

This is an electronic reprint of the original article. This reprint may differ from the original
in pagination and typographic detail.

A Systematic Mapping Study on API Documentation Generation Approaches

Nybom, Kristian; Ashraf, Adnan; Porres Paltor, Ivan

Published in:
2018 44th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)

DOI:
10.1109/SEAA.2018.00081

Published: 01/01/2018

Link to publication

Please cite the original version:
Nybom, K., Ashraf, A., & Porres Paltor, I. (2018). A Systematic Mapping Study on API Documentation
Generation Approaches. In T. Bures, & L. Angelis (Eds.), 2018 44th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA) (pp. 462–469). IEEE. https://doi.org/10.1109/SEAA.2018.00081

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

This document is downloaded from the Research Information Portal of ÅAU: 25. Apr. 2024

https://doi.org/10.1109/SEAA.2018.00081
https://research.abo.fi/en/publications/71068ba4-a701-4339-8263-a485e38a9465
https://doi.org/10.1109/SEAA.2018.00081

Copyright Notice

The document is provided by the contributing author(s) as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. This is the author’s
version of the work. The final version can be found on the publisher's webpage.

This document is made available only for personal use and must abide to copyrights of the
publisher. Permission to make digital or hard copies of part or all of these works for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit
or commercial advantage. This works may not be reposted without the explicit permission of the
copyright holder.

Permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the corresponding
copyright holders. It is understood that all persons copying this information will adhere to the
terms and constraints invoked by each copyright holder.

IEEE papers: © IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. The final publication is available at http://ieeexplore.ieee.org

ACM papers: © ACM. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The
final publication is available at http://dl.acm.org/

Springer papers: © Springer. Pre-prints are provided only for personal use. The final publication is available at link.springer.com

http://ieeexplore.ieee.org/
http://dl.acm.org/
http://link.springer.com/

A Systematic Mapping Study on API
Documentation Generation Approaches

Kristian Nybom, Adnan Ashraf, Ivan Porres
Åbo Akademi University

Faculty of Science and Engineering
Vesilinnantie 3, 20500 Turku, Finland

kristian.nybom@abo.fi, adnan.ashraf@abo.fi, ivan.porres@abo.fi

Abstract—Background: Application Programming Interfaces
(APIs) are key to software reuse. Software developers can link
functionality and behaviour found in other software with their
own software by taking an API into use. However, figuring out
how an API works is usually demanding, and may require that
the developers spend a notable amount of time familiarizing
themselves with the API. Good API documentation is of key
importance to simplify this task.
Objective: To present a comprehensive, unbiased overview of the
state-of-the-art on tools and approaches for API documentation
generation.
Method: A systematic mapping study on published tools and
approaches that can be used for generating API documentation,
or for assisting in the API documentation process.
Results: 36 studies on API documentation generation tools and
approaches analyzed and categorized in a variety of ways. Among
other things, the paper presents an overview of what kind of tools
have been developed, what kind of documentation they generate,
and what sources the documentation approaches require.
Conclusion: Out of the identified approaches, many contribute
to API documentation in the areas of natural language doc-
umentation and code examples and templates. Many of the
approaches contribute to ease API users’ understanding and
learning of the API, but also to the maintenance and generation
of API documentation. Most of the approaches are automatic,
simplifying the API documentation generation notably, under the
assumption that relevant sources for the generation are available.
Most of the API documentation approaches are evaluated either
by exercise of the approach followed by analysis of the results,
or by empirical evaluation methods.

I. INTRODUCTION

Software development is nowadays largely the process of
integrating existing features and reusing them by writing client
code interfacing to one or more Application Programming
Interfaces (API) [1], [2]. Thus, APIs are the key to software
reuse: they allow programmers beyond the original devel-
opers to use a certain component or service. Although the
official API documentation often is a sufficient source of
information when a developer takes a new API into use,
online discussion forums – such as Stack Overflow – often
provide more explanatory descriptions of specific API usages
relevant to the developers, and are generally of good quality
[3]. However, while the answers given at Stack Overflow may
be syntactically correct, they are not without problems. In [4]
a systematic analysis of the impact of information resources

on the code security was carried out. The main findings
reported were that developers relying only on Stack Overflow
produced significantly less secure code than those relying on
official API documentation only, while developers using API
documentation produced significantly less functional code than
those using Stack Overflow. While it is often notably faster
and easier to find relevant information for a specific API from
the Internet than from the official documentation, such crowd-
sourced API knowledge is scattered around the Internet and
disconnected from the official documentation [5].

Without proper tool support, creating and maintaining API
documentation is a demanding task. Whenever the source code
for the API is updated, the corresponding documentation needs
to be updated as well. When code updates are done frequently,
it is not uncommon that the necessary documentation updates
are forgotten, or inadequate [6]. On the other hand, when de-
velopers take a new API into use for their software, finding the
correct interface for a specific problem might be demanding
because of the size of the documentation. Easily finding the
correct resources in an API is therefore of importance.

All the things mentioned above point towards the same
need: tools to create and maintain API documentation. With
such tools, the expectation is that creating accurate API
documentation is notably easier and faster, and this helps
API users produce better software more quickly. This paper
presents a systematic mapping study (SMS) on the research
on approaches for API documentation generation. We begin by
presenting how the SMS was designed in Section II. In Section
III, we present the main findings of the SMS. In this Section
we focus on answering the research questions, as defined in
Section II. Section IV discusses the threats of validity of this
study, and the paper is concluded in Section V.

II. THE SYSTEMATIC MAPPING STUDY

This section presents the main points of the protocol cre-
ated to conduct the SMS. The protocol itself is useful for
replicability and validity review, as it gives a step-by-step
description of how the study was performed. More specifically,
it explains the goals for the research, the criteria for searching
for original papers potentially relevant to the study, the criteria
for including original papers in the study, how data was

extracted from the original papers, and how the extracted data
was synthesized.

In the remainder of this paper, we refer to approaches
rather than to tools, since the word tool can be interpreted
as a standalone application, but this paper is not limited to
those. We also consider e.g. plug-ins to Software Development
Kits (SDK’s) and other forms of approaches that can assist in
API documentation generation. However, we do not take into
consideration API documentation guidelines and similar.

A. Research Questions

The research questions (RQ) are as follows:
RQ1: What approaches exist for creating new and improving

existing API documentation?
RQ2: How do the approaches contribute to API documenta-

tion?
RQ3: What are the sources for API documentation?
RQ4: What are the quality properties of the approaches?
RQ5: How are the documentation approaches evaluated?

The first question (RQ1) is concerned with different ways of
either creating new or improving existing API documentation.
This RQ does not rule out approaches that may provide some
kind of supplementary information regarding existing API
documentation, which later on can be used for improving that
documentation. RQ2 is aimed at finding out the expected re-
sults of the documentation approaches. In order to get a better
understanding of the published approaches, RQ3 looks at the
sources used by the approaches. We believe this is a relevant
research question because it provides information about the
sources that need to be available and preferably reliable, in
order to obtain the expected results. RQ4 in turn aims at
finding out why and how the identified approaches are useful
in some way. The fifth and last RQ is concerned with whether
and how the approaches have been evaluated, i.e., whether
evidence is provided for improvements in API documentation.
Figure 1 shows the API documentation generation process and
how the research questions relate to it.

Fig. 1. Research questions and the documentation generation process.

Based on the RQs, the population, intervention, comparison,
outcomes, and context (PICOC) is presented in Table I.

B. Search Strategy for Primary Studies

This section presents our search strategy. It is based on the
Systematic Literature Review (SLR) guidelines in [7], [8].

TABLE I
PICOC

Aspect Value
Population (P) Software application developers
Intervention (I) Approaches for creating useful API reference

documentation
Comparison (C) No comparison intervention
Outcomes (O) An overview of approaches for creating and

improving API reference documentation, and of their
respective significance

Context (C) Module, component, and service integration with
client code

1) Search Terms: Table II lists the search terms used when
searching for original papers for this study. The search terms
are derived from the research questions and the PICOC in
section II-A.

TABLE II
SEARCH TERMS WITH ALTERNATE SPELLINGS

Term Alternate Spelling
API* API, APIs
Application Programming Application Programming Interface,
Interface* Application Programming Interfaces
Librar* Library, Libraries
Document* Document, Documentation
Algorithm* Algorithm, Algorithms
Approach* Approach, Approaches
Method* Method, Methods
Generat* Generate, Generation
Autom* Automatic, Automation, Automate
Evaluat* Evaluate, Evaluation
Assess* Assess, Assessment
Experiment* Experiment, Experimental, Experimentation
Test * Test, Testing
Empirical* None

2) Search Strings: The search terms listed in Table II were
combined into a search string for use in the digital libraries.
The general search string was the following:

Search String
(API OR ”Application Programming Interface*” OR Librar*)
AND Document* AND (algorithm* OR approach* OR method*
OR generat* OR creat* OR automat* OR evaluat* OR assess*
OR study OR measur* OR experiment* OR test* OR empirical*)

3) Databases: The search string shown above was applied
in the following digital libraries:

• IEEE Xplore
• ACM Digital library
• ScienceDirect
• SpringerLink

Since the digital libraries have different possibilities for defin-
ing search strings, it was customized to every digital library.
From the collected results, duplicates were removed.

C. Study Inclusion Criteria

The inclusion criteria for primary studies were as follows:

• Written in English AND

• Published in a peer-reviewed journal, conference, or
workshop of computer science, computer engineering, or
software engineering AND

• Describing any of the following:
– Methods or approaches for assisting in documenta-

tion search OR
– Documentation approach or algorithm OR
– Assessment or evaluation method or metrics for

documentation
If several papers presented the same documentation ap-

proach, only the most recent was included, unless the con-
tributions of those papers were different.

D. Title and Abstract Level Screening

In this phase, the inclusion criteria in Section II-C were
applied to publication titles and abstracts. To minimize re-
searcher bias, two researchers independently analyzed the
search results. Afterwards, the results were compared and any
disagreements were resolved through discussions. The filtered
list of papers from this phase was used as input for the
following phase. Due to the large number of papers found, we
began by screening the titles and rejecting papers not fulfilling
the inclusion criteria. After the title screening, we continued
by screening the abstracts of the accepted publications. Based
on [9], we believe that this approach does not compromise our
results.

E. Full Text Level Screening

In this phase, the remaining papers were analyzed based
on their full text. Again, to minimize bias, two researchers
applied the inclusion criteria in Section II-C on the full text.
The results were compared and disagreements were resolved
through discussions. The researchers also documented a reason
for each excluded study [10].

F. Study Quality Assessment Checklist and Procedure

The selected papers were assessed based on their quality.
One researcher assessed the quality of the selected papers.
Any papers not meeting the minimum quality requirements
were excluded from the set of primary studies. The output
from this phase was the final set of papers. Only one researcher
performed the quality assessment, and consequently this is a
threat to the validity.

Table III presents the checklist for study quality assessment.
For each question in the checklist, a three-level, numeric scale
was used [10]. The levels were: yes (2 points), partial (1 point),
and no (0 point). Based on the checklist and the numeric scale,
each study could score a maximum of 34 and a minimum of
0 points. We used the first quartile (34/4 = 8.5) as the cutoff
point for the inclusion of studies. Therefore, if a study scored
8 points or less, it was excluded due to its lack of quality with
respect to this study. The researcher documented the obtained
score of each included/excluded study.

We point out that the quality we assessed was in terms of
relevance for this study, i.e., a paper excluded in this phase
could in fact be a very good paper but simply not relevant

for this study, or not having enough contributions for this
study, and was therefore excluded. We also point out that
the quality assesment checklist in Table III was designed to
find all studies that in one way or another would contribute
to the research questions of this SMS. Consequently, we did
not expect to find studies that would score full points in
this phase. Rather, with this assessment we wanted to find
those studies that had enough contributions to help address
the research questions. Therefore, we used the first quartile as
the cutoff point, essentially meaning that a study was included
if it completely answered four of the questions, and partially
answered one more question.

TABLE III
STUDY QUALITY ASSESSMENT CHECKLIST, PARTIALLY ADOPTED FROM

[10]

Question
Theoretical contribution
1 Is at least one of the research questions addressed?
2 Was the study designed to address some of the research questions?
3 Is a problem description for the research explicitly provided?
4 Is the problem description for the research supported by references

to other work?
5 Are the contributions of the research clearly described?
6 Are the assumptions, if any, clearly stated?
7 Is there sufficient evidence to support the claims of the research?
Experimental evaluation
8 Is the research design, or the way the research was organized,

clearly described?
9 Is a prototype, simulation, or empirical study presented?
10 Is the experimental setup clearly described?
11 Are results from multiple different experiments included?
12 Are results from multiple runs of each experiment included?
13 Are the experimental results compared with other approaches?
14 Are negative results, if any, presented?
15 Is the statistical significance of the results assessed?
16 Are the limitations or threats to validity clearly stated?
17 Are the links between data, interpretation and conclusions clear?

G. Data Extraction Strategy

We used the form shown in Table IV to extract data from
the primary studies. One researcher extracted the information
from the papers, and the extracted data was then used for
analysis. The data that was extracted was such data that it
would answer the research questions in this paper.

H. Synthesis of the Extracted Data

The extracted data from the papers was used for analysis, in
order to obtain a high-level view of different aspects related to
the documentation approaches. The papers were categorized
in different ways, and collective results were extracted. The
results from this phase are presented in Section III.

III. RESULTS

In this section we present the main findings of this study.
The search string used included words, such as ”Library” and
”Document”, which are used in many other contexts than API
documentation. Also, the wording used in papers varies, e.g.
some authors refer to software libraries, while others to APIs.
Therefore, we used a search string (see Section II-B2) that

TABLE IV
DATA EXTRACTION FORM

Data item Value Notes
General
Data extractor name
Data extraction date
Study identifier (S1, S2, S3, ...)
Bibliographic reference (title, authors, year,
journal/conference/workshop name)
Author affiliations and countries
Publication type (journal, conference, or work-
shop)
API documentation related
(RQ1) Type of approach (e.g. tool, plugin,
web-based)
(RQ1) Documentation generation method (au-
tomatic, sem-automatic, data mining, manual)
(RQ2) Type of documentation generated (e.g.
code examples, free text, formal specifications)
(RQ3) Source for documentation generation
(e.g. source code, user activity, free text, formal
specifications)
(RQ4) Attributes/usability of generated doc-
umentation (e.g. improved development time,
reduced information finding time, improved
understanding of complex API’s)
(RQ5) Evaluation method (analytical, empiri-
cal, simulation, execution of approach)

would return all papers indifferently of the chosen wording.
Consquently, the initial search produced a large number of
papers as can be seen in Table V, which lists the number of
papers to be processed in each phase. The majority of the
papers found in the initial search were related to real physical
libraries, and documentation in such libraries. Nevertheless,
after the screening only 95 papers remained. At this point,
based on the papers found we decided to slightly modify
the set of research questions in order to keep the SMS
more focused. In effect, we removed some research questions
concerning API documentation usability, which we felt would
be difficult to answer based on the set of primary studies.
This is the main reason to the big difference in the number
of papers left after the full text screening (95 papers) and
the quality assessment (36 papers). Another reason is that we
have not included studies dated before 2000 in this SMS. Had
we focused on the current topic from the beginning, the total
number of papers to process, specifically in the intermediate
phases, would have been smaller.

TABLE V
NUMBER OF PAPERS IN EACH PHASE OF THE PAPER SEARCH AND

SCREENING

Phase Number of papers
Initial search results without duplicates 1899
After title and abstract screening 122
After full text screening 95
After quality assessment 36

Before moving on to the individual research questions, we
note that the majority of the identified tools and approaches

for supporting API documentation have been published as
conference papers, while only a small number of them as
journal papers. Figure 2 illustrates this distribution.

Fig. 2. Distribution and paper count of publication forums

A. Approaches for API documentation (RQ1)

Table VI lists the final set of primary studies included, with
their corresponding references, the types of approaches, and
their names if specified. Most approaches were designed as
tools, but a few plugins were also reported. We point out that
not all primary studies presented tools as such. Some of the
studies described documentation approaches without explicitly
mentioning concrete implementations of those approaches.

From Figure 3, we can see that this topic has been interest-
ing for the scientific community ever since the beginning of the
millennium. Since 2002, this area of research has slowly been
gaining pace, although with quite notable variations from year
to year in the number of publications. We note that the number
of papers in 2016, as illustrated in Figure 3, may be too small,
since the initial paper search was done in the beginning of
December 2016. There is therefore a small probability that a
few papers from 2016 were not included in this study.

Fig. 3. Distribution of publication years

TABLE VI
PRIMARY STUDIES INCLUDED, WITH THEIR TYPES AND NAMES OF

APPROACHES.

ID Reference Tool Plugin Name
S1 [11]
S2 [13]
S3 [15] x
S4 [5] x COFAQ
S5 [18] x AdDoc
S6 [20] x eMoose
S7 [22] x Apatite
S8 [24]
S9 [26] x Codesnippets

S10 [28]
S11 [30]
S12 [32] x
S13 [34] x
S14 [36] x FUDA
S15 [38]
S16 [40] x CommentWeaver
S17 [42]
S18 [44] x
S19 [12]
S20 [14]
S21 [16] x ProperDoc
S22 [17] x Haddock
S23 [19]
S24 [21] x APIMiner
S25 [23] x ExPort
S26 [25]
S27 [27]
S28 [29]
S29 [31]
S30 [33] x Jadeite
S31 [35] x Baker
S32 [37] x SISE
S33 [39]
S34 [41] x CoDocent
S35 [43] x DocRef
S36 [45] x Doc2Spec

B. Contributions to API documentation (RQ2)

Table VII shows what each of the approaches generate
as output. The classification of outputs were generated in a
two step procedure. In the first step, the exact output from
each of the approaches was documented, resulting in a quite
diverse table of outputs. Therefore, in the second step, these
outputs were grouped together on a higher level of abstraction,
producing the final table shown below. To minimize researcher
bias and human error, the final table was double checked by
two researchers and any disagreements were resolved through
discussions.

The majority of the approaches contribute by generating
new documentation in some format. From Table VII, it is
evident that code examples and templates along with natural
language (NL) documentation are the most popular targets for
documentation generation. These targets for documentation
generation are understandable, since lacking code examples
or erroneous, inadequate or lacking descriptions are common
reasons for many API documents being difficult to understand
and use (see e.g. [16]). However, specifications and usage rules
are almost as an appealing target, as is visual and navigational
enhancement. These four targets for tool support for API doc-

umentation suggest that API documentation easily becomes
very complex and hard to understand, and additionally it may
be difficult to find the relevant documentation for a given
problem because of the size of the documentation. Five studies
address recommendations and identifications, and these studies
mostly provide information on what needs to be altered in
the API documentation, but also recommend which classes
to use for a specific problem. As a consequence, most of
these studies assist in both the maintenance and generation
of the documentation, and in the accuracy and correctness
of it. While only five studies address recommendations and
identifications, of which three contribute to the accuracy and
correctness of the API documentation, there are many other
approaches that also contribute to the correctness of the
documentation (see Table IX).

C. Sources for API documentation (RQ3)

In order to get the desired output from an API documen-
tation approach, some specific sources need to be available.
With this in mind, Table VIII lists the sources required by
the approaches for assisting in API documentation generation.
The classification of sources were generated in a similar two
step procedure as described in Section III-B. Clearly, source
code, code comments, and code examples are by far the most
used sources for documentation generation. This can easily
be understood since the source code is the basis on which the
API documentation should ultimately be generated upon in any
API. API usage in existing software is the second most used
source, and in most approaches, these calls are used as basis
for generating either examples or usage rules. An interesting
thing to note is that eight of the documentation approaches use
API documentation and tutorials as input, i.e., from existing
documentation new documentation is generated. Many of
these approaches are based on natural language processing for
automatically analyzing the written descriptions. Quite many
approaches also rely on online information, predominantly
on forum discussions found on Stack Overflow. These forum
discussions are mainly used for collecting information on API
usages and then creating, e.g. examples based on these, or
explanatory descriptions for how to use the API in certain
situations.

D. Properties of Documentation Approaches (RQ4)

The different approaches for API documentation generation
tackle the documentation problem from different perspec-
tives. Consequently, they contribute to API documentation
in different ways, and therefore assist both API users and
API documentation writers in different ways. Table IX lists
the properties that the corresponding API documentation ap-
proaches have. Again, the classification of properties were
generated in a similar two step procedure as described in
Section III-B. However, we point out that not all of the
properties listed in Table IX were explicitly mentioned in the
primary studies. The authors of this paper have in some cases
taken the liberty of deducing the properties on their own, based
on the discussions in the studies.

TABLE VII
OUTPUT FROM API DOCUMENTATION APPROACHES

Output Count Primary Studies Description
Examples & Templates 11 S9, S14, S15, S17, S18, S21, S23, S24, S25,

S27, S30
Produces examples of how to use the API or basic
structures for using the API

NL Documentation 10 S2, S3, S4, S11, S16, S19, S22, S28, S29,
S32

Produces or augments the natural language descrip-
tion in the API documentation

Specifications & Rules 9 S1, S2, S10, S12, S13, S20, S26, S33, S36 Produces specifications (e.g. formal specifications)
and usage rules

Visual & Navigational Enhancement 9 S6, S7, S8, S25, S28, S30, S31, S32, S34 Visual representation of API or simplified browsing
in the documentation

Recommendations & Identifications 5 S5, S7, S12, S30, S35 Recommendations of different kinds (e.g. documen-
tation in need of attention, which class to use),
identifications of e.g. incorrect descriptions

TABLE VIII
SOURCES FOR API DOCUMENTATION APPROACHES

Source Count Primary Studies Description
Source Code & Examples 18 S1, S2, S5, S7, S8, S9, S11, S12, S13, S16,

S19, S22, S24, S28, S31, S32, S34, S35
Source code, code comments and annotations, exam-
ple code

API Usage & API calls 9 S1, S3, S14, S17, S20, S23, S25, S30, S33 API usage scenarios, traces of method calls in exist-
ing software

API Documentation & Tutorials 8 S5, S6, S10, S23, S26, S27, S35, S36 Natural language description and API tutorials
Online Information 7 S4, S11, S18, S29, S31, S32, S34 Websites such as Stack Overflow
Manual Input 5 S9, S12, S14, S15, S21 Requires manual input of API user
Databases & Search Engines 4 S4, S7, S21, S34 Results from search engines, data found in databases

TABLE IX
PROPERTIES OF API DOCUMENTATION APPROACHES

Properties Count Primary Studies Description
Understandability & Learnability 17 S2, S6, S9, S10, S11, S12, S15, S17, S18,

S21, S24, S25, S30, S31, S32, S33, S34
Improves the users understanding of the API and
helps the user learn the API

Maintenance & Generation 12 S4, S5, S12, S16, S17, S19, S22, S28, S29,
S31, S35, S36

Supports API documentation maintenance, or gener-
ates new documentation

Accuracy & Correctness 11 S1, S2, S3, S5, S12, S13, S15, S20, S22,
S26, S35

Tries to verify that the documentation is without
errors, and that descriptions are accurate

Accessibility & Structure 9 S4, S7, S8, S23, S27, S29, S30, S31, S34 Assists in finding relevant information, or improves
the overall API documentation structure

Productivity 5 S14, S18, S24, S30, S34 Enhances API users productivity
Usability & Reusability 5 S1, S2, S6, S26, S29 Supports usability of API or reusability of API

during development

As can be seen from Table IX, the most addressed property
of the approaches is to contribute to the understandability and
learnability of documentation, which is understandable, since
knowing an API will help an API user notably in achieving
the desired development goals. The second most addressed
property is the maintenance and generation of API documenta-
tion, which also is understandable since both maintenance and
generation can be time consuming and error prone, specifically
in the context of large APIs. Many approaches also contribute
to the accuracy and correctness of API documention, in many
cases with formal specifications, and to API accessibilty and
structure, making information finding easier in the documen-
tation. Finding relevant information in API documentation
is repeatedly mentioned in studies on API documentation to
be a current problem. These observations suggest that these
properties are the most lacking in current API documentation.

We note that the Productivity class is a highly undescriptive
one, since it is largely a combination of the other classes
listed in the table. However, improved productivity as a result
of improved API documentation is likely one of the most

desirable goals. We have therefore decided to include this
class of properties, but it should be noted that most of the
other classes listed in Table IX should indirectly contribute to
improved productivity as well.

E. Evaluation Methods (RQ5)

The evaluation of API documentation approaches is proba-
bly as important as the approach itself. Without an evaluation,
there is no evidence on whether the approach actually con-
tributes to the API documentation as intended, nor if the result
of the approach makes any difference. Somewhat surprisingly,
not all of the primary studies offered an evaluation of the
approach presented. It is however possible that evaluations of
the approaches have been done in studies published afterwards,
but which are not included in this SMS.

Figure 4 shows the distribution of the chosen methods
for evaluation for the approaches. Exercise of the proposed
approach, where the authors evaluated the output from the
approach, was the dominant evaluation method, but other
forms of empirical evaluation methods were also used in

many studies. The class Analytical refers to statistical analysis
of the approach, the class Review refers to the approaches
being reviewed by experts, while the class Comparison refers
to the authors comparing their approach with other similar
approaches. While seven of the approaches were not evaluated
at all, equally many approaches were evaluated with more
than one evaluation method. This is the reason to why the
total count of evaluations is larger than the number of primary
studies in this paper.

Fig. 4. Evaluation methods for the approaches

IV. THREATS TO VALIDITY

A threat to the validity of this study is that the quality
assessment and data extraction was done by one author only.
This means that the results may be slightly biased, and
that some facts reported in the primary studies may have
been misunderstood, or missed. Still, the results presented in
Tables VII, VIII, and IX have been double checked by two
researchers, which partially reduces this threat to the validity
of the results.

Another threat to the validity stems from the difficulty
in searching for original papers on API documentation. As
mentioned in Section III, the search resulted in a large number
of papers, primarily because the search terms included words
such as ”document” and ”library”. Although these words
are relevant in the context of API documentation, they are
even more relevant in the context of physical libraries, and
performing the title and abstract screening on this amount of
papers may have resulted in some papers being filtered out
accidentally, even though the screening was performed by two
researchers.

Finally, this study is based on publications within the scien-
tific community. There may therefore exist API documentation
approaches that are not included in this study if they have not
been presented in scientific publications.

V. CONCLUSIONS

In this paper, we presented a systematic mapping study on
approaches for Application Programming Interface (API) doc-
umentation generation. The systematic mapping study itself
was also presented for replicability. Since the beginning of the

millennium, there have been many contributions to this topic,
and many approaches have been developed. We identified 36
studies on this topic, which we analyzed based on the research
questions detailed in Section II.

Out of the identified approahces, many contribute to API
documentation in the areas of natural language documentation
and code examples. This suggests that current API documen-
tation is in general lacking in these, or are at least in need for
tool support. Many of the approaches were designed to ease
developers understanding and learning of API’s, but also to
contribute to the maintenance and generation of API documen-
tation. Most of the approaches were automatic, simplifying the
API documentation generation notably, under the assumption
that relevant sources for the generation are availabe. Empirical
evaluation and exercise of the proposed approach were the
dominiant evaluation methods in the primary studies, but
some papers also provided extensive evaluations using several
different evaluation methods.

With this study, we hope to give interested readers an
overview of what API documentation approaches have been
published and of their properties. However, we note that some
API documentation approaches may not be included in this
study, since not all such approaches are published within the
scientific community. Instead, they may have been released as
ready products, but since this study was based on published
papers, such approaches are not included in this paper.

Acknowledgements This work has been partially supported by
the Dimecc Need for Speed program and funded by Tekes, the
Finnish Funding Agency for Technology and Innovation. This
work has received funding from the Electronic Component
Systems for European Leadership Joint Undertaking under
grant agreement No 737494. This Joint Undertaking receives
support from the European Union’s Horizon 2020 research
and innovation programme and Sweden, France, Spain, Italy,
Finland, Czech Republic.

REFERENCES

[1] M. Henning, “Api design matters,” ACM Queue, vol. 5, pp. 24–36, May
2007.

[2] M. F. Zibran, “What makes APIs difficult to use?,” International Journal
of Computer Science and Network Security, no. 4, pp. 255–261.

[3] J. Andersson, S. Larsson, M. Ericsson, and A. Wingkvist, “A study of
demand-driven documentation in two open source projects,” in 2015 48th
Hawaii International Conference on System Sciences, pp. 5271–5279,
Jan 2015.

[4] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky,
“You get where you’re looking for: The impact of information sources
on code security,” in 2016 IEEE Symposium on Security and Privacy
(SP), pp. 289–305, May 2016.

[5] C. Chen and K. Zhang, “Who asked what: Integrating crowdsourced
faqs into api documentation,” in Companion Proceedings of the 36th
International Conference on Software Engineering, ICSE Companion
2014, (New York, NY, USA), pp. 456–459, ACM, 2014.

[6] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira, “A study of the
documentation essential to software maintenance,” in Proceedings of the
23rd Annual International Conference on Design of Communication:
Documenting &Amp; Designing for Pervasive Information, SIGDOC
’05, pp. 68–75, 2005.

[7] B. Kitchenham and S. Charters, “Guidelines for performing Systematic
Literature Reviews in Software Engineering (version 2.3),” Tech. Rep.
EBSE-2007-01, Keele University and University of Durham, 2007.

[8] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering. Springer-Verlag
Berlin Heidelberg, 1 ed., 2012.

[9] F. Mateen, A. Tergas, N. Bhayani, and B. Kamdar, “Titles versus titles
and abstracts for initial screening of articles for systematic reviews,”
Clinical Epidemiology, vol. 5, pp. 89–95, 2013.

[10] M. Usman, E. Mendes, F. Weidt, and R. Britto, “Effort estimation in ag-
ile software development: A systematic literature review,” in Proceedings
of the 10th International Conference on Predictive Models in Software
Engineering, PROMISE ’14, (New York, NY, USA), pp. 82–91, ACM,
2014.

[11] M. Acharya, T. Xie, J. Pei, and J. Xu, “Mining api patterns as partial
orders from source code: From usage scenarios to specifications,” in
Proceedings of the the 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering, ESEC-FSE ’07, (New York, NY,
USA), pp. 25–34, ACM, 2007.

[12] D. M. Leslie, “Using javadoc and xml to produce api reference docu-
mentation,” in Proceedings of the 20th Annual International Conference
on Computer Documentation, SIGDOC ’02, (New York, NY, USA),
pp. 104–109, ACM, 2002.

[13] M. Bruch, M. Mezini, and M. Monperrus, “Mining subclassing directives
to improve framework reuse,” in 2010 7th IEEE Working Conference on
Mining Software Repositories (MSR 2010), pp. 141–150, May 2010.

[14] D. Lo, G. Ramalingam, V.-P. Ranganath, and K. Vaswani, “Mining quan-
tified temporal rules: Formalism, algorithms, and evaluation,” Science
of Computer Programming, vol. 77, no. 6, pp. 743 – 759, 2012. (1)
Coordination 2009 (2) {WCRE} 2009.

[15] R. P. Buse and W. R. Weimer, “Automatic documentation inference
for exceptions,” in Proceedings of the 2008 International Symposium
on Software Testing and Analysis, ISSTA ’08, (New York, NY, USA),
pp. 273–282, ACM, 2008.

[16] L. W. Mar, Y. C. Wu, and H. C. Jiau, “Recommending proper api
code examples for documentation purpose,” in 2011 18th Asia-Pacific
Software Engineering Conference, pp. 331–338, Dec 2011.

[17] S. Marlow, “Haddock, a haskell documentation tool,” in Proceedings
of the 2002 ACM SIGPLAN Workshop on Haskell, Haskell ’02, (New
York, NY, USA), pp. 78–89, ACM, 2002.

[18] B. Dagenais and M. P. Robillard, “Using traceability links to recommend
adaptive changes for documentation evolution,” IEEE Transactions on
Software Engineering, vol. 40, pp. 1126–1146, Nov 2014.

[19] C. McMillan, D. Poshyvanyk, and M. Grechanik, “Recommending
source code examples via api call usages and documentation,” in
Proceedings of the 2Nd International Workshop on Recommendation
Systems for Software Engineering, RSSE ’10, (New York, NY, USA),
pp. 21–25, ACM, 2010.

[20] U. Dekel and J. D. Herbsleb, “Improving api documentation usability
with knowledge pushing,” in 2009 IEEE 31st International Conference
on Software Engineering, pp. 320–330, May 2009.

[21] J. E. Montandon, H. Borges, D. Felix, and M. T. Valente, “Documenting
apis with examples: Lessons learned with the apiminer platform,”
in 2013 20th Working Conference on Reverse Engineering (WCRE),
pp. 401–408, Oct 2013.

[22] D. S. Eisenberg, J. Stylos, A. Faulring, and B. A. Myers, “Using
association metrics to help users navigate api documentation,” in 2010
IEEE Symposium on Visual Languages and Human-Centric Computing,
pp. 23–30, Sept 2010.

[23] E. Moritz, M. Linares-Vsquez, D. Poshyvanyk, M. Grechanik,
C. McMillan, and M. Gethers, “Export: Detecting and visualizing api
usages in large source code repositories,” in 2013 28th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
pp. 646–651, Nov 2013.

[24] H. Eriksson, E. Berglund, and P. Nevalainen, “Using knowledge engi-
neering support for a java documentation viewer,” in Proceedings of the
14th International Conference on Software Engineering and Knowledge
Engineering, SEKE ’02, (New York, NY, USA), pp. 57–64, ACM, 2002.

[25] R. Pandita, X. Xiao, H. Zhong, T. Xie, S. Oney, and A. Paradkar,
“Inferring method specifications from natural language api descriptions,”
in 2012 34th International Conference on Software Engineering (ICSE),
pp. 815–825, June 2012.

[26] A. Forward, T. Lethbridge, and D. Deugo, “Codesnippets plug-in to
eclipse: Introducing web 2.0 tagging to improve software developer
recall,” in 5th ACIS International Conference on Software Engineering

Research, Management Applications (SERA 2007), pp. 451–460, Aug
2007.

[27] G. Petrosyan, M. P. Robillard, and R. D. Mori, “Discovering information
explaining api types using text classification,” in 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, vol. 1,
pp. 869–879, May 2015.

[28] C. Gao and J. Wei, “Generating open api usage rule from error de-
scriptions,” in 2013 IEEE Seventh International Symposium on Service-
Oriented System Engineering, pp. 245–253, March 2013.

[29] R. Pierce and S. Tilley, “Automatically connecting documentation to
code with rose,” in Proceedings of the 20th Annual International
Conference on Computer Documentation, SIGDOC ’02, (New York, NY,
USA), pp. 157–163, ACM, 2002.

[30] L. Guerrouj, D. Bourque, and P. C. Rigby, “Leveraging informal
documentation to summarize classes and methods in context,” in 2015
IEEE/ACM 37th IEEE International Conference on Software Engineer-
ing, vol. 2, pp. 639–642, May 2015.

[31] L. B. L. d. Souza, E. C. Campos, and M. d. A. Maia, “On the extraction
of cookbooks for apis from the crowd knowledge,” in 2014 Brazilian
Symposium on Software Engineering, pp. 21–30, Sept 2014.

[32] J. Henkel, C. Reichenbach, and A. Diwan, “Developing and debugging
algebraic specifications for java classes,” ACM Trans. Softw. Eng.
Methodol., vol. 17, pp. 14:1–14:37, June 2008.

[33] J. Stylos, A. Faulring, Z. Yang, and B. A. Myers, “Improving api doc-
umentation using api usage information,” in 2009 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), pp. 119–
126, Sept 2009.

[34] J. Henkel, C. Reichenbach, and A. Diwan, “Discovering documentation
for java container classes,” IEEE Transactions on Software Engineering,
vol. 33, pp. 526–543, Aug 2007.

[35] S. Subramanian, L. Inozemtseva, and R. Holmes, “Live api documenta-
tion,” in Proceedings of the 36th International Conference on Software
Engineering, ICSE 2014, (New York, NY, USA), pp. 643–652, ACM,
2014.

[36] A. Heydarnoori, K. Czarnecki, W. Binder, and T. T. Bartolomei, “Two
studies of framework-usage templates extracted from dynamic traces,”
IEEE Transactions on Software Engineering, vol. 38, pp. 1464–1487,
Nov 2012.

[37] C. Treude and M. P. Robillard, “Augmenting api documentation with
insights from stack overflow,” in Proceedings of the 38th International
Conference on Software Engineering, ICSE ’16, (New York, NY, USA),
pp. 392–403, ACM, 2016.

[38] D. Hoffman and P. Strooper, “API documentation with executable
examples,” Journal of Systems and Software, vol. 66, no. 2, pp. 143
– 156, 2003.

[39] C. C. Williams and J. K. Hollingsworth, “Recovering system specific
rules from software repositories,” SIGSOFT Softw. Eng. Notes, vol. 30,
pp. 1–5, May 2005.

[40] M. Horie and S. Chiba, “Tool support for crosscutting concerns of api
documentation,” in Proceedings of the 9th International Conference on
Aspect-Oriented Software Development, AOSD ’10, (New York, NY,
USA), pp. 97–108, ACM, 2010.

[41] Y. C. Wu, L. W. Mar, and H. C. Jiau, “Codocent: Support api usage
with code example and api documentation,” in 2010 Fifth International
Conference on Software Engineering Advances, pp. 135–140, Aug 2010.

[42] J. Jiang, J. Koskinen, A. Ruokonen, and T. Systa, “Constructing usage
scenarios for api redocumentation,” in 15th IEEE International Confer-
ence on Program Comprehension (ICPC ’07), pp. 259–264, June 2007.

[43] H. Zhong and Z. Su, “Detecting api documentation errors,” SIGPLAN
Not., vol. 48, pp. 803–816, Oct. 2013.

[44] J. Kim, S. Lee, S.-W. Hwang, and S. Kim, “Enriching documents with
examples: A corpus mining approach,” ACM Trans. Inf. Syst., vol. 31,
pp. 1:1–1:27, Jan. 2013.

[45] H. Zhong, L. Zhang, T. Xie, and H. Mei, “Inferring resource specifi-
cations from natural language api documentation,” in Proceedings of
the 2009 IEEE/ACM International Conference on Automated Software
Engineering, ASE ’09, (Washington, DC, USA), pp. 307–318, IEEE
Computer Society, 2009.

