
An Exploratory Study of Search Based Training
Data Selection For Cross Project Defect Prediction

Seyedrebvar Hosseini
M3S, Faculty of IT and Electrical Engineering

University of Oulu, 90014, Oulu, Finland
Email: rebvar@oulu.fi

Burak Turhan
Department of Computer Science

Brunel University, London UK
Email: burak.turhan@brunel.ac.uk

Abstract—Context: Search based approaches are gaining at-
tention in cross project defect prediction (CPDP). The complexity
of such approaches and existence of various design decisions are
important issues to consider. Objective: We aim at investigating
factors that can affect the performance of search based selection
(SBS) approaches. We study a genetic instance selection approach
(GIS) and present an evaluation of design options for search
based CPDP. Method: Using an exploratory approach, data
from different options of models are gathered and analyzed
through ANOVA tests and effect sizes. Results: Both feature
sets and validation dataset selection options show small or
insignificant impacts on F-measure and precision, unlike the more
affected false positive and true negative rates. Size of training
data does not seem to be related to significant changes in F-
measure and precision and high variability in performance are
discouraging evidence for using larger datasets. Fitness function
is one of the major factors that impact performance with much
larger effect than the choice of validation dataset. Finally, while
showing slight impacts, data label changes do not seem to be
the top contributor to performance. Conclusions: We conclude
that exploratory approaches can be effective for making design
decisions in constructing search based CPDP models. Effect
of individual tuned learners and their interaction with other
affecting parameters and more in depth study of quality affecting
factors guided by label changes are directions to investigate.

Keywords-Cross Project Defect Prediction, Exploratory Search
Based Optimization, Training Data Selection

I. INTRODUCTION

Applying defect prediction in practice has been a challenge.
The lack of and the difficulty of collecting and organising
defect related data is one of the reasons why companies do not
consider using defect prediction in practice [1] and it is usually
limited to research studies [2]. Cross Project Defect Prediction
(CPDP) comes to the rescue in such circumstances as it is
an affordable solution for companies which look for minimal
effort of data collection. Additionally, the use of CPDP is
justified, since the change of practices in software development
over time affects the relevance of collected local data, because
the existing practices might not be representative anymore
[3], [2]. On the other hand, considering the key premise of
CPDP, i.e. learning and applying, from and to, different sets
of projects [4], [1], in presence of relevant data from other
projects including open source ecosystems, CPDP can result in
practical applications as even a tiny decrease in the bug rates
can lead to significant financial savings in terms of quality
assurance costs [1], as opposed to exponential growth in repair

costs and damages [1], [5] as a result of failure to discover
bugs in a timely manner.

Despite having numerous models in within and cross project
settings, there is little known about the confounding factors
which impact the model construction processes especially
when search based approaches are used which usually have a
larger number of design options. We demonstrated the impact
of such a model, i.e. search based data selection with and
without feature selection in our previous studies [6], [7]. The
results of these studies showed clear improvements over other
cross project benchmarks and comparability to the within
project benchmarks.

Through an exploratory approach, this study aims at inves-
tigating the impact of a set of identified factors, including
validation data, training data, value/fitness function, search
operators and feature selection. We aim at answering the
following research question in this paper:
RQ: In what way do the identified model design factors and
their interactions affect the performance of the search based
approach?

While we use our previously proposed method, i.e. GIS,
in this work, the model can be extended to any other search
based method. Therefore, this study not only provides detailed
investigation of contributing factors on performance of GIS,
but also, provides a means for evaluation and efficient design
selection for similar models with various options before mak-
ing model related decisions.

II. RELATED WORK

Studies in the area of cross project defect prediction, do not
always agree in their conclusions. The systematic literature
review by Hosseini et al [2], presents detailed discussions of
the state of the art CPDP approaches with a specific focus on
data approaches used in the literature. We describe the most
relevant studies to our work next.

Instance and dataset selection methods have been explored
in CPDP. These include relevancy filtering by Turhan et al.[1]
based on the euclidean distance measure, data distributional
characteristics and meta-learners by He et al. [8], clustering
by Herbold [9] and selective learning by Ryu et al. [10]. These
studies however, do not consider a search based approach.

Examples of search based studies in CPDP, include generat-
ing evolving mathematical equations to fit the data [11], multi-



objective cost-effectiveness logistic regression parameter opti-
mization using NSGA-II [12] and logistic regression parameter
optimization using small proportions of within project data
[13], all of which involve learning techniques and optimizing
them, and not the instance/data selection problem. Further,
none of the aforementioned studies target data quality.

Instance selection and data quality are investigated by our
previous studies [6], [7], the details of which are presented in
the next section and the current study delves into the details
of the search process. The findings, in turn, can potentially
provide insights on how to make better decisions regarding
design selection for search based approaches.

III. RESEARCH METHODOLOGY

A. Motivation

Availability of many open source defect prediction datasets
may lead to prediction models that may be able to discover
sources of error in code and decrease the costs and amount
of required resources. Attempts at building such prediction
models have revealed critical challenges (data heterogeneity,
class imbalance, representativeness, etc.) which threaten the
value of the available data. While the available data is valuable,
not all instances can help in the process of building effective
prediction models, major reasons of which are the dataset
shift problem [14] and changes in practices [3], [2]. The data
filtering and instance selection approaches are proposed to help
fulfill the desired outcome. GIS [6], [7], is one such approach
which tries to produce evolving training datasets through a
search based approach (genetic algorithm in this case). Such
search based approaches however, usually involve different
parameters, which can affect their performance and careful
analysis can be crucial to optimize their performances.

B. Search based instance selection

This section presents a brief description of the search
based method which is used in this study. Knowledge of the
model helps to identify the design factors which are presented
afterwards. We will refer to the Genetic Instance Selection
(GIS) proposed in our previous studies [6], [7] as Search Based
Selection (SBS) in the rest of the paper. To make predictions
for a test set, SBS starts by generating random subsets of
instances belonging to the pool of instances from other project.
A validation dataset is generated, initial training datasets from
the first population are evaluated on the validation dataset, and
fitness values are calculated. Using the genetic operations, e.g.
mutation and crossover, new generations are created and best
datasets survive and are transferred to next generations. The
original GIS approach used fixed length training datasets, NN-
Filter as validation dataset generation method and Naive Bayes
(NB) as learner. The mutation and cross over operations are
designed to address the data quality and dataset shift problem
to some extent through random label changes in training data,
accounting for the potential noise in the data.

S3S2

F*GMean Naïve Bayes

Fig. 1: Experiment Scenarios

C. Experiment Design

Two learners (NB, J48), where NB: Naive Bayes and
J48: Decision Tree; three validation dataset selection methods
(VNN, VAT, VRnd), where VNN: Validation set generated
with NN-filter, VAT: All training data as validation set, and
VRnd: Random validation set; two training dataset generation
methods (FIXED, VAR) methods, where FIXED and VAR
corresponds to fixed and variable size training datasets; and
two fitness functions (F×GMean and GMean×MCC) are
used in the experiments. These options make three scenarios,
depicted in Figure 1. Scenario 1 (S1) uses J48 as learner and
F×GMean as fitness function. Scenarios 2 and 3 (S2 and S3)
use NB as learner, but their fitness functions are different,
namely F×GMean and GMean×MCC, respectively.

The presence of randomness is addressed by repeating the
experiments (20 times for each dataset) and having multiple
scenarios for different options. The population size is 30
and the maximum number of generations is 30. The reason
for selecting these values is due to having small population
sizes which, despite the small sizes, cover almost all of the
original training instances in every iteration (95%) in the initial
populations. Further, the process converges quickly justifying
the selection of the maximum number of generations.

We use an exploratory approach during data gathering
and analyses. We collect dataset information for validation
datasets, final training datasets, survived and deleted pop-
ulation members information (class counts, label changes,
validation and test performances), test datasets information, as
well as the evolution of each instance in each dataset (count
of mutation, label changes).

ANOVA tests are performed to determine the importance
of the factors and their interactions. Normality assumption of
the residuals from ANOVA tests were checked using statistical
tests which rejected the normality in most cases. Therefore, we
used two steps to address this problem. First, we used the Box-
Cox, logarithm and square root transformations on the raw
data, yet the normality assumption was still violated. Then, a
visual inspection of QQ-plots revealed that the distribution of
the residuals is deviating from normal distribution only in the
tails. However, the number of data items collected for each
scenario are reasonably high, exactly 3,120 data points, and
the implications of the central limit theorem as well as the
close approximation of normally distributed data except for
the tails justify our use of ANOVA for analysis.



In terms of further notation, Y − X refers to validation
set selection method Y(VNN, VAT, VRnd) and feature set
X(SBSA, SBSIG), where subscript A and IG correspond to
using all features and feature selection with InfoGain, respec-
tively. Further, V AR.Y − X refers to variable size training
dataset selection with validation set selection method Y (VNN,
VAT, VRnd) and Method X(SBSA, SBSIG)

D. Discussion of search based design options

A set of design options for search based CPDP are identified
and discussed in this section.

1) Validation dataset selection: Does the choice of valida-
tion dataset selection matter for SBS? To see the value of good
validation datasets, consider the approximate theoretical up-
per bound based on selecting perfect validation data (VTST
= test set as validation data) which leads to selecting instances
with very high prediction power (for S1 the performances are
VTST-SBSA = {F: 0.643, rec: 0.775, prec: 0.577}, VTST-
SBSIG = {F: 0.659, rec: 0.782, prec: 0.585}, VAT.VTST-SBSA
= {F: 0.638, rec: 0.806, prec: 0.559}, VAR.VTST-SBSIG = {F:
0.654, rec: 0.810, prec: 0.597}). The next important question
is the representativeness of NN-Filter as validation dataset se-
lection method which was used in GIS. It is not clear whether
the choice of NN-Filter is one of the top contributing factors
to better performances or not. We investigate this question
by incorporating two alternative validation dataset selection
methods in SBS, i.e. using the entire training dataset (VAT)
and using random subset of all training instances (VRnd) as
validation data.

2) Learning techniques: The NB learner, used in our pre-
vious studies, showed acceptable performances considering its
simplicity and speed. While previous studies have demon-
strated the potentials of NB learner, the correctness of its
assumptions and its potentially lower performances in com-
parison with more sophisticated learners has raised concerns
regarding its performance [2]. We address this concern, by
repeating the experiments using J48 classifier in WEKA. Such
an experiment, would shed light on the dependence on learning
techniques, or lack-thereof.

3) Fitness function: The fitness function can affect the path
which the search process takes for optimization. Selecting a
good fitness function is crucial for converging to the ideal
goals. We used F×GMean in our previous studies as fitness
function. While the reason for selecting such a fitness function
was the desire for a balanced performance of precision and
recall, we observed more recall at the cost of losing more pre-
cision. While neglected in many studies, True Negatives can be
important as making mistakes in detecting them increases the
probability of false alarm which could lead to less confidence
in the applicability of the models [15]. The MCC compound
measure seemed like a good candidate as it includes all four
components of the confusion matrix. However, MCC has its
drawbacks since for it, TPs and TNs have the same importance
which might not be desirable for researchers/industry.

4) Training data and class imbalance: The investigation
into the imbalance space is interesting, since it is believed

that the imbalance problem is one of the root causes for
the weak performance of CPDP [2], [16], [17], [18], [19],
[9], [20]. In our previous studies [6], [7], we used a fixed
length chromosome structure containing a constant number of
instances, selected randomly from other projects. This method
of dataset generation however, limits the proportion of the
space covered by the generated datasets. Our previous search
operations did not change the size of the datasets (one point
cross over), therefore, new offsprings remained on the same
point/line. Please note that when varying size datasets are
generated, it is possible that they become very large which
could possibly contain the entire training dataset (pool) or even
more (instance repetition). While we use variable dataset sizes,
we made some limitations on them for practical considerations
by modifying the cross over operation to use middle point, if
their size exceeds a constant higher than half the size of all
available training instances (4,000 in this case).

5) Mutation and cross over patterns: The majority of
the datasets for CPDP and defect prediction in general are
generated through automated heuristic approaches such as SZZ
[21]. However, SZZ and its extensions are not entirely accurate
[2]. This implies that the labels for the defective and non
defective instances could be noisy or change over time while
new bugs are introduced or discovered. We aim at finding the
effect of using the search operations that change data labels
and their relation to the changes in performance.

E. Datasets and Metrics

We used 13 projects from the PROMISE repository which
were used in [6]. These datasets are Ant-1.7, Camel-1.6,
Ivy-2.0,JEdit-4.3, Log4j-1,2, Lucene-2.4, Poi-3.0, Prop-6.0,
Synapse-1.2, Tomcat-6.0, Velocity-1.6, Xalan-2.7 and Xerces-
1.4. Each dataset contains a number of instances corresponding
to the classes in the release. Each instance has 20 static code
metrics including object oriented, size and complexity metrics.
The details of the datasets are available in [22]. We use the
full set of metrics in SBSA and the subset selected by iterative
infogain subsetting in SBSIG.

F. Performance Measures and Tools

To assess the performance of the models, a diverse set
of performance indicators are used: Precision, Recall, F-
Measure, GMean, False Negative Rate (FNR), True Negative
Rate (TNR), Probability of False Alarms (PF) and Matthews
Correlation Coefficient (MCC). Selection of a broad range of
performance measures not only demonstrate different aspects
of the approach, but also is useful for comparison purposes
for future studies [2], [23]. All the experiments are conducted
using WEKA machine Learning tool version 3.8.1. The related
WEKA classes for instance manipulation are modified for the
data collection process. Statistical tests are carried out using
scipy, statsmodels, and Python version 3.6.3. The plots are
generated using matplotlib and seaborn libraries. The scripts
as well as the modified WEKA version are available online in
our replication package [24].



NaiveBayes J48
LRN

0.40

0.42

0.44

0.46

0.48

F

vType = VNN

NaiveBayes J48
LRN

0.40

0.42

0.44

0.46

0.48

vType = VAT

NaiveBayes J48
LRN

0.40

0.42

0.44

0.46

0.48

vType = VRnd

trType
FIXED
VAR

NaiveBayes J48
LRN

0.55

0.60

0.65

0.70

0.75

0.80

0.85

re
c

vType = VNN

NaiveBayes J48
LRN

0.55

0.60

0.65

0.70

0.75

0.80

0.85
vType = VAT

NaiveBayes J48
LRN

0.55

0.60

0.65

0.70

0.75

0.80

0.85
vType = VRnd

trType
FIXED
VAR

NaiveBayes J48
LRN

0.42

0.44

0.46

0.48

0.50

pr
ec

vType = VNN

NaiveBayes J48
LRN

0.42

0.44

0.46

0.48

0.50

vType = VAT

NaiveBayes J48
LRN

0.42

0.44

0.46

0.48

0.50

vType = VRnd

trType
FIXED
VAR

GMean1mcc FGMean1
FITFUNC

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

F

vType = VNN

GMean1mcc FGMean1
FITFUNC

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50
vType = VAT

GMean1mcc FGMean1
FITFUNC

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50
vType = VRnd

trType
FIXED
VAR

GMean1mcc FGMean1
FITFUNC

0.4

0.5

0.6

0.7

0.8

re
c

vType = VNN

GMean1mcc FGMean1
FITFUNC

0.4

0.5

0.6

0.7

0.8

vType = VAT

GMean1mcc FGMean1
FITFUNC

0.4

0.5

0.6

0.7

0.8

vType = VRnd

trType
FIXED
VAR

GMean1mcc FGMean1
FITFUNC

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

pr
ec

vType = VNN

GMean1mcc FGMean1
FITFUNC

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

vType = VAT

GMean1mcc FGMean1
FITFUNC

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

vType = VRnd

trType
FIXED
VAR

Fig. 2: Factor Plots for the relationship of learning technique (LRN, left side) or Fitness Function (FITFUNC, right side), with validation
dataset type (vType), and training dataset type (trType) based on F-measure, recall and precision

IV. RESULTS

A. Impacting factors on performance

We start the discussion of each impacting factor with
presenting the results of the ANOVA test for that factor. The
interaction details are presented if a multi-way ANOVA is
performed. These results (p-values and effect sizes) are used
to measure the effectiveness and impact of each factor/option.
Figure 2 will act as a demonstration for the following sections.

1) Validation dataset selection and features: We perform
two way ANOVA test which considers the validation dataset
and feature set parameters and their interaction. These two
parameters are considered for a two way ANOVA as they
both are responsible for changing the shape/size of the data
(smaller or larger with validation data and smaller with feature
selection). In S1, the results of the two way test for F-measure
shows a non significant interaction of the two variables
(p− val =0.920), but significant with tiny effect sizes for the
individual parameters (vType = [p − val =0.045, ω2=0.001],
features=[p− val =� 0.001, ω2=0.005]). The effect size for
feature sets is slightly higher in S1. Significant differences in
terms of precision, are not observed for the variables and their
interaction.

Unlike S1, the tests for F-measure in S2 show a significant
difference with validation datasets (ω2 =0.020), but insignifi-
cant for features (p−val =0.836) and the interaction of the two
(p− val =0.712). Similar to S1, the tests for precision show
insignificant results for the variables and their interaction (p−
val = {vType = 0.353, features = 0.192, interaction =
0.816}). In S3, significant differences are observed for the
interaction. For the variables however, significant differences
are present with effect size for validation dataset selection
(0.005) being slightly larger than that of feature sets(0.001).

Precision is not affected significantly in this case as well.
For feature sets, while a significant p-value can be observed

in many cases, the effect sizes are very small. Further, the
choice of feature set does not have a significant impact on
precision. In terms of median F-measure, in S1, VNN-SBSIG
and VAT-SBSIG are the first and second best performing
approaches among the benchmarks. The performance, of the
VAT-SBSIG however, is based on very high recall values. This
comes at the cost of having the lowest precision values. The
-IG methods, have higher recall values in comparison with
their -A counterparts. Also, the performance of the approaches
that have larger validation dataset sizes (VAT, VNN, VRnd in
decreasing size order), in their feature groups (-A and -IG) are
more recall based.

2) Training datasets: Most of the variable size training
datasets have lower performances in comparison with their
fixed size counterparts as depicted in Figure 2. This behaviour
seems to be more recall related than precision. The case
of VAR.VNN-SBSIG is an exception as it is the third best
performing approach based on median F-measure and has
the highest median precision value. While the variable size
training datasets, have the highest FNRs, they have the highest
median TNR rates as well and less false alarms consequently.
ANOVA tests are performed to assess the extent of impact of
the training dataset generation strategies. For F-measure, S1
shows significant impact with tiny effect size (ω2 =0.005), but
significant differences can not be seen in S2 (p− val =0.891)
and S3 (p − val =0.792). In all three scenarios, precision
results do not show significant changes for using one training
dataset generation method over the other.

3) Fitness Function: The data from S1 and S2 are com-
bined and used in ANOVA test to investigate the existence



of significant differences or lack thereof with regard to the
fitness function. The one-way ANOVA test show significant
increase or decrease based on different measures. Regarding
F-measure, a significant difference toward the options of S2
can be observed (ω2 =0.023) as is the case also for GMean
(ω2 =0.041). A group of important differences are observed
for other measures. In terms of FNR, S2 is better than S3
with observed effect size ω2 =0.339. Conversely, S3 results
in higher rate of true negatives with ω2 =0.407. S3 makes
significantly less false positive mistakes, according to the
observed effect size ω2 =0.407. This comes at the cost of
losing recall which is better in S2 with ω2 =0.339. This drop
in recall in not compensated by precision, despite being higher
in S3 (ω2 =0.011), but rather in terms of higher TNR and
lower PF. This was expected to some extent for S3, as the
inclusion of MCC in its fitness function, gives high weight to
true negatives, while F-measure and GMean, ignore it. These
differences are depicted in the right side of Figure 2 for F-
measure, precision and recall.

Earlier, we considered the impact of validation dataset
selection in isolation for each scenario. We can now, consider
the interaction between validation dataset selection and fitness
function and assess their order of impact. We perform a two
way ANOVA for this purpose. The results of the tests for
different measures show that the effect of fitness function in
comparison with validation datasets selection is comparably
very larger (effect sizes 15-100+ times larger). Also, in terms
of F-measure, the effects of validation dataset itself and the
interaction between it and fitness function are not significant.
This is true for GMean and precision as well. This is not to say
that the validation dataset is not important, but rather shows
that better validation selection methods are required.

4) Learning techniques: Similar to the discussion for fit-
ness function, We have explored the effects of two learning
techniques by performing the experiments of S1 and S2
scenarios. The data from both of these scenarios are used to
perform ANOVA test to detect possible important sources of
impact. ANOVA test result reveals that while the selection of
learning technique can potentially impact the performance, the
impact might be very small, in terms of some of the measures.
Particularly, with F-measure, despite seeing a significant dif-
ference (p− val =0.001) a very small effect size is observed
(ω2 =0.001). With recall, the observed effect size is very
small as well (ω2 =0.022), while no significant difference is
observed for precision (p−val =0.713). As with fitness func-
tion, two way ANOVA tests for validation dataset selection
and learning technique are performed. In this case, there are
tiny differences in terms of effect size between the two for F-
measure (ω2 = {learn−tech : 0.001, vset−type : 0.002} and
insignificant interaction effect) and precision (all insignificant).

B. Class imbalance space coverage

Figures 3 and 4 show the F-measure values corresponding to
all the surviving datasets generated through the search process
for scenario 1. All of the generated datasets are evaluated on
the test set and their performance is recorded. The plots shown

in Figure 3 show the performances for fixed size generated
datasets and the plots in Figure 4 represent the performance
for the variable size counterparts. Each plot is divided into
six parts according to the validation methods (VNN, VAT,
VRnd) and feature sets (-A,-IG). The two lines in each plot,
represent median performance for each class label. The red line
illustrates the results based on increase in number of instances
belonging to class 1=defective and the green line is for 0=non-
defective class. We report average ± standard deviation for
fixed size datasets and medians for variable size datasets.

For the fixed size datasets shown in Figure 3, increase in
the number of instances in each class corresponds to decrease
in the number of instances in the other class. Hence, the
curves must be interpreted in the following way. Starting with
VNN-SBSA and VNN-SBSIG, an increase in the number of
items belonging to class 1, seems to be related to decrease in
performance. At the same time, an increase in the rate of class
0 instances, shows better average F-measure performances.
While this is the case for VNN-, the pattern illustrates lower
performances for small percentages of class 1 and very high
percentages of class 0 instances as well which is similar to
the overall number of class 1 and class 0 instances that are
present in the pool of all training data. The only exception
is VAT-SBSIG, which shows steady average performance with
increases in class 1. VNN-SBS and VRnd-SBS show similar
behaviours. One can see very similar standard deviations with
increases in each class except for extreme cases like the very
good performance seen for high class 1 in VRnd-SBSIG (std
= 0) or the very low performance for the same class and same
case, for low number of class 1 instances.

Variable size datasets are different and an increase in one
class does not mean decrease in the number of instances in
the other class. Since, identical instances are counted as many
times as they appear, the increase in size of datasets could
increase the number of items belonging to both classes. While
this is expected, this increase would happen for one class at
the very least. Unlike the case of fixed size datasets, decreases
in one class also could decrease the number of items in both
classes. Due to the enforced limitations on size, one can not
observe higher number of instances than approximately 5000
in one class as illustrated in Figure 4. VAR.VNN-SBSA and
VAR.VRnd-SBSA show similar patterns at the beginning but
one can see more clear drops in performance in VAR.VRnd-
SBSA with increases in class 1. Both of these cases, as well
as VAR.VNN-SBSIG show comparatively higher variations in
performance. The relation between increase in size and more
variations in performance is clear in almost all cases. Except
at the beginning, VAR.VAT-SBSIG shows a steady pattern, like
its fixed counterpart, VAT-SBSIG.

C. Mutation and cross over patterns

As described earlier, these operations could modify the label
of training data in order to address the data quality issue
which is present in many of the available defect datasets.
Before presenting the performance details, we first look at the
rate of label changes that are introduced by these operations.



0 20 40 60 80 1000.0

0.2

0.4

0.6

0.8

1.0

F-M
EA

SU
RE

Class 0
Class 1VNN-SBSA

0 20 40 60 80 1000.0

0.2

0.4

0.6

0.8

1.0

F-M
EA

SU
RE

Class 0
Class 1VAT-SBSA

0 20 40 60 80 1000.0

0.2

0.4

0.6

0.8

1.0

F-M
EA

SU
RE

Class 0
Class 1VRnd-SBSA

0 20 40 60 80 1000.0

0.2

0.4

0.6

0.8

1.0

F-M
EA

SU
RE

Class 0
Class 1VNN-SBSIG

0 20 40 60 80 1000.0

0.2

0.4

0.6

0.8

1.0

F-M
EA

SU
RE

Class 0
Class 1VAT-SBSIG

0 20 40 60 80 1000.0

0.2

0.4

0.6

0.8

1.0

F-M
EA

SU
RE

Class 0
Class 1VRnd-SBSIG

Fig. 3: Distribution of instances and their related F-measure performances for fixed size training datasets

0 500 1000 1500 2000 2500 3000 35000.0

0.2

0.4

0.6

0.8

1.0

F-M
EA

SU
RE

Class 0
Class 1VAR.VNN-SBSA

0 1000 2000 3000 40000.0

0.2

0.4

0.6

0.8

1.0
F-M

EA
SU

RE
Class 0
Class 1VAR.VAT-SBSA

0 1000 2000 3000 40000.0

0.2

0.4

0.6

0.8

1.0

F-M
EA

SU
RE

Class 0
Class 1VAR.VRnd-SBSA

0 200 400 600 8000.0

0.2

0.4

0.6

0.8

1.0

F-M
EA

SU
RE

Class 0
Class 1VAR.VNN-SBSIG

0 500 1000 1500 2000 2500 3000 3500 40000.0

0.2

0.4

0.6

0.8

1.0

F-M
EA

SU
RE

Class 0
Class 1VAR.VAT-SBSIG

0 500 1000 1500 2000 2500 3000 35000.0

0.2

0.4

0.6

0.8

1.0

F-M
EA

SU
RE

Class 0
Class 1VAR.VRnd-SBSIG

Fig. 4: Distribution of instances and their related F-measure performances for variable size training datasets

0 2 4 6 8 10 120.0

0.2

0.4

0.6

0.8

1.0

F-M
EA

SU
RE

Mutation Change Count
Cross Over Change Count
Changed Label Count
Both - Changed
Both - Unchanged
Multi-Mutation Count
Multi-Cross Over Count

VNN-SBSA

0 1 2 3 4 5 6 7 8 90.0

0.2

0.4

0.6

0.8

1.0

F-M
EA

SU
RE

Mutation Change Count
Cross Over Change Count
Changed Label Count
Both - Changed
Both - Unchanged
Multi-Mutation Count
Multi-Cross Over Count

VAT-SBSA

0 2 4 6 8 100.0

0.2

0.4

0.6

0.8

1.0

F-M
EA

SU
RE

Mutation Change Count
Cross Over Change Count
Changed Label Count
Both - Changed
Both - Unchanged
Multi-Mutation Count
Multi-Cross Over Count

VRnd-SBSA

0 2 4 6 8 100.0

0.2

0.4

0.6

0.8

1.0

F-M
EA

SU
RE

Mutation Change Count
Cross Over Change Count
Changed Label Count
Both - Changed
Both - Unchanged
Multi-Mutation Count
Multi-Cross Over Count

VNN-SBSIG

0 2 4 6 8 100.0

0.2

0.4

0.6

0.8

1.0

F-M
EA

SU
RE

Mutation Change Count
Cross Over Change Count
Changed Label Count
Both - Changed
Both - Unchanged
Multi-Mutation Count
Multi-Cross Over Count

VAT-SBSIG

0 2 4 6 8 10 120.0

0.2

0.4

0.6

0.8

1.0

F-M
EA

SU
RE

Mutation Change Count
Cross Over Change Count
Changed Label Count
Both - Changed
Both - Unchanged
Multi-Mutation Count
Multi-Cross Over Count

VRnd-SBSIG

Fig. 5: Rate of changes based on related label changes for F-measure and fixed size datasets

0 10 20 30 400.0

0.2

0.4

0.6

0.8

1.0

F-M
EA

SU
RE

Mutation Change Count
Cross Over Change Count
Changed Label Count
Both - Changed
Both - Unchanged
Multi-Mutation Count
Multi-Cross Over Count

VAR.VNN-SBSA

0 20 40 60 80 1000.0

0.2

0.4

0.6

0.8

1.0

F-M
EA

SU
RE

Mutation Change Count
Cross Over Change Count
Changed Label Count
Both - Changed
Both - Unchanged
Multi-Mutation Count
Multi-Cross Over Count

VAR.VAT-SBSA

0 10 20 30 40 50 60 700.0

0.2

0.4

0.6

0.8

1.0

F-M
EA

SU
RE

Mutation Change Count
Cross Over Change Count
Changed Label Count
Both - Changed
Both - Unchanged
Multi-Mutation Count
Multi-Cross Over Count

VAR.VRnd-SBSA

0 2 4 6 8 10 12 14 160.0

0.2

0.4

0.6

0.8

1.0

F-M
EA

SU
RE

Mutation Change Count
Cross Over Change Count
Changed Label Count
Both - Changed
Both - Unchanged
Multi-Mutation Count
Multi-Cross Over Count

VAR.VNN-SBSIG

0 10 20 30 40 50 600.0

0.2

0.4

0.6

0.8

1.0

F-M
EA

SU
RE

Mutation Change Count
Cross Over Change Count
Changed Label Count
Both - Changed
Both - Unchanged
Multi-Mutation Count
Multi-Cross Over Count

VAR.VAT-SBSIG

0 10 20 30 400.0

0.2

0.4

0.6

0.8

1.0

F-M
EA

SU
RE

Mutation Change Count
Cross Over Change Count
Changed Label Count
Both - Changed
Both - Unchanged
Multi-Mutation Count
Multi-Cross Over Count

VAR.VRnd-SBSIG

Fig. 6: Rate of changes based on related label changes for F-measure and variable size datasets



Figures 5 and 6 depict performances based on multiple factors.
These factors include number of mutated instances (blue),
number of instances having cross over (green), total number
of changed labels by mutation or cross over or both (red),
count of changed labels having both cross over and mutation
(cyan), count of unchanged labels having both cross over
and mutation (magenta), multiple mutation count (yellow) and
multiple cross over count (black), respectively. As expected, in
fixed size datasets, the total number of mutated items are not
very high (matching the #generations and mutation prob%).
The counting process does not exclude identical instances
(simple weighting mechanism). Therefore, counting is not
based on unique items. Having said these, one can see that
variable size datasets can have near 100 changed labels, a
portion of which is due to the mentioned simple weighting
mechanism. The rate of changed labels show performance
changes in some cases. These operations are not however, the
only contributing factors and the performance increase might
not be associated with them only.

V. DISCUSSIONS

The results of the statistical tests and observed effect sizes,
revealed a set of findings regarding the impact of the factors.
These are discussed below:
Validation data and feature set: Both feature sets and valida-
tion dataset selection methods show significant, but tiny effects
on F-measure. Further, precision is not affected significantly
by these parameters in different scenarios in isolation while
making false positives and true negatives are clearly influenced
by the choice of validation dataset. While validation dataset
selection is important and NN-Filter outperforms random
selection, there clearly is room for improvements. This brings
into question, the value of the similarity measures, used in
NN-Filter for CPDP. The size of the validation dataset as well
as the number of available features seem to be important when
tuning toward a particular measure. The larger the validation
dataset is and the less the number of available features are, the
more recall based performances in expense of losing precision
are observed. The results of the random validation dataset
method demonstrate the positive impact (albeit rather small)
of validation dataset selection as depicted in Figure 2. The
performance of random methods, is mostly lower in terms of
both recall and precision and consequently, F-measure. How-
ever, search for alternatives to NN-Filter is a valid direction
to investigate considering the small improvements.
Training data: While the size of the training dataset (fixed,
variable) can in theory impact the performance and preciseness
of prediction models, the statistical tests do not favour one over
the other based on F-measure except in S1, for which a tiny
effect size is observed. In all three scenarios, no significant
impact can be observed for precision. Based on the medians,
variable size datasets show higher precision and lower recall
performances. The direction of performance suggests that the
test and validation performances are similar to some extent
and hence, similarity in the number of instances belonging to
each class, to that of the large pool of training data could

increase performance. This, however, is the overall result
and is subject to change for certain datasets with skewed
distribution of instances. In the same line as previous studies
such as [25], while increases in training dataset size could
possibly increase performance, the instability of performance,
is a discouraging evidence for using larger datasets which lead
to more variations in performance.
Fitness function: Careful selection of fitness function, has
major impact on performance. This is a step toward increasing
precision and lowering false alarms which are very common
is CPDP research [2]. Depending on the target group and
preferences the fitness function can be very effective toward
particular goals. In current settings, the effect of fitness
function is demonstrably larger than the choice of validation
selection methods.
Learning technique: Learning techniques without hyper-
parameter tuning, might not be effective means of performance
improvement considering their differences in complexity and
power. Learners show similar effect sizes to those observed
for validation dataset selection and are generally very small.
Effects of tuned learners and their interaction with other
affecting parameters is a direction to investigate.
Search operators: While showing slight changes in per-
formances, the label changes do not seem to be the top
contributors to performance direction. Having said these, they
are an essential part of the model and steps toward better
performances and addressing data quality issues.

VI. THREATS TO VALIDITY

During an empirical study, one should be aware of the
potential threats to the validity of the obtained results and
derived conclusions [26].
Construct validity: We used our proposed approach GIS, as
the search based method in this experiments. GIS is based on
genetic algorithm and considers data quality in defect datasets,
which can be different from other search based methods. The
experimental datasets used in this study belong to a set of
datasets collected from Java projects and the datasets can be
subject to quality issues. This and our previous papers, have
proposed steps to address these issues. To address different
aspects of the model different strategies were used. Validation
dataset selection methods, training dataset types, learning tech-
niques and fitness functions are some of the model parameters
that were investigated in more details to shed light on specific
properties of such search based approaches.
External validity: It is difficult to draw general conclusions
from empirical studies of software engineering and our results
are limited to the analyzed data and context. Even though
many researchers have used the same datasets as the basis of
their conclusions, there is no assurance about the generaliza-
tion of conclusions drawn from these projects. Particularly the
applicability of the conclusions for commercial, proprietary
and closed source software might be different.
Conclusion validity: Our experiments are repeated 20 times to
address the randomness and the results are compared using one
and two way ANOVA tests. Further, to calculate the magnitude



of the difference, appropriate effect sizes are reported. Another
threat is the choice of the evaluation measure. We have
reported a diverse set of performance measures to address this
problem.

VII. CONCLUSIONS

Through an exploratory approach, we investigated variants
of a search based method by analyzing collected data from
a series of experiments using different options. We used
the latest releases of 13 projects from PROMISE repository
in our experiments. The results revealed the value of the
identified design options in the context of relevant performance
measures. The experiments and analyses in this study acted,
not only as detailed investigation of our previously proposed
search based approach (GIS), but also, provided insights into
the careful selection of design choices for such models with
relatively higher number of various options. Through this
study, we analyzed the value and validity of using NN-Filter
for validation dataset generation, fixed vs variable size training
datasets, and the effects of tuned fitness functions beside the
investigation into learning techniques, class imbalance and the
genetic operators. We considered potential interactions among
different parameters based on their nature of impact.

Based on the results, we observed small effects for valida-
tion data, non-tuned learning techniques, and size of training
data; and larger effects for fitness functions. We also observed
insignificant, and in some cases tiny effects on precision, by
changing the parameters. Some of the measures however, were
heavily affected based on the fitness functions, e.g. MCC for
TNR.

Some of the observations in this study, revealed potential
directions for future investigations. Perhaps, better validation
dataset generation strategies, tuning learners, and search op-
erators are the most notable among them. At the same time,
the class imbalance problem investigations and the effect of
training dataset types demonstrate the need for additional
research on the topic.

REFERENCES

[1] Burak Turhan, Tim Menzies, Ayşe B Bener, and Justin Di Stefano. On
the relative value of cross-company and within-company data for defect
prediction. Empirical Software Engineering, 14(5):540–578, 2009.

[2] Seyedrebvar Hosseini, Burak Turhan, and Dimuthu Gunarathna. A
systematic literature review and meta-analysis on cross project defect
prediction. Software Engineering, IEEE Transactions on, 2017.

[3] Barbara A Kitchenham, Emilia Mendes, and Guilherme H Travassos.
Cross versus within-company cost estimation studies: A systematic
review. IEEE Transactions on Software Engineering, 33(5), 2007.

[4] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy. Cross-
project defect prediction: a large scale experiment on data vs. domain
vs. process. In Proceedings of the the 7th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering, pages 91–100. ACM, 2009.

[5] Barry W Boehm. Understanding and controlling software costs. Journal
of Parametrics, 8(1):32–68, 1988.

[6] S. Hosseini, B. Turhan, and M. Mäntylä. Search based training data
selection for cross project defect prediction. In Proceedings of the The
12th International Conference on Predictive Models and Data Analytics
in Software Engineering, PROMISE 2016, pages 3:1–3:10. ACM, 2016.

[7] S. Hosseini, B. Turhan, and M. Mäntylä. A benchmark study on the
effectiveness of search-based data selection and feature selection for
cross project defect prediction. Information and Software Technology,
95:296–312, Jun 2017.

[8] Zhimin He, Fengdi Shu, Ye Yang, Mingshu Li, and Qing Wang.
An investigation on the feasibility of cross-project defect prediction.
Automated Software Engineering, 19(2):167–199, 2012.

[9] Steffen Herbold. Training data selection for cross-project defect predic-
tion. In Proceedings of the 9th International Conference on Predictive
Models in Software Engineering, page 6. ACM, 2013.

[10] Duksan Ryu, Jong-In Jang, and Jongmoon Baik. A hybrid instance
selection using nearest-neighbor for cross-project defect prediction.
Journal of Computer Science and Technology, 30(5):969–980, 2015.

[11] Yi Liu, Taghi M Khoshgoftaar, and Naeem Seliya. Evolutionary
optimization of software quality modeling with multiple repositories.
IEEE Transactions on Software Engineering, 36(6):852–864, 2010.

[12] Gerardo Canfora, Andrea De Lucia, Massimiliano Di Penta, Rocco
Oliveto, Annibale Panichella, and Sebastiano Panichella. Defect pre-
diction as a multiobjective optimization problem. Software Testing,
Verification and Reliability, 25(4):426–459, 2015.

[13] Xin Xia, David Lo, Sinno Jialin Pan, Nachiappan Nagappan, and Xinyu
Wang. Hydra: Massively compositional model for cross-project defect
prediction. IEEE Transactions on software Engineering, 42(10):977–
998, 2016.

[14] Burak Turhan. On the dataset shift problem in software engineering
prediction models. Empirical Software Engineering, 17(1-2):62–74,
2012.

[15] Kim Herzig and Nachiappan Nagappan. Empirically detecting false test
alarms using association rules. In Proceedings of the 37th International
Conference on Software Engineering - Volume 2, ICSE ’15, pages 39–
48, Piscataway, NJ, USA, 2015. IEEE Press.

[16] Lin Chen, Bin Fang, Zhaowei Shang, and Yuanyan Tang. Negative sam-
ples reduction in cross-company software defects prediction. Information
and Software Technology, 62:67–77, 2015.

[17] Duksan Ryu, Okjoo Choi, and Jongmoon Baik. Value-cognitive boosting
with a support vector machine for cross-project defect prediction.
Empirical Software Engineering, 21(1):43–71, 2016.

[18] Yasutaka Kamei, Takafumi Fukushima, Shane McIntosh, Kazuhiro Ya-
mashita, Naoyasu Ubayashi, and Ahmed E Hassan. Studying just-in-
time defect prediction using cross-project models. Empirical Software
Engineering, pages 1–35, 2015.

[19] Duksan Ryu, Jong-In Jang, and Jongmoon Baik. A transfer cost-sensitive
boosting approach for cross-project defect prediction. Software Quality
Journal, 25(1):235–272, Mar 2017.

[20] Ying Ma, Guangchun Luo, Xue Zeng, and Aiguo Chen. Transfer
learning for cross-company software defect prediction. Information and
Software Technology, 54(3):248–256, 2012.

[21] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. When
do changes induce fixes? In ACM sigsoft software engineering notes,
volume 30, pages 1–5. ACM, 2005.

[22] Marian Jureczko and Lech Madeyski. Towards identifying software
project clusters with regard to defect prediction. In Proceedings of
the 6th International Conference on Predictive Models in Software
Engineering, page 9. ACM, 2010.

[23] Tracy Hall, Sarah Beecham, David Bowes, David Gray, and Steve
Counsell. A systematic literature review on fault prediction performance
in software engineering. IEEE Transactions on Software Engineering,
38(6):1276–1304, 2012.

[24] Seyedrebvar Hosseini and Burak Turhan. Replication package, 2018.
Available at https://doi.org/10.5281/zenodo.1200526.

[25] Tim Menzies, Burak Turhan, Ayse Bener, Gregory Gay, Bojan Cukic,
and Yue Jiang. Implications of ceiling effects in defect predictors. In
Proceedings of the 4th international workshop on Predictor models in
software engineering, pages 47–54. ACM, 2008.

[26] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn
Regnell, and Anders Wesslén. Experimentation in software engineering.
Springer Science & Business Media, 2012.


