
Towards Modeling Patterns for Embedded Software Industry:
Feedback from the Field

Deniz Akdur
ASELSAN Inc.,
Ankara, Turkey

denizakdur@aselsan.com.tr

Onur Demirörs
Department of Computer Engineering,
zmir Institute of Technology, Turkey

School of Computer Science and Engineering,
University of New South Wales, Australia

onurdemirors@iyte.edu.tr

Bilge Say
Department of Software Engineering,

Atilim University, Ankara, Turkey
bilge.say@atilim.edu.tr

Abstract— The analysis, design, implementation and testing of
software for embedded systems are not trivial. Software modeling is
a commonly used approach in the embedded software industry to
manage complexity of these phases. The modeling approaches vary
since the characteristics of modeling such as its purpose, the
medium type used, the lifecycle phase used, differ among systems
and industrial sectors. Our previous research identified and defined
the modeling approach patterns in embedded software development
projects based on quantitative data. In this paper, to validate and
improve the pre-investigated pattern set, we present a series of
semi-structured interviews over eight months with 53 embedded
software professionals across a variety of target industrial sectors
and roles. With the help of these interviews, the different modeling
approach patterns in embedded software development were better
understood and the hidden patterns not evident in the previous
study were identified along with a documentation of personalized
modeling experiences.

Keywords- Software modeling; model driven engineering (MDE);
characteristics of a diagram; embedded software; pattern

I. INTRODUCTION
Having distinct functionalities incorporated into a single

system, which require many hardware and software systems’
integration, make the embedded software development
challenging [1]. Software modeling helps engineers to work at
higher levels of abstraction, facilitates communication and
automates the generation of software development life cycle
(SLDC) artifacts (e.g., code, documentation, test case) to manage
the complexity of these systems.

The modeling approaches in embedded software vary since the
characteristics of modeling differ among systems and sectors,
e.g., consumer electronics, defense or automotive [2]. At one
extreme, some stakeholders (e.g., project managers or systems
engineers) use modeling informally, where diagrams are sketched
on a paper in order to communicate with colleagues. At the other
extreme, for some stakeholders (e.g., software developers),
modeling turns into programming with automated generation of
code. Moreover, different units within the same company might
use different modeling approaches for different purposes [3].

Deciding when to model or in what degree and with how much
rigor (e.g., as a sketch without modeling language formality or by
automating software artifact generation as in model driven
engineering (MDE)) are frequently asked and challenging
questions for software teams. Therefore, there is a need to
identify the relations between the characteristics of modeling
(e.g., modeling rigor, purpose, stakeholder, medium type used,
SDLC phase, etc.) to respond to these challenges. A potential
approach to resolve the challenges would be to identify, define
and use “modeling approach patterns”, which might be analogous
to the characterization models, defined and tailored for software
process improvement (SPI) (e.g., Software Sub-Cultures [4]).

There are only two research studies, which have classified the
modeling usage categories in the literature (Section II.B). In our
previous research, we focused to fill one major part of the gap in
the existing literature by identifying and defining modeling
approach patterns in embedded software industry. This
identification was based on the quantitative data, which we found
out from our survey result [5] and our previous research, which
figured out the characteristics of software modeling and the
relations between them [6] (Section II.A). In order to improve
what we found out from the analysis of survey, there was a need
to validate these pre-investigated patterns with a more qualitative
strategy. Therefore, we conducted a series of semi-structured
interviews over eight months with 53 embedded software
professionals across a variety of target industrial sectors and
software engineering (SE) roles. With the help of these
interviews, the modeling approach patterns in embedded software
development were better understood and the hidden patterns1,
which could not be found out by only survey data, were
identified. The goal of this paper is to report the results of these
case studies and present the final set of these patterns.

The remainder of this paper is structured as follows. Section 2
gives an overview of related studies. Section 3 presents the case
studies. Finally, Section 4 provides an overall conclusion and
states the future work directions.

II. OVERVIEW OF RELATED STUDIES

A. Our Previous Research
In order to understand the state-of-the-practices in modeling

practices in the embedded software industry, we conducted a
global survey. Participants were from 27 countries working in
different subsectors of embedded software industry and SE roles
[5]. The survey showed that the embedded software professionals
use modeling approaches in varying degrees with different needs.
All of the usages (e.g., informal sketching, model based
engineering (MBE), or MDE) could be effective depending on
the characteristics of modeling.

Based on the results of our findings (e.g., [1, 5]) as well as
different classifications about modeling [7, 8], we presented a
conceptual model [6] to better understand and identify the
characteristics of software modeling. Accordingly, there are 11
main characteristics of software modeling, where some sub-
characteristics affect the main ones [6].

After identifying the relations between these characteristics,
we created a preliminary set. During this process, grouping 11
main characteristics on survey data, which includes ~80 attributes
would generate lots of combinations [9]. In order to eliminate
unnecessary combinations, we reduced the number of attributes

1 The “hidden patterns” are the patterns of the participants, who do not know exactly their
software modeling characteristics (especially about their modeling rigor and modeling
language). They are unaware whether they use software modeling or MDE.

132

2018 44th Euromicro Conference on Software Engineering and Advanced Applications

978-1-5386-7383-6/18/$31.00 ©2018 IEEE
DOI 10.1109/SEAA.2018.00030

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on November 29,2022 at 11:24:58 UTC from IEEE Xplore. Restrictions apply.

by generating derived attributes after determining the most
critical ones [10]. After visualizing these groups (e.g., with
scatter and bars stacked charts), we derived the necessary
characteristics, which have critical importance on the
categorization: “purpose”, “medium type”, “archivability”,
“modeling language, if any” and “SDLC phase” [10].

Accordingly, nine modeling approach patterns were designated at
the end of this multi-source research process as in Table 1 (Note
that when the survey was conducted in 2015, we could not come
up with better definition provided by [7]; so, “model-based” and
“sketching” were in the same group (as MBE) [5]).

Table 1 Modeling approach patterns after survey data analysis
Main
Pattern

Modeling Approach Patterns Pre-investigated % in survey
results

model-
driven

3.3 With DSL-like* Purpose of the modeling includes “Code generation” or
“Test case generation (MB/DT)”

With “any DSL-like” usage 16,9
29,5 3.2 Without DSL-like Without any “DSL-like” usage 6,5

3.1 Limited Only with "Document generation", "Model simulation" or “Model to model transformation” purpose 6
model-
based

2.2 Prescriptive SDLC phase while modeling is used includes “implementation” or “testing” 24,9

59,5

2.1 Descriptive SDLC phase does not include “implementation or testing” 13,7
sketching 1.3 Archived Purpose of the modeling includes “Documenting Analysis & Design”

Media type used: Analog media usage >= Digital media usage
3,6

1.2 Selective Casually & informally with some formalized modeling language (most probably, UML elements)
Modeling Language set includes sketch&any formalized modeling language (e.g., UML&|DSL-like)

13,1

1.1 Ad-hoc Purpose of the modeling includes only “Understanding” or “Communication”
Only pen & paper / free format (e.g., without any formalized modeling language, e.g., UML)
Medium type used while modeling is analog (paper or whiteboard)

4,1

none 0 No modeling Not using any modeling approach. 11
* With “DSL-like” means that the modeling language set of the stakeholder includes any kind of DSL (e.g., any DSL [provided by tool provider or their own design], any
UML profiles, which provides a generic extension mechanism for customizing UML diagrams such as MARTE, SysML, SoaML, AUTOSAR, EAST-ADL, AADL, or any
BPML, MATLAB Modeling Utilities etc.)

There might be some hidden patterns, which could not be

found out from the analysis of survey; hence, there was a need to
validate and improve these pre-investigated patterns via in-depth
interviewing. Section 3 presents these interviews’ results.

B. Existing Literature on Software Modeling Usage Patterns
There are different definitions for “pattern” in the literature. It

is defined as “consistent and recurring characteristic that helps in
the identification of a phenomenon” [11]. In SE literature, there is
the “pattern” concept to rely on proven solutions to recurrent
design challenges such as “software design pattern” [12]. In this
study, a "modeling approach pattern" consists of specific
characteristics of modeling (e.g., purpose, medium type, modeling
language, SDLC phase, etc.), which helps to identify stakeholder's
modeling practices.

In the literature, there aren’t many research studies related to
the modeling approach patterns. Kleppe, Warmer and Bast
classified the modeling usage as maturity levels by taking only
one of the characteristics of modeling (i.e., “modeling rigor”)
[13]. According to Kleppe et al., there are six (0 through 5)
modeling maturity levels (MMLs) in software development
projects, in which there are different types of modeling usage
based on “rigor”. However, our empirical evidence have shown
that different characteristics of modeling need not necessarily
force stakeholders up the maturity level with respect to a single
dimension such as rigor. The variety of modeling characteristics
are related with different notations, tasks and roles.

In a second study, Petre focused on Unified Modeling
Language (UML) usage categories for software developers only
[14]. However, within the domain of modeling in embedded
software development, a variety of stakeholders (e.g., from
software developer to tester and systems engineer to project
manager) and patterns of Domain Specific Languages (DSL),
which have been claimed to have more potential for model driven
development (MDD) than UML [15] should be considered. Note
that none of these studies are directly related with embedded
software development.

III. CASE STUDY
This section presents case study to validate and improve

modeling approach patterns given in Table 1.
A. Research Methodology

The empirical study reported here included a series of semi-
structured interviews [16], which were conducted over eight
months with 53 embedded software professionals across a variety
of target industrial sectors and roles to validate and improve our
pre-findings on modeling approach patterns.

The main goals of this study are designed as specific as
possible with the corresponding RQs:
• RQ1: What is main software modeling usage pattern of the
interviewee (i.e., none, sketch, model-based or model-driven)?
• RQ2: What is the current state of software development
techniques/approaches of the interviewee (e.g., programming,
modeling (if any), etc.) based on main modeling usage pattern? What
are the characteristics of software modeling?
• RQ3: Does the modeling approach pattern of the participant
belong to the pre-investigated pattern set? If not (i.e., hidden pattern),
what are the main characteristics?

Each of the above RQs, which are cross-cutting with our
survey [5] and complementing each other, is used to derive
interview questions, in which some questions were taken from the
survey (i.e., demographics) and some of them were improvised
and detailed during the interviews.
B. Interview Design and Execution

The semi-structured interviews were conducted mostly in
face-to-face, but if it is inconvenient, on Skype as in the case of
intercontinental interviews with different industrial sectors, roles,
experiences and practices in embedded software industry [10]. All
interviewees were promised that only anonymous data would be
presented and the interviewer would take notes on what he
spontaneously found relevant for analysis. During the interview,
there was a clear and complete list of general topics (i.e.,
interview instrument), which cover about modeling usage patterns
besides their success & failure stories, the attitudes to the adoption

133

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on November 29,2022 at 11:24:58 UTC from IEEE Xplore. Restrictions apply.

of modeling and so on [10]. The interviewer asked the set of
questions, listened to the answers and followed up answers with
additional questions when necessary [16].

The interviews lasted approximately more than 1 hour and the
protocol was straightforward, presenting the objectives of the
interview and explaining how the data would be used. Then a set
of questions were asked. After getting demographics data (as in
our survey [5]), the key/critical question was "How often do you
use software modeling in your software development life cycle?
(either informal and/or formalized: i.e., sketches and/or models)".
The goal of this question was to categorize the interviewee
according to main modeling usage pattern. If the answer is
"Never", which means that the main pattern is "no modeling", the
interviewee was asked a series of questions about why they don't
use any software modeling during their SDLC phase. Otherwise,
if the response was different from "Never" (e.g., sometimes,
frequently, always, etc.), the interviewer tried to understand their
modeling practices. Then, by giving the necessary terminology on
MDE, MBE and sketching, the second key/critical question about
model-driven usage was asked [10]. Since we previously found
out that modeling purpose directly affects the modeling rigor
(hence modeling approach) [6], the interviewer also asked “Is
there any listed purpose while you are modeling?” by showing the
model-driven specific purposes such as code generation,
documentation generation, test case generation. Again, if the
answer is “Never/No”, which means that this interviewee is at
“sketching” or “model-based” pattern, corresponding in-depth
questions were asked. Otherwise, this means that the participant
uses “model-driven” techniques -at some degree-.

After the interview session, if possible (due to time
constraints), the interviewer showed the taken notes and repeated
the most critical parts to the interviewee (e.g., the critical
characteristics of software modeling) to give an opportunity for
clarification and expansion of their answers. During the analysis,
the interviewer tried to investigate interesting key findings and
observations from the informal conversations.

C. Findings
53 interviews in 14 companies within different target sectors

had been carried out. Interviewees represented about different SE
roles and academic background [10]. They have, cumulatively,
756 years of software development experience.

Due to space constraints, the interesting observations on the
main software modeling usage patterns (i.e., “no modeling”,
“sketching”, “model-based” and “model-driven) are given as an
online appendix besides presenting informal question & answer
session results with verbatim quotes of interviewees [17]. In this
study, specifically, the patterns, which could not be derived from
Table 1 are more focused.
Patterns in “no modeling”: The survey showed that 11% of
respondents have not been using any software modeling [5]. As
seen from Table 1, this main pattern (i.e., “0”) needs further
analysis to understand why. When interview data is analyzed,
there are mainly two sub-patterns, who do not use any software
modeling: Some of these participants do not have any modeling
experience (i.e., “not experienced”), whereas some of them do not
use it although they have some experience on that (i.e., “bad
experienced”2). There are totally six interviewees in this main
pattern; two of them are “not experienced”, the other four are “bad

2 As a terminology, “bad experienced” pattern indicates the embedded software professionals,
who don’t use any kind of modeling due to disappointing experiences of software modeling.

experienced”. By this way, the interview divides “pattern 0” into
two patterns, i.e., “pattern 0.0” and “pattern 0.1”.

When the survey data was analyzed, the ones who stated that
they don’t use any software modeling, are mainly Industrial
Engineering, Mechanical Engineering and Electrical/Electronics
Engineering (EE) graduates. These respondents most probably
have not learned any software modeling during university (e.g.,
from SE courses) and do not need it in their job history [5]. There
are only two participants in the interviews, who both graduated
from EE. On the other hand, the survey did not give any further
information why some participants do not use any software
modeling although they know it. As interviews showed that these
participants have bad or poor experiences and failure stories on
modeling [17]. They think that modeling is costly for their
business due to hardware closeness, uniqueness and project size
(i.e., the characteristics of software modeling [6]). It was
interesting that these “bad experienced” professionals mentioned
about modeling tools’ problems, which is mandatory for “model-
driven” approach, but not for “sketching” or “model-based”. They
had some resistances on modeling (e.g. one of the modeling
challenges [5]) and it was difficult to change their negative
attitude [17]. Apart from these common opinions, there are also
some other issues such as “understanding the notation” of UML,
cost of training (e.g., just because of training, they might not
complete the project within the required time and budget), and the
synchronization problem between model & code, made these
interviewees (i.e., “pattern 0.1”) not use any modeling.
Patterns on “sketching”: To be a sketch user, modeling purpose
set of the stakeholder should not include any model-driven
specific purpose; but might include any general modeling purpose
as communication and/or understanding [6].

During the interviews, it was observed that there exist some
“sketch” users, who do not know that what they actually do is
software modeling. This hidden pattern, could not be investigated
from the survey results since such participants might indicate that
they do not use any software modeling. With the help of this
interview, this hidden pattern (i.e., “pattern 1.x) is figured out in
the embedded software development projects. These embedded
software professionals, whose response to the first critical
question in the interview (i.e., "How often do you use software
modeling in your SDLC?) was “Never”, mainly use state
machines, activity diagrams and sequence diagram-like drawings
(e.g., includes some UML elements but informally). The common
characteristic of these “unaware of modeling” (i.e., pattern 1.x) is
that they have not taken any SE courses during the university and
try to explain something intuitively without knowing that they
actually do –somekind of- modeling [17].

Another pattern (i.e., pattern 1.1) is an obvious usage, which is
only “pen & paper” with free-format (e.g., without any formalized
modeling language elements). Their purposes are just
communication or understanding a problem at an abstract level on
an analog media such as paper or white/blackboard. Notice that it
does not mean that all other usage patterns (e.g., model-driven) do
not use paper or whiteboard; indeed, such analog mediums might
be a quick solution for a better communication and faster idea
sharing technique in some situations; but this pattern (i.e., 1.1)
“only” uses such an approach as ad-hoc. Both our survey results
and interviews showed that mainly systems engineers,
requirement engineers and low-level (e.g., BSP, DSP) engineers
are in this category [17]. Depending on the purpose, their
modeling approach satisfies their motivation (e.g., for team

134

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on November 29,2022 at 11:24:58 UTC from IEEE Xplore. Restrictions apply.

collaboration, some sketches are enough for communication); so
no need for any other (e.g., more formal) approach.

In the survey, the respondents, who state that they were doing
informal modeling, make the sketches, which include some
essences of UML (e.g., some elements of UML, but without strict
rules) as reported in [14]. These participants (i.e., pattern 1.2)
answered this survey question by selecting some diagram types
(e.g., some participants, who use “Sketch/No formal modeling
language”, draw a use case or sequence diagram) [5]. Interviews
showed that most people use sequence diagrams informally to
convey the communication among the entities in a given system.
Their purpose is just a quick communication and understanding a
scenario [17]. This sketching might have occurred either on
analog or digital media, but without any documentation purpose
(e.g., without documenting analysis & design).

Another pattern (i.e., pattern 1.3) is based on the purpose of
modeling (i.e., documenting) and the medium type while
modeling (i.e., digital or analog), which affects “archivability”
and “lifespan” of the diagrams [6]. In this pattern, although there
is a “documenting analysis & design” purpose, analog media
usage is more frequent than to the digital ones and there might be
some media type transitions, after the modeling process (e.g.,
during documenting). These transitions (e.g., from analog to
digital) were occurred to achieve more archivability and hence
lifespan. For example, some analog diagrams (e.g., either in paper
or in white/blackboard) are archived by saving a digital picture or
by redrawing them digitally for the customer requirement [17].
Patterns on “model-based”: Almost all interviewees in this
pattern use UML selectively and often informally. The
differentiation point is SDLC phase(s), where modeling is used,
which is also related with the difference between descriptive and
prescriptive modeling [6]. It was realized that the patterns are
originated and depend on whether SDLC set include
“Implementation and/or Testing”. If the diagram might be an
input for implementation and/or testing phase, this approach is
close to prescriptive; otherwise descriptive. In that sense, one of
the patterns (i.e., pattern 2.1) use modeling very closely to
descriptive approach during analysis, design or maintenance phase
of SDLC; the other pattern (i.e., pattern 2.2) uses the diagrams in
implementation and/or testing phases.

The interviews also showed that in the same main modeling
pattern, there are some cross-life cycle activities, in which one
modeling stakeholder’s input might be another’s output, whose
patterns are different (e.g., a systems engineer, who uses a
sequence diagram in “analysis” phase, gives this input to a
software developer, who uses it in “analysis and implementation”
without any model-driven purpose) [17].

Although this pattern might be close to model-driven if the
stakeholders would use more constraints, some of the
interviewees had also bad/poor experiences on the modeling tool
[17]. If there is a disappointing experience on MDE, it is also very
difficult to change the attitudes and adoption. The interviews also
revealed that although Platform Independent Modeling (PIM)
concept might achieve modeling independent from programming
language (PL), in some cases, PL choice affects both modeling
attitude and also development process due to tool support.
Therefore, another observation is that organizational resistance
might disappear with a relevant tool support, which shows "real"
model-driven benefits [17].
Patterns on “model-driven”: There are some interviewees (i.e.,
pattern 3.x), who actually use MDE without knowing it, so they
are “unaware of MDE”. This hidden pattern is also derived from
the interview results. They have mainly DSL-like usages (See
Table 1) and benefit from model-driven concepts (e.g. with
model-driven purpose(s)); however, they are a bit confused with
“modeling” terminology since there is not any UML related
diagrams while modeling [17].

As survey data analysis and interviews showed that some
participants (i.e., pattern 3.1) use MDE in a limited way without
benefiting from “code generation” or “model based/driven
testing” (MB/DT). These “limited” users mainly use diagrams for
“documentation generation” or “model simulation” (e.g., a
systems engineer, who uses simulation in designing an algorithm;
but not sharing this with any software engineer during
implementation; or a software developer, who just wants to
generate documents from the models) [17].

In model-driven approach, it is not so important to have a
graphical syntax to represent the model (as in UML), but these
models should be represented in a format that is readable by a
machine (as in DSL). UML is a general-purpose modeling
language and its usage is not only restricted to modeling software
[5]. “UML” was also presented as “Utopian Markup Language”
since it would be utopia that UML can be used for all purposes
[18]. As observed in [3], UML is not so popular for prescriptive
approach since its semantics is not exactly defined. Researches
claimed that for maximum benefit, there should be a
customization on DSL [18]. We already figured out the
importance of DSL-like usage existence (Table 1) and we also
observed this distinction during the interviews. The interviewees,
who do not use any DSL-like, mainly use UML (i.e., pattern 3.2).
On the other hand, some model-driven users fully benefit from
DSL-like usages (i.e., pattern 3.3) [17].
Result: After the interview sessions, the set of patterns were
extended to 12 patterns, where the final set is given in Table 2.

Table 2. Interview results on modeling patterns by comparing survey results
Main usage pattern Modeling Approach Patterns interviewees (53) % in survey

results (627) # %
model-driven 3.3 With DSL-like 8 15,1

32,1
16,9

29,5 3.2 Without DSL-like 4 7,5 6,5
3.1 Limited 3 5,6 6
3.x Unaware of MDE 2 3,7 -

model-based 2.2 Prescriptive 10 18,9
30,1

24,9

59,5
2.1 Descriptive 6 11,3 13,7

sketching 1.3 Archived 2 3,7
26,5

3,6
1.2 Selective 7 13,2 13,1
1.1 Ad-hoc 2 3,7 4,1
1.x Unaware of modeling 3 5,6 -

none 0.1 Bad experienced 4 7,5

11,2

11
0.0 Not experienced 2 3,7

135

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on November 29,2022 at 11:24:58 UTC from IEEE Xplore. Restrictions apply.

Notice that, all quantitative results (i.e., survey and interview
results) are depicted with their ratio in Table 2 and pattern
distributions were similar in both studies.

D. Limitations and Threats to Validity
We discuss the possible validity concerns [19] and also the

steps that we have taken to minimize or mitigate them.
When people feel being evaluated based on what they think,

they might deflect their answers. In order to mitigate this,
interviewees were informed that our motivation was to take a
snapshot of the embedded software industry and that we will not
collect any identifying information.

In order to prevent any misunderstanding in the terminology,
we performed a pilot phase in which, we met with several
practitioners to assess their common understanding of MDE,
MDD, MBE and sketching. During the interview, we tried to
reduce the threat related with these definitions. If we used only the
terminology and did not use direct observations, this issue would
stay as a potential threat, e.g., an interviewee might in fact uses
sketching even though s/he states to use no modeling (as in the
hidden patterns). However, face-to-face investigations and
improvisations on further questions helped to understand the
actual modeling approaches of the stakeholder. After the
interview, if possible (due to time constraints), we showed the
taken notes and repeated the critical parts to the interviewee to
give an opportunity for clarification of their answers.

We collected our data from different sources (e.g., different
countries, industrial sectors, SE roles etc.) in order to avoid mono-
operation bias [17]. However, it cannot be guaranteed whether any
of the interviewees participated the survey or not since the survey
was completely anonymous [5]. Nevertheless, note that even if
they have participated in the survey, when the interview
participant number is compared to the survey (e.g., ~8%), a threat
to internal validity would be limited.

IV. CONCLUSION AND FUTURE DIRECTIONS
With the help of this study, the different modeling approach

patterns in embedded software development projects were better
understood; and the hidden patterns were identified with deeper
and more personalized modeling experiences.

We observed that some interviewees (depending on their
modeling characteristics such university degree, where/how
modeling was learned and hardware closeness) have some
resistances and misbeliefs for modeling. Some embedded software
professionals think that software modeling is only done with a tool
via some (formal?) UML drawings; however software modeling is
not restricted with UML and it also includes sketching or DSLs
without UML diagrams.

By analyzing the common/different characteristics and
applying merging techniques between some patterns in the final
set (Table 2) to better guide stakeholders with necessary and
sufficient process & tool improvements for an effective modeling
approach, we have already defined six modeling cultures in
embedded software development projects [10]. Based on these
findings, we created a characterization model, which identifies
and defines a modeling stakeholder’s pattern and culture as
commonsense practices by presenting what the similar profiles in
the embedded domain is doing while modeling (via the database
constructed with survey data) [10]. This characterization model is
the first wide-coverage model of software modeling characteristics

for embedded software development projects built on extensive
input from the industry.

We would like to study technical and social factors that
influence the adoption of modeling approach patterns, specifically
the effect of understandability and organizational resistance [20].

ACKNOWLEDGMENT
The authors would like to thank all embedded software

professionals, who contributed to this study.

REFERENCES
[1] D. Akdur and V. Garousi, "Model-Driven Engineering in Support of

Development, Test and Maintenance of Communication Middleware: An
Industrial Case-Study," in International Conference on Model-Driven
Engineering and Software Development (MODELSWARD), 2015.

[2] D. Akdur, V. Garousi, and O. Demirörs, "Cross-factor analysis of software
modeling practices versus practitioner demographics in the embedded
software industry," in 6th Mediterranean Conference on Embedded
Computing (MECO), Montenegro, 2017.

[3] R. Heldal, P. Pelliccione, U. Eliasson, J. Lantz, J. Derehag, and J. Whittle,
"Descriptive vs prescriptive models in industry," in ACM/IEEE 19th
International Conference on Model Driven Engineering Languages and
Systems, France, 2016.

[4] G. M. Weinberg, Quality software management (Vol. 1): systems thinking:
Dorset House Publishing, 1992.

[5] D. Akdur, V. Garousi, and O. Demirörs, "MDE in embedded software
industry, Technical Report," METU II-TR-2015-55,
https://dx.doi.org/10.6084/m9.figshare.4262990, 2015, Last accessed: Nov.
27, 2016.

[6] D. Akdur, O. Demirörs, and V. Garousi, "Characterizing the development and
usage of diagrams in embedded software systems," in 43rd Euromicro
Conference on Software Engineering and Advanced Applications (SEAA),
Vienna, Austria, 2017.

[7] J. Cabot. (2009). Relationship between MDA,MDD and MDE. Available:
http://modeling-languages.com/relationship-between-mdamdd-and-mde/

[8] N. A. Karagoz and O. Demirors, "Conceptual Modeling Notations and
Techniques," in Conceptual Modeling for Discrete-Event Simulation, ed,
2010.

[9] D. Akdur, V. Garousi, and O. Demirörs, "MDE in embedded SW industry-
Raw survey data," https://dx.doi.org/10.6084/m9.figshare.4262972, 2015,
Last accessed: Nov. 27, 2016.

[10] D. Akdur, "Modeling Patterns and Cultures of Embedded Software
Development Projects," Thesis, Doctor of Philosophy (PhD), Information
Systems, Middle East Technical University (METU),
www.researchgate.net/publication/322701453_Modeling_Patterns_and_Cult
ures_of_Embedded_Software_Development_Projects, Feb. 1, 2018.

[11] "pattern," ed: Cambridge Dictionary, 2017.
[12] B. P. Douglass, Real-Time Design Patterns : robust scalable architecture for

Real-time systems. Boston, MA: Addison-Wesley, 2003.
[13] A. G. Kleppe, J. Warmer, and W. Bast, MDA Explained: The Model Driven

Architecture: Practice and Promise: Addison-Wesley Longman Publishing
Co., Inc., 2003.

[14] M. Petre, "UML in practice," in 35th International Conference on Software
Engineering (ICSE), 2013, pp. 722-731.

[15] J. Greenfield, K. Short, S. Cook, and S. Kent, Software Factories -
Assembling Application with Patterns, Models, Frameworks and Tools:
Wiley Publishing, 2004.

[16] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study Research in
Software Engineering: Guidelines and Examples: Wiley Publishing, 2012.

[17] D. Akdur, O. Demirörs, and B. Say. (2018, Last accessed: May 24, 2018).
Online Appendix: Interviews on modeling approach patterns. Available:
www.researchgate.net/publication/325344314_Appendix_to_Towards_Mode
ling_Patterns_for_Embedded_Software_Industry_Feedback_from_the_Field

[18] E. Juliot, "Model Driven Software Development 2.0," in International
Advanced Topics in Software Engineering stanbul, Turkey, 2014.

[19] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén,
Experimentation in Software Engineering: Springer Berlin Heidelberg, 2012.

[20] O. Kilic, B. Say, and O. Demirors, "Cognitive aspects of error finding on a
simulation conceptual modeling notation," in 23rd International Symposium
on Computer and Information Sciences, 2008, pp. 1-6.

136

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on November 29,2022 at 11:24:58 UTC from IEEE Xplore. Restrictions apply.

