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Abstract—Unit testing has been considered as having a key role
in building high quality software, and therefore it has been widely
used in practice. However, data on the relationship between unit
testing and aspects of software quality remain scarce. A survey
study with 235 survey responses from seven organizations was
conducted in order to understand the correlation between prac-
titioners’ perception of code quality and unit testing practices. In
addition, we conducted a case study in one of these organizations
to investigate the correlation between unit test coverage and
post-unit test defects. In both cases none or weak correlations
were found. We recommend further research on the effectiveness
of different testing practices in order to help practitioners to
understand how to best allocate their resources to the testing
chain.

I. INTRODUCTION

Unit testing has gotten a key place in modern software
development. In a survey by Runeson [1] the results show
that the main reason for starting to use unit testing was
external requirements. The test suites could then function as
a technical specification. Another common reason for using
unit tests was to proclaim the use agile methods in the
organization. Several practitioners have expressed issues with
not having measures to validate the usefulness of unit testing.
This hinders estimating a return on investment (ROI) in unit
testing and motivating developers to run thorough unit tests
[2]. Currently, unit testing is promoted in many international
standards such as ISO 26262, which strongly recommend
thorough unit testing in safety critical systems. Companies
that develop safety critical software, such as automotive or
air traffic control systems, need to adhere to these standards,
because using them provides confidence for developers and
gives credibility in the eyes of the customers. Other companies,
that do not have safety critical software, are more free in
choosing how much unit testing that should be conducted,
which means it is up to individual developers or software
development teams to decide. Empirical data on how unit
testing influences the quality for either types of software do
not exist, and therefore, practitioners are not able to make
evidence-based decisions.

We know that the usefulness of unit testing is a debated issue
in the software development community with strong opinions
for their extreme usefulness, on one hand, and their complete
uselessness on the other. To us, such a debate indicates a lack
of empirical data on the subject, and therefore, this study tries
to provide data on some aspects of the the relationship between

unit testing and software quality, namely that of test coverage
and number of defects, and perceived code quality and unit
testing practices. Therefore, the research questions addressed
in the study are as follows:

1) To what extent is unit test (statement/branch) coverage
correlated to number of defects?

2) To what extent is the degree of unit testing correlated to
perceived code quality?

II. BACKGROUND

Unit testing has been believed to be one of the pillars of
code quality over a long period of time. There are thousands
of online blogs and discussion forums created by practitioners,
with statements that unit testing is one of the success factors in
developing high quality code. Researchers, in their turn, have
not pulled their punches in proposing different techniques for
unit testing in practice [3]. The reasons for this is probably
the a priori knowledge in software engineering that asserts the
necessity of unit testing in software development; at university,
we are taught that unit tests are the cornerstones of code
quality, and in industry, we feel safer if the unit test coverage
is high. One of the highly read and positively rated posts
(with over 700 votes) summarizes the online discussions well:
Question: “What are some good ways to convince the skeptical
developers on the team of the value of unit testing?” Answer:
“I just love unit tests, I have just been able to make a bunch
of changes to the way something works, and then was able
to confirm I had not broken anything by running the test
over it again...” [4]. This answer encapsulates the following
arguments that are widely stated in such discussions; unit
testing helps understanding the design and code changes, it
gives visual feedback, helps with documenting and reusing
code, and does not slow down the coding, as it might be
perceived to do, at first glance.

There is also a relatively small community of developers
that believe otherwise. One of the top developers at one of
the participating companies said: “I am afraid some of our
developers conduct unit testing, not because it ensures high
product quality, but because it gives the feeling of that they did
all that was needed to ensure high product quality.” According
to a researcher at MIT one of the top developers of Google was
even more strict in his judgment, stating that: “the most help
he could ever get from software engineering research would
be if somebody could show something he had been sure of for

ar
X

iv
:1

90
4.

04
74

8v
1 

 [
cs

.S
E

] 
 5

 A
pr

 2
01

9



ten years; that unit testing does not give anything, all defects
are found in integration and system testing anyways” [5].

There is evidence showing that a Test-Driven Development
(or TDD) approach finds significantly more defects than a
Test-After approach [6], but it is unclear if this effect arises
from better code comprehension through TDD or from the
unit testing itself. In fact, since the TDD approach has such
a large effect, as compared to regular unit testing, this might
be an indication that there is low value in unit testing itself.
One study using number of passed acceptance tests as a
measurement of external quality showed no increase in quality
by writing tests first [7].

Despite that many are positively inclined towards the value
of unit testing, and others believe the complete opposite,
scientific evidence on this matter is surprisingly scarce. Few
existing studies indicate that unit testing might not have a
significant connection to quality. One of the studies conducted
by Mockus et al. [8] shows that the correlation between unit
test coverage and defects is none or very weak. In that study,
test coverage was used as a measure of unit testing sufficiency
and defect count was used as a measure of quality. In fact, the
authors did not focus on quality and unit testing, but explicitly
stated that they investigate the relationship between known
pre-unit test defects and unit test coverage. However, consid-
ering their other finding, that is, a linear increase in coverage
requires an exponentially increase in effort, we can deduce
that an increased effort in unit testing did not pay off with
regards to decreasing defects. We find this result remarkable,
because the research setup was in a context of real product
development, with a minimal set of manipulated conditions.
They had two large industrial products, actual defects, and
controlled confounding factors in their data analysis, such as
code size and changes. There are other studies, which also
indirectly relate to unit testing and defects correlation (see for
example [9]). However, based on these studies it is difficult to
assess the relationship between unit tests and quality, because
they are not sufficiently close to a real case. Particularly, the
following issues pertain: (1) Artificial defects (mutants). (2)
Uncontrolled confounding factors such as size and change
rate. (3) Artificially manipulated range of unit test coverage.
(4) Small products and a low number of defects. Alongside
these quantitative studies there are also few qualitative studies
on the relationship between unit testing and product quality.
For example, contradicting responses were obtained from
interviews of 605 software engineers, indicating that even
though the majority of respondents use automated unit testing
because of various reasons or beliefs, 52% of the respondents
did not consider unit testing as a test sufficiency criterion [10].

The study is composed of two independent parts; the first
part being a survey conducted in industry with two companies
in Sweden, and three companies and a university in Brazil,
and the second part being a case study in a large company in
Sweden.

III. METHOD

A. Survey context

The sample consisted of data from both Brazilian and
Swedish companies, comprising IT departments at one large
online media and social networking company with around
5,000 employees, one smaller software life-cycle consultancy
company with around 35 employees, and one company that
offers programming courses to individuals and companies
(around 100 employees), one multinational networking and
telecommunications equipment and services company (with
around 115,000 employees), an aerospace and defence com-
pany (with around 14,000 employees), and an automotive parts
manufacturing company (with around 160,000 employees).
We also collected data from the University of São Paulo,
consisting of software engineering students enrolled in an agile
software development (XP) project course. The surveys were
given to 241 software development team members and 201
responded, which gives the total response rate of 83%. We
also collected data a second time after two months trying
to match individual responses, and we managed to pair 49
software development team member responses in a repeated
measurement.

B. Case study context

The case study was conducted at the multinational network-
ing and telecommunications equipment company, mentioned
in the previous section. The product contained over two mil-
lion lines of code, developed by distributed semi-autonomous
development teams. The number of software engineers in the
organization was about 150. The development was conducted
based on agile principles and continuous integration methods.
The organization employed automated unit testing before code
was delivered to the main code branch of the product. The
organization used statement and branch coverage of unit tests
as a guide for test sufficiency, however, there was no strict
decision criteria defined for coverage. The design architects
and development teams decided themselves how much unit
testing should be conducted, and therefore, various amounts
of unit tests were written in different parts of the product.

C. Survey data collection and analysis

To measure software development team members’ percep-
tion of the degree of unit testing we used a survey developed
by So and Scholl [11]. It is the only survey we found that is
validated through a factor and reliability analysis (N = 227).
However, in this study we only used three items of that
questionnaire, namely the ones regarding unit testing: (1) The
implemented code was written to pass the test case. (2) New
code was written with unit tests covering its main functionality.
(3) All unit tests were run and passed when a task was finished
and before checking in and integrating.

All team members were given the possibility to answer the
survey no matter their role, however, they were explicitly told
to skip questions the did not have good knowledge about. The
respondents were asked to provide responses for each of the
items on a Likert scale ranging from 1 (never) to 7 (always).



Perceived code quality was measured by the single question:
“How would you rate the code quality in your product(s)?”

The quality question was evaluated on a Likert scale from
1 (Very Poor) to 5 (Excellent). The three items on unit testing
and the fourth item on quality were not the only items in the
provided survey. The whole questionnaire was much longer,
containing all items from the Perceptive Agile Measurement
as suggested by [11], therefore, there was a low probability
that respondents could make an explicit connection between
the items on unit testing and quality, because they responded to
the unit testing items on average ten minutes before assessing
the quality item. The survey was distributed in paper form and
collected on site on two occasions, hence the high response
rate.

To evaluate if the data was normally distributed, we plotted
frequency diagrams for all the four factors. There were non-
normal patterns in the frequency plots, and, therefore, we ran
the Shapiro-Wilk test for normality. The test statistics were
significant for all factors (Quality item: Test statistic = 0.845,
p = 0.000, Unit Tests 1: Test statistic = 0.932, p = 0.000,
Unit Tests 2: Test statistic = 0.905, p = 0.000, and Unit Tests
3: Test statistic = 0.871, p = 0.000), i.e. we had an issue
with the normality assumption. Since we also have values
that have the same ranking, the Spearman rank correlation
coefficient was used as a measurement of correlation, because
it allows tied ranks in data. Because we did not know the
direction of the correlations we opted to use two-tailed tests.
We also tested if there was a difference between students
(N = 35) and practitioners (N = 151). The only significant
Mann-Whitney U test was using the third unit testing item,
namely: “All unit tests were run and passed when a task
was finished and before checking in and integrating.” with
U = 1, 941.5, p = 0.006, i.e. students rated that they do
less of running and passing test cases before checking in
and integrating. A possible explanation for this could be the
fact that they build new products from scratch and therefore
were less thorough with unit tests before each check-in or
integration to the main branch.

In order to try to investigate causality further, we con-
ducted a second data collection at the Brazilian companies
two months after the first measurement. However, having the
participants provide a personal identifier which maintained
their anonymity proved to be difficult. After having collected
the second measurement we managed to pair 49 individual
responses and ran a related-samples Wilcoxon signed rank test.

D. Case study data collection and analysis

In order to being able to investigate the relationship between
unit tests and code quality we used unit test coverage and post-
unit-test defects in files respectively. Statement and branch
coverage were used as a measure of unit test coverage [12].
Statement coverage is the percentage of source code statements
that has been exercised during a test run. Branch coverage
is the percentage of decision blocks in a file that has been
exercised during a test run.

The defects per file were measured by the number of
modifications that was tagged as a bug fix in the version
control system. We believe that this method for measuring de-
fects was accurate, because the regulations in the organization
obliged developers to tag all bug fixes in the version control
system. The analysis is conducted under the assumption that
if unit tests are effective in finding defects, then high unit test
coverage should provide a low rate of post-unit-test defects.
The correlation coefficient between statement/branch coverage
and defects is therefore expected to be negative. Moreover,
a higher value of the squared correlation coefficient can be
seen as a measurement of effect size and indicates how much
variance in defects that can be explained by unit test coverage.

As an additional cautionary step, we chose to only use files
that have either 100% or 0% coverage. The reason was that if
we use files with other coverage values as well, the size of the
files would intervene with the accuracy of the analysis. Such
an analysis would then assume that, if unit tests are effective,
then files with equal amount of coverage should have nearly
equal amount of defects. However, this assumption is not true
because a file that has 1000 lines of code and 50% coverage is
likely to have more defects than a file with 100 lines of code
and 50% of coverage. This is because 1000 lines of code with
50% coverage has 500 lines of untested code, which is much
higher than the second file’s 50 lines of untested code. For
this reason a reasonably simple analysis of defect-coverage
relationship cannot be done. For files that have anything but
100% or 0% coverage a normalization of coverage over size
(complexity and changes) would be required. This kind of
normalization, however, is not as straightforward as it may
seem. For that reason we left such analysis for an upcoming
study of ours where data from multiple products will be
collected and it would be possible to present data from
different angles.

Both the number of defects and the statement/branch cover-
age were measured for one major release of the product, which
was about one year in duration. The coverage was measured
at two points in time (two snapshots of the code in the main
integration branch), the first time was the very beginning of
the development of a newly planned release of the product
and the second time was at the end when the product was
ready for release. We did the two measurements in order to
check whether the test coverage for files changed over time. By
comparing the coverage per file at two occasions, we observed
that the coverage for the majority of files (97% of the cases)
was constant over time. This meant that we could conduct
a meaningful analysis of coverage-defect relationship for the
97% of the files. The few files that had varying coverage were
excluded from the analysis.

We also measured the number of post-unit-test defects for
the same period. These defects included all the defects that
came from unit tests and were found in integration tests,
system tests, or were reported by customers when using the
small test-releases of the product. Thus we had all the files
that had constant statement and branch coverage (either 0% or
100%) over one year of development, and we had the number



of post-unit-test defects reported per file.
We decided to use correlation analysis in order to assess

the correlation between coverage and number of defects. The
defect count is a continuous variable, because a file can have
several defects, and it has an absolute zero meaning “no
defects.” The coverage is a dichotomous variable, because
it can have only two values – 0% and 100%. To visually
understand the correlation between the defects and coverage,
and to evaluate normality of the defect data we used a marginal
plot of the two variables. The plot revealed concerns with
the normality assumption, therefore a Shapiro-Wilk test of
normality was conducted (Test statistic = 0.435, p = 0.000). As
the results show, the test was significant, i.e. we have an issue
with normality on this variable too. Thus, we need to fulfill
the following conditions when choosing correlation analysis
technique: (1) One of the variable is continuous and the other
variable is dichotomous. (2) The continuous variable is not
normally distributed.

For these conditions the most appropriate correlation anal-
ysis technique is rank bi-serial correlation, which we applied
to assess the correlation between the number of defects and
statement/branch coverage.

The last concern was the possibility of confounding factors
that could affect the results of the correlation analysis. The
first concern was whether there is a practitioner’s bias when
choosing which files to test and which files not to test.
If the practitioners consciously or subconsciously make a
choice to test files that are more complex (bigger, simpler,
etc.) then the results would be affected and misleading. For
these reason we organized three meetings with 10-14 software
designers in order to understand how they choose the extent of
testing. Before the meetings the software designers were not
informed of this current study. The summary of the discussions
showed that the testing largely depends on individual software
developers’ own conviction of how much unit tests that should
be written. In some cases the design architects of certain
code areas could also recommend certain amount of testing.
We did, however, not find any indication that the software
designers’ choices were dependent on factors like complexity,
size, or perception of error-proneness. This particular finding
is congruent with findings of Daka et al. [13].

The second concern is how much size, complexity, evolu-
tion, and other factors affect the correlation analysis results
directly. Since we have a fairly large number of files (680),
and since the number files with 0% coverage is comparable
with the number of files with 100% coverage (see histogram
in Figure 1), we assume that the effect of these confounding
factors on the measured variables is random. Simply stating,
we assume that there is an equal amount of simple and
complex files in both the 0% and the 100% groups. These
facts reduce the risk that the confounding factors have a large
impact on the analysis results.

IV. RESULTS

The correlations between the four survey items can be seen
in Table I. The correlation between the Quality item and Unit

TABLE I
SPEARMAN’S ρ CORRELATIONS. PERCEIVED CODE QUALITY AND UNIT

TESTS (N = 186)

Measure 1 2 3 4

1. Rate the code quality in your product(s) 1 0.169 0.321* 0.226*

2. Implemented code written to pass test case 1 0.507* 0.405*

3. Main functionality unit tests coverage 1 0.596*

4. Unit tests passed when before integrating 1

*p<.01 (2-tailed)

TABLE II
RANK BISERIAL CORRELATION (N = 680).

Correlation of Cor. coefficient Effect size p-value

Defects vs. statement coverage -0.17 2.9% 0.000*

Defects vs. branch coverage -0.19 3.6% 0.000*

*p<.01 (2-tailed)

Tests 1 was not significant. The two other unit tests items
were significantly correlated with the coefficients 0.321 and
0.226 respectively, at an alpha level of less than 1%. If we
square these correlation coefficients, we can get a measure of
explained variance in the correlation model [14]. In this case,
we then have effect sizes of 10% and 5% percent.

We did not find any significant difference between the first
and the second measurement, even if we managed to block the
effect of individuals with a related-samples Wilcoxon signed
rank test for all the three unit testing items (Unit Tests 1,
Test Statistic = 428, p = 0.125, Unit Tests 2, Test Statistic
= 351, p = 0.099, Unit Tests 3, Test Statistic = 334.5, p =
0.326) and the quality question (Quality item, Test Statistic
= 105, p = 0.142). It is hard to draw any other conclusion
than that it apparently takes longer time for these items to
change significantly in a real development context.

Figure 1 shows a marginal plot of defects and unit test
coverage. The histogram on the right-hand side of the figure
shows that the distribution of defect does not look normal.
This makes sense since most of the files are not expected to
have defects. The scatter plot shows the relation of defects and
coverage. By looking at the plot we can see that both groups
of files contain defects, and moreover, several files with 100%
coverage have multiple defects. Having so many data points
(680) usually gives a significant results of statistical tests, but
then the effect size is what needs to be analyzed. In fact, the
correlation analysis results in Table II show that the effect
size of the correlation between defects and statement/branch
coverage is very small (2.9% and 3.6%).
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Fig. 1. Marginal plot for defects and coverage.

V. DISCUSSION

Regarding the first research question, we found no corre-
lation between the first item of unit testing and perceived
code quality, and we found only low correlations between
the second and third unit testing items and perceived code
quality. This indicates that if unit testing is poorly practiced
in an organization, the product quality does not necessarily
have to be low. In fact, the correlation between the first item
of unit testing practices and perceived code quality was not
statistically significant, and the effect sizes between the other
two unit testing practices and code quality were 10% and 5%
correspondingly. Because there were small or no correlations
between perceived code quality and unit testing practices,
these results do not support any causation between these two
constructs (since causation is unlikely without correlation).

Furthermore, regarding the second research question, the
measurements in the case study gave low correlation between
defects and coverage. This result shows, that no matter if files
have 100% or 0% unit test coverage, the differences in defects
between these two groups only showed a small effect. The
effect size was as low as 2.9%, therefore, the assumed causal
relationship between unit tests and code quality is dubious.

The effect size of 2.9% means that 2.9% of the variation in
defects could be explained by the unit test coverage. Knowing
that companies might spend up to 40% of their resources on
coding and unit testing [15], one would expect an effect size
of considerably higher magnitude, in order to justify the spent
time on unit testing, however, this of course depend on the
system being built.

Our current study is only a first step, and more empirical
studies must be conducted in order to pin down the usefulness
of unit testing in practice. Particularly, the following issues
should be meticulously investigated: 1) the relation between
unit testing and code quality should be investigated in different
domains and development methodologies, 2) the quality of the
unit tests can vary and therefore sheer correlation between the
coverage and defects can underestimate the effect size 3) it is
maybe so that coverage measures are inadequate measures for

measuring unit testing, 4) code complexity and cohesion have
major effect on code quality [16], therefore they are likely
to be strong confounding factors, 5) the developers choice of
which files should be tested can be deliberate.

A. Threats to Validity

In case of the survey both measures are derived from the
software engineers’ perception of code quality and degree of
unit testing. Therefore the real connection between quality and
testing could be different [17]: The summary of experienced
engineers’ perception is useful but limited.

In the case study, statement and branch coverage measures
were used as measures of unit testing sufficiency. Statement
coverage and branch coverage have been criticized in the
literature for being inaccurate measures of test sufficiency [18],
and therefore the correlation between coverage and defects
might be significantly different from the actual correlation of
unit testing and defects. We mitigated this threat by using only
files in the two extremes, i.e. files that had either 0% or 100%
unit test coverage. In this case the threat that coverage mea-
sures would be inaccurate is then less of a concern, because
the difference in effort between 0% and 100% is substantial.
Hence, if 100% coverage cannot help with reducing post-unit
test defects significantly, then why to write unit tests at all.

In this paper we only have one case study and one sur-
vey, while unit testing practices across different domains
and programming languages can be considerably different.
Particularly, in safety critical systems unit testing is conducted
more rigorously. There is a pivotal difference between unit
testing of hand-written and generated code (e.g. generated
from Simulink or Rhapsody models). In the case of generated
code, unit testing is quite similar to black box testing, because
testing is done on models where only input and output signals
are relevant.

VI. CONCLUSIONS AND FUTURE WORK

This study set out to investigate if unit test coverage is
correlated to number of defect and if perceived code quality
is correlated to unit testing practices. Through a survey and a
case study we found data that do not support a strong causal
relationship between unit testing and code quality, since we
did not find strong correlations. The results of this study
suggest that the effect of unit testing on code quality is
questionable, therefore, more studies with industry data need
to be conducted in order to get conclusive results on the effect
of unit testing on code quality.
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