, 8(5):49–84, 2009.

[3] T. Asikainen, T. Soininen, and T. Männistö. A Koala-based approach
for modelling and deploying configurable software product families. In
Software Product-Family Engineering, 5th Int. Workshop, LNCS 3014,
pages 225–249. Springer, 2003.

[4] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger, R. Laqua,
D. Muthig, B. Paech, J. Wüst, and J. Zettel. Component-based Product
Line Engineering with UML. Addison-Wesley, 2001.

[5] C. Atkinson, J. Bayer, and D. Muthig. Component-based product line
development: the KobrA approach. In Proc. 1st Conf. on Software
Product Lines, pages 289–309. Kluwer, 2000.

[6] D. Batory and S. O’Malley. The design and implementation of
hierarchical software systems with reusable components. ACM Trans.
Soft. Eng. Methodology, 1(4):355–398, 1992.

[7] T. Berger, R. Rublack, D. Nair, Joanne M. Atlee, M. Becker, K. Czar-
necki, and A. Wasowski. A survey of variability modeling in industrial
practice. VaMoS ’13, pages 7:1–7:8. ACM, 2013.

[8] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki. Variability
modeling in the systems software domain. Technical report, University
of Waterloo, 2012.

[9] J. Cheesman and J. Daniels. UML Components: A Simple Process
for Specifying Component-Based Software. The Component Software
Series. Addison-Wesley, 2000.

[10] P. Clements and L. Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley, 2002.

[11] K. Czarnecki and U.W. Eisenecker. Generative Programming: Methods,
Tools, and Applications. ACM Press/Addison-Wesley, 2000.

[12] K. Czarnecki, P. Grünbacher, R. Rabiser, K. Schmid, and A. Wasowski.
Cool features and tough decisions: a comparison of variability modeling
approaches. VaMoS ’12, pages 173–182. ACM, 2012.

[13] J.-M. DeBaud, O. Flege, and P. Knauber. PuLSE-DSSA – a method for
the development of software reference architectures. In Proc. 3rd Int.
Workshop on Software Architecture, pages 25–28. ACM, 1998.

[14] X. Ferré and S. Vegas. An evaluation of domain analysis methods. In
4th CAiSE/IFIP8.1 International Workshop on Evaluation of Modeling
Methods in Systems Analysis and Design, 1999.

[15] W. Frakes, R. Prieto-Diaz, and C. Fox. DARE: Domain analysis and
reuse environment. Annals of Software Engineering, 5:125–141, January
1998.

[16] H. Gomaa. Software Design Methods for Concurrent and Real-Time
Systems. Addison-Wesley Longman, 1993.

[17] D.J. Hatley and I.A. Pirbhai. Strategies for Real-time System Specifica-
tion. Dorset House, 1987.

[18] N. He, D. Kroening, T. Wahl, K.-K. Lau, F. Taweel, C. Tran, P. Rümmer,
and S. Sharma. Component-based design and verification in X-MAN.
In Proc. Embedded Real Time Software and Systems, 2012.

[19] K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak, and A.S. Peterson.
Feature-oriented domain analysis (FODA) feasibility study. Technical
Report CMU/SEI-90-TR-021, Software Engineering Institute, Carnegie-
Mellon University, 1990.

[20] K.C. Kang, S. Kim, J. Lee, K. Kim, G.J. Kim, and E. Shin. FORM: A
feature-oriented reuse method with domain-specific reference architec-
tures. Annals of Software Engineering, 5:143–168, 1998.

[21] K.-K. Lau and C. Tran. X-MAN: An MDE tool for component-based
system development. In Proc. 38th EUROMICRO Conf. on Soft. Eng.
and Advanced Applications, pages 158–165. IEEE, 2012.

[22] K.-K. Lau, P. Velasco Elizondo, and Z. Wang. Exogenous connectors
for software components. In G.T. Heineman et al., editor, Proc. 8th Int.
Symp. on Component-based Software Engineering, LNCS 3489, pages
90–106. Springer-Verlag, 2005.

[23] K. Lee, K.C. Kang, and J. Lee. Concepts and guidelines of feature
modeling for product line software engineering. In Proc. 7th Int. Conf.
on Software Reuse, pages 62–77. Springer-Verlag, 2002.

[24] C. Maga and N. Jazdi. A survey on determining factors for modeling
reference architectures. Int. Conf. on Object-Oriented Programming,
Languages, Systems, and Applications (OOPSLA), 2009.

[25] N. Medvidovic and R. N. Taylor. A classification and comparison
framework for software architecture description languages. IEEE Trans.
on Soft. Eng., 26(1):70–93, January 2000.

[26] OMG. OMG Unified Modeling Language Specification, November
2007. http://www.omg.org/cgi-bin/doc?formal/07-11-01.pdf.

[27] E. Pulvermüller, A. Speck, J. O. Coplien, M. D’Hondt, and W. De-
Meuter. Position paper: Feature interaction in composed systems. In
Proc. ECOOP, pages 1–6, 2001.

[28] M. Shaw and D. Garlan. Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, 1996.

[29] R. van Ommering. Building product populations with software compo-
nents. In Proc. 24th ICSE, pages 255–265. ACM, 2002.

[30] R. van Ommering and J. Bosch. Widening the scope of software product
lines – from variation to composition. In Proc. 2nd Int. Conf. on Software
Product Lines, pages 328–347. Springer-Verlag, 2002.

[31] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee. The
Koala component model for consumer electronics software. IEEE
Computer, 33(3):78–85, 2000.

113

