
Evaluating Software Security Change Requests: A
COSMIC-based Quantification Approach

Mariem Haoues, Asma Sellami
Mir@cl Laboratory

University of Sfax, ISIMS
BP 242. 3021. Sfax-Tunisia

{mariem.haoues, asma.sellami}@isims.usf.tn

Hanêne Ben-Abdallah
Higher Colleges of Technology

Dubai, UAE

hbenabdallah@hct.ac.ae

Onur Demirörs
Izmir Institute of Technology

Department of Computer Engineering
onurdemirors@iyte.edu.tr

Abstract—Software project scope defines functional and non-
functional requirements. These requirements may change to
satisfy the customers’ needs. However, the control of scope
creep represents one of the success keys in software project
management. Changes in non-functional requirements affect the
ISO/IEC 25010 quality characteristics such as security, porta-
bility, etc. Furthermore, some of these quality characteristics
may evolve throughout the software life cycle into functional
requirements. In this paper, we explore the use of COSMIC
method - ISO/IEC 19761 to quantify and evaluate security
change requests. Measuring the functional size of security change
requests allows stakeholders to make appropriate decisions about
whether to accept, defer, or deny the change.

Index Terms—Technical change, non-functional requirements,
system requirements, security, functional size, COSMIC method
- ISO/IEC 19761.

I. INTRODUCTION

Software systems are exposed to a high number of changes

throughout their life-cycle. Customers often change their

needs even after the approval of the software project scope,

which defines the functional and non-functional requirements.

Customer change requests include adding new functionality,

modifying non-functional requirements, correcting bugs, etc.

However, change requests frequently result in cost overruns

and delays, with about 75% of changes result in software

failure [1]. Consequently, the control of scope creep represents

one of the success keys in software project management. This

control relies on processes to analyze and evaluate the impact

and significance of each change request before its approval. To

manage these processes effectively, decisions should be made

quickly with reasonable effort and accuracy.

Based on the fact that the success of any management

activity highly depends on the accuracy of software size mea-

surement [2], software organizations frequently use software

size measurement as a technique to estimate the development

effort, make decisions, etc. (cf., [3], [4]). Software size can

be quantified by length or functionality measures. Length

measures quantify the technical size of software from the

developer’s perspective based on counting, for example, the

number of lines of code. In contrast, functionality measures

quantify the functional size of software from the user’s

perspective. Functional Size Measurement (FSM) methods

are classified into first generation methods (e.g., IFPUG [5],

Nesma [6], etc.) and second generation methods such as

COSMIC [7]. Compared to other FSM methods, COSMIC

is designed to objectively measure the functional size of a

change to software as well as the size of software that is added,

changed or deleted [8]. In our previous studies (cf., [9], [10]),

we used COSMIC to quantify requirements change requests

that affect the functional user requirements. Based mainly on

the functional size of the change, we evaluated the change

status in order to identify changes that may lead to significant

impact on the software development progress. In this paper,

we extend these studies to cover changes in non-functional

requirements.

The success of the modern software organizations depends

not only on the rapid innovation but also on the ability to adapt

to every-changing circumstance and to increase stakeholder’s

satisfaction. Thus, controlling the trade-offs between time, cost

and scope (i.e., functional and non-functional requirements)

becomes mandatory. In addition, ignoring non-functional re-

quirements may result in major estimation errors [11]. This

means that non-functional requirements and functional re-

quirements must be addressed similarly. In fact, dealing with

non-functional requirements in an improperly way leads to the

projects failure, considerable delivery delays and consequently

increase the final cost [12].

System Non-Functional Requirements (system-NFR) can be

detailed and specified as software Functional User Require-

ments (software-FUR) [13]. In fact, researchers distinguished

non-functional requirements that may evolve wholly or partly

into functional requirements (in this paper we call them

software-FUR derived from system-NFR) from True NFR

which cannot be considered as software functions such as

technology and project constraints. Providing a complete list

of software-FUR derived from system-NFR is not possible

[14]. However, through our literature review, we noted that

this list covers mainly the following quality characteristics:

performance, compatibility, maintainability, reliability, and

portability.

Figure 1 illustrates the evolution of system requirements

and their respective measurements. As shown in this figure,

it is not possible to size the True NFR using FSM methods

throughout the software life-cycle phases. Whereas, the func-

tional size of software-FUR derived from system-NFR can be

268

2019 45th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)

978-1-7281-3421-5/19/$31.00 ©2019 IEEE
DOI 10.1109/SEAA.2019.00049

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on September 05,2022 at 13:49:15 UTC from IEEE Xplore. Restrictions apply.

measured using FSM methods.

Fig. 1. COSMIC FSM method applied throughout the software life cycle

The main question that we address in this paper is: how
change requests in system-NFR, in particular security require-
ments, affect the software development progress? Towards

this end, we complement our COSMIC-based approach for

functional change requests evaluation (i.e., change requests

that affect software-FUR) proposed in [10] by evaluating

technical change requests (i.e., change requests that affect

system-NFR). We believe that the functional size of a technical

change will certainly provide a more realistic evaluation of the

change request, and hence a tighter estimate of the effort/re-

sources needed to implement the change. In particular, we

propose a COSMIC-based approach to quantify and evaluate

the functional size of a technical change request affecting

the software security, an important ISO/IEC 25010 quality

characteristic [15].

The remainder of this paper is organized as follows: Section

II presents background information about requirements change

and the COSMIC FSM method. Section III first surveys

some works studying the functional size measurement of non-

functional requirements and the security requirements. Then,

it briefly overviews our earlier work. Section IV describes

how to use COSMIC in measuring technical change requests

and illustrates the application of our approach using the case

study “C-Registration System” [16] [17]. Section V discusses

the results of this study and highlights several threats to its

validity. Finally, section VI summarizes the presented work

and outlines some of its possible extensions.

II. BACKGROUND

A. Requirements Change

Research studies depict that insufficient requirements en-

gineering causes the failure of more than 50% of software

projects [18]. A correct and complete identification of the sys-

tem requirements at the beginning of the software development

is difficult. In addition, software is the most easily changed

element in a software system [19]. Furthermore, because

developers emphasize more on the functional side of the

software underrating the non-functional quality characteristics

[18], changes are proposed later in order to improve the

software quality. This makes requirements change inevitable

throughout the software life-cycle.

However, for the success of the software project, each

change must be accompanied by an evaluation of its impact on

the work product, development effort, etc. The main purpose

of this evaluation is to determine whether the change is “in

scope” or “out of scope” [19]. An “in scope” change can

be accomplished with little or no disruption to the planned

work activities. In contrast, an “out of scope” change incur

adjustments to the budget, resources, and/or schedule, and/or

modification or elimination of other product requirements.

Based on the change evaluation, decision-makers will con-

sider the relevant information to make appropriate decisions

regarding the change. These decisions are made usually based

on the development team experience and they are mostly

driven by business needs and time constraints [20]. How-

ever, the lack of quantitative information may jeopardize the

software project success. Thus, quantitative information are

needed to guide the decision-makers in deciding whether to

accept, deny or defer the change.

B. COSMIC FSM Method Overview

COSMIC is increasingly being adapted in the software

development industry. Software functional size measured with

COSMIC is used mainly to evaluate the project performance

and estimate the effort required for future projects in terms

of cost and duration. On the other hand, customers use

software size to control their suppliers’ price/performance, the

delivered product quality, etc. In addition to its advantages

compared to the first FSM generation methods, COSMIC

has been successfully used for approximate sizing variants

for use in early/rapid project estimation [11], guidance on

how to deal with non-functional requirements (cf., [2], [12]),

sizing functional change requests (cf., [9], [10]), and making

decisions on software project development (cf., [21], [3]).

Functional users:
Humans
Other software
Hardware devices

Functional
Sub-processes

Persistent
storage

Entry

eXit

Read Write

1 entering
data group

1 exiting
data group

1 retrieved
data group

1 data group
to be stored

Functional
process Boundary

Fig. 2. COSMIC data movements [7]

When measuring the software functional size, COSMIC

considers that each software implies a set of functional

processes that can be triggered by triggering events via a

functional user. Each functional process is detailed by a set of

functional sub-processes. A sub-process can be either a data

movement or a data manipulation. A data movement moves

a single data group to/from the functional users or to/from

the persistent storage. COSMIC identifies four types of data

movements: Entry, eXit, Write, and Read (see Figure 2). An

Entry moves a data group from a user to the functional process.

269

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on September 05,2022 at 13:49:15 UTC from IEEE Xplore. Restrictions apply.

An eXit moves a data-group from a functional process to the

user. A Write moves a data-group inside the functional process

to a persistent storage. And, a Read moves a data-group from

persistent storage to the functional process. One COSMIC

Function Point (CFP) is attributed for each data movement.

The total software size is obtained by aggregating the sizes of

all its functional processes.

COSMIC measures the size of a change to software and

the size of software that is added, changed or deleted as well.

It defines a change as “any combination of additions of new
data movements or of modifications or deletions of existing
data movements” [7]. The functional size of the change is

given by the aggregation of the sizes of all the added, deleted

and modified data movements.

III. RELATED WORK

A. Measuring Non-Functional Requirements Overview

System-NFR are not easy for stakeholders to articulate

but the software will not be useful without some of them

[22]. However, software quality specification requires time and

money. In addition, customers are always asking to improve

the quality of their software. In order to reduce the impact of

requirements creep, the authors in [22] proposed the quality

function deployment technique that can assist developers in

identifying and prioritizing customer expectations.

On the other hand, when estimating the software devel-

opment effort, system-NFR should be measured since they

certainly will increase the total software size [23]. As shown

in Table I, several studies have recently proposed to measure

the functional size of some system-NFR such as portabil-

ity, security, performance, etc. Some of these studies used

FSM methods such as COSMIC (cf., [2], [12]), while others

proposed their own methods and tools (cf., [24], [25]). For

instance, Kassab et al., [12] proposed to apply the COSMIC-

FFP method in measuring the functional size of non-functional

requirements in order to reduce the uncertainty in software

estimation. They proposed a non-functional requirements size

measurement method named NFSM and illustrated their ap-

proach through the “Availability” quality sub-characteristic

from the credit card system accounts. The functional size of

the quality sub-characteristic is used to select the appropriate

functionality to be implemented (i.e., functional process) in

order to reduce the development effort.

On the other hand, Hakim et al., [26] used a combination

of functional and structural size [27] to evaluate security in

web applications. More specifically, this study focused on the

“Authenticity” quality sub-characteristic in order to identify

the risk of authenticity violation. Ungan et al., [2] proposed a

method that makes the system-NFR more easily converted to

functional requirements in order to reduce the gap between ap-

proximate and precise size measurements. This study used the

FSM patterns to facilitate the measurement of non-functional

requirements at later software life-cycle phases, in particular

the security quality characteristic. Moreover, the Software

Non-functional Assessment Process (SNAP) was proposed by

IFPUG to measure technical and quality requirements in order

to improve the effort estimation, the schedule planning, etc.

They defined a new unit which is “SNAP Counting Uni”.

SNAP identified four categories and 14 sub-categories to

measure the non-functional requirements.

Recently, Meridji et al., [28] used COSMIC to measure

security requirements at the function and service level to assist

developers in specifying system security requirements in early

development stages. To capture the security concept, this study

used soft-goal inter-dependency graphs and three main security

types: system availability, confidentiality and integrity.

TABLE I
USING FSM METHODS FOR MEASURING SYSTEM-NFR

Research studies Method Quality
characteristics

Kassab et al., [12] NFSM based on
COSMIC-FFP

Availability & Se-
curity

SNAP [24] New sizing method in-
spired from IFPUG

Performance

AbuTalib et al.,
[25]

New measurement
method based on
COSMIC

Portability

Ungan et al., [2] COSMIC Security
Abran et al., [4] COSMIC Portability
Hakim et al., [26] Combination of func-

tional and structural size
Security

Meridji et al., [28] NFR model based on
COSMIC

Security

As summarized in Table I, many researchers used COSMIC

to quantify the functional size of security requirements (cf., [2],

[26]). However, none of them focused on measuring changes

in software security.

B. Security Quality Characteristic

Nowadays, security has become a critical challenging qual-

ity characteristic for any software application. It is a concern

for software engineers when building software that manages

stakeholders’ resources, including intellectual property and

identity information [22]. In fact, ignoring security at the

initial software life-cycle phases may lead to a serious threat.

Hence, security must be addressed at the beginning of the

software process, built into the design, implemented in the

coding, and verified during testing [22]. However, designing

secure software is not an easy task within the limitation of

developer’s security knowledge. This may justify the number

of changes that ask for the software security improvement.

To verify the security of software, international standards for

software measurement could be used.

According to the COSMIC and IFPUG organizations [23],

System-NFR are classified mainly into three categories: qual-

ity requirements, system environment requirements and tech-

nical requirements. Security is considered as one of the

eight quality characteristics identified by ISO/IEC 25010.

The ISO/IEC 25010 quality model defines security as “the
degree to which a product or system protects information and
data so that persons or other products or systems have the
degree of data access appropriate to their types and levels of
authorization” [15]. It includes five sub-characteristics which

270

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on September 05,2022 at 13:49:15 UTC from IEEE Xplore. Restrictions apply.

are confidentiality, integrity, non-repudiation, accountability

and authenticity:

• Confidentiality: ensures that data are accessible only to

those authorized to have access.

• Integrity: prevents unauthorized access to or modification

of, software or data.

• Non-repudiation: Non-repudiation: actions or events can

be proven to have taken place.

• Accountability: actions of an entity can be traced

uniquely to entity.

• Authenticity: the identity of a subject or resource can be

proved to be the one claimed.

Security controls are defined either by a set of function-

ality that the software must provide (e.g., session timeout,

authentication, etc.) or a crosscutting functionality added to

the regular software functions. Ungan et al., [2] consider that

for each software application it is required to verify the au-

thentication, logging, session management, access control, and

encryption. To verify these security controls, ISO standards

have been proposed to help in quantifying software security.

However, they are poorly adopted by the industry, mainly

due to the ambiguity of their measurements [2]. This justifies

the number of research studies that used FSM methods to

quantify software security. Furthermore, the eminent changes

of security requirements have called for an analysis and

evaluation processes to manage properly their impact on the

software project success.

C. Using COSMIC to Quantify Change Requests

In our previous work [21], we presented a decision support

that helps decision-makers responding to a functional change.

This decision support takes into account the main factors that

can be used in evaluating requirements change requests (the

functional size of the change, the preference of the change

requester and the effort required to implement the change). We

used COSMIC to quantify the functional size of the change re-

quest in terms of CFP unit. Based mainly on the functional size

of the functional change, we proposed a rapid classification of

the change status along three categories (“Minor”, “Moderate”

and “Major”) [9] and a detailed classification that includes six

categories (“Trivial”, “Minor”, “Moderate”, “Major”, “Criti-

cal” and “Extreme”) [10]. A change request with the status

“Major”, “Critical”, or “Extreme” has a potential impact on the

software development progress. However, a change with the

status “Trivial”, or “Minor” can be handled without any impact

on the software development progress. Whereas, a change with

the status “Moderate” may require few changes in the software

development progress.

Given the change status, decisions can be made to respond

to the change request. Change status is determined by com-

paring the change functional size with the average value R
quantified for a single software (see Equation (1)). R is equal

to the total functional size of the software divided by the

number of functional processes it includes.

R =

n∑

i=1

FS(FPi)/n (1)

where:

• FS(FPi) : the functional size of the functional process

FPi.
• n: the number of functional processes in the software.

As a result of our studies [9] [10], we showed that quanti-

fying a change request using COSMIC allows a more realistic
evaluation of the change status and its impact.

IV. EVALUATING SECURITY CHANGE REQUESTS WITH

COSMIC FSM METHOD

Recall that the purpose of this paper is to quantify and eval-

uate security changes using COSMIC. In our previous work

[21], we focused only on functional changes. Thus, this section

presents a detailed description of the security change request

evaluation approach and illustrates it application through the

business application “C-Registration System” [16] [17].

A. Description of the Security Change Requests Evaluation
Approach

To guide the decision on a security change, our approach

quantifies the functional size of the change using COSMIC.

As introduced in Section I, System-NFR may evolve into

Software-FUR. Security is a quality characteristic that can be

expressed through software functionality and then quantified

using FSM methods.

Fig. 3. Overview of the proposed approach

In Figure 3, we provide an overview of our approach. A

security change request is proposed by customers, developers

or users. The first step localizes the change as affecting

software-FUR derived from system-NFR or True NFR. If the

change affects software-FUR derived from system-NFR, it

is possible to quantify its size using COSMIC and provide

an evaluation of the change. Based on this evaluation, the

decision-makers can make the appropriate decision responding

to the change. This decision requires a deep analysis of the

software situation before the change (i.e., where we are) and

the software situation after the change (i.e., the goal) [29]. The

situation before the change in our study is characterized by the

functional size of the software before the change. Whereas,

the software situation after the change is characterized by the

271

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on September 05,2022 at 13:49:15 UTC from IEEE Xplore. Restrictions apply.

functional size of the software after approving or rejecting the

change and the functional size of the change as well. Based on

this analysis, stakeholders can identify the possible solutions

to achieve the goal.

As an example of a technical change, a change requester

may ask to improve the “Customer Relationship Management”

system performance for “Retrieve and View Customer Details”

functionality by loading the ’customer details’ screen in 3

seconds or less; (Currently it takes 0.5 sec to 6 sec.) [14].

By providing a detailed analysis of this change, we note that

the system is slow when the user asks for the details of

a big customer with many products and many interactions.

Thus, different solutions can be proposed to satisfy the change

requester. For instance, Ben-Cnaan & Symons suggested to

add an indicator (field) to customer’s table [14].

B. Illustrative Example

This section illustrates the application of our approach

through the “C-Registration System (C-Reg)” [16] [17]. “C-

Reg” is a business application that allows students to register

for courses on-line and allows professors to manage their

courses and to maintain their students’ grades. The first version

of “C-Reg” includes 14 functional processes [16] and has a

functional size of 105 CFP. The second version of “C-Reg”

includes 19 functional processes and has a functional size of

97 CFP [17]. In our studies (cf., [10], [21]), we quantified and

evaluated changes from the first to the second version of “C-

Reg”. Thus, we consider the first version of “C-Reg” as the

“software before the change” situation and the second version

of “C-Reg” as the “software after the change” situation.

Fig. 4. Changes categories between the two versions of the “C-Registration
System” case study

As shown in Figure 4, the changes between the two versions

of this case study can be classified into either functional

changes or technical changes:

• Functional changes are changes between the two versions

related to the functional user requirements. A detailed

analysis of these functional changes is given in [10].

• Technical changes are changes between the two versions

related to the software-FUR derived from system-NFR.

In this paper, we focus on changes that are required to

perform the security controls as identified by [2].

To provide a more accurate evaluation of the approved

changes between the two versions of the “C-Reg”, we quantify

the functional size of these changes at two levels of details.

The first level is related to the functional level and the

second level is related to the technical level (e.g., the security

requirements). In our previous work [10], we quantified and

evaluated the changes between the two versions of this case

study at the first level (i.e., functional level). In this paper

we complete our work by quantifying and evaluating the

functional size of the security controls that are incorporated

into functional changes. This quantification will provide a

more accurate evaluation of these changes. As we zoom-in to a

lower level of details, technical changes become easily visible.

In addition, the availability of the actual changes’ size at two

levels of details (functional and technical) will have an added

benefits for estimating the effort required to implement the

changes (approximate and/or more accurate effort estimates).

For instance, let us focus on the following three functional

processes: “Add a Professor”, “Modify a professor” and “En-

quire on Course Offerings”. The functional size measurement

results of both functional and security controls changes for

these three functional processes are given in Table II. The

functional sizes of the functional processes “Add a Professor”

and “Enquire on Course Offerings” in the second version of

the “C-Reg” with the security controls have been provided by

[2]. To quantify the functional size of “Modify a professor”

functional process in the second version of the “C-Reg” with

the security controls, we use the FSM patterns as proposed

by [2]. These FSM patterns are also applied to size security

controls that are related to the three selected functional pro-

cesses in the first version of the “C-Reg” [16]. In Table V, we

provide a detailed measurement of the functional size of the

“Modify a professor” functional process with security controls

in both the first and second versions of the “C-Reg” case study.

Regarding the functional size of functional requirements

and as shown in Table II, the functional process “Modify

a professor” has a functional size of 6 CFP in the first version

of “C-Reg” and a functional size of 3 CFP in the second ver-

sion. Hence, the functional change required in this functional

process has a functional size of 3 CFP. This functional change

corresponds to the deletion of three data movements from the

first version of “C-Reg” (one Entry, one Read and one eXit).

Taking into account the security controls incorporated into the

same functional process “Modify a professor”, we observed

that in the first version of the “C-Reg”, this functional process

has a functional size of 11 CFP. While the functional size of

that functional process in the second version of the “C-Reg” is

5 CFP instead of 11 CFP. The technical change related to the

security controls in this functional process has a functional size

of 6 CFP. These changes correspond to the security controls

related to six deleted data movements (two Reads, two eXits,

and two Entries) from the first version.

Table III summarizes the total changes functional size be-

tween the first and the second versions of “C-Reg” for the three

selected functional processes. For example, the functional size

of the technical changes in “Modify a professor” (i.e., changes

related to the security controls) is equal to 66% of the total

changes functional size (including functional and technical

levels). Thus, the functional size of the changes related to the

security controls is more important than the functional size of

272

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on September 05,2022 at 13:49:15 UTC from IEEE Xplore. Restrictions apply.

TABLE II
SUMMARY OF THE FUNCTIONAL AND TECHNICAL CHANGES SIZE MEASUREMENT

Functional
Process (FP)

Change
Description

Functional Size of FUR Functional Size of System-NFR
FSi(FP) FSf(FP) FS(FC) FSi(FPS) FSf(FPS) FS(TC)

Add a professor Delete 1 Read 5 CFP 4 CFP 1 CFP 7 CFP 6 CFP 1 CFP
Modify a profes-
sor

Delete 1 Entry, 1
Read and 1 eXit

6 CFP 3 CFP 3 CFP 11 CFP 5 CFP 6 CFP

Enquire on
Course Offerings
(Professor)

Add the FP (Enquire
on Course Offerings
(Professor))

– 6 CFP 6 CFP – 12 CFP 12 CFP

FSi(FP): the functional size of the functional process in the 1st version, FSf(FP): the functional size of the
functional process in the 2nd version, FS(FC): the functional size of the functional change, and FS(TC):
the functional size of the technical change.

TABLE III
TECHNICAL AND FUNCTIONAL CHANGES FUNCTIONAL SIZE

MEASUREMENT

Functional Process Total size FS(FC) FS(TC)
Add a Professor 2 CFP 1 CFP (50%) 1 CFP (50%)
Modify a professor 9 CFP 3 CFP (33%) 6 CFP (66%)
Enquire on Course
Offerings

18 CFP 6 CFP (33%) 12 CFP (66%)

TABLE IV
CHANGES’ STATUS EVALUATION

Functional
Process

Change Status
with security con-
trols

without security
controls

Add a Professor Minor Trivial
Modify a professor Major Minor
Enquire on Course
Offerings

Major Moderate

the changes related to the functional level. This was expected

because the expansion of the changes. We conclude that for

an appropriate evaluation of a change request it is required to

move to the technical level.

Using our approach to evaluate the status of functional

changes in [10], we proved the hypothesis that the size of a

technical change will lead to a big impact on the total change

functional size. As it is illustrated in Table IV, the change

status with security controls and without security controls are

not the same for all the three selected functional processes. For

example, the status of the changes in the “Modify a professor”

functional process without the security controls quantification

is “Minor”. However, with the security controls quantification,

the status of these changes becomes “Major”.

V. DISCUSSION AND THREATS TO VALIDITY

To the best of our knowledge, the software development

industry lacks quantitative evaluation approach for techni-

cal changes, although the wide attention gave to the non-

functional requirements. Hence, they will certainly benefit

from the approach that we propose in this paper.

For an appropriate quantification/evaluation of a change, it

is required to measure its actual functional size including both

functional and technical levels. In fact, at different levels of

expansion (i.e., details), the description of the same change is

different. As we move to a more detailed level, new details of

the change will appear, and hence more data movements can

be identified. Thus, a change request may look as functional

change at the beginning of its analysis, but it may also affect

the system-NFR in reality (e.g., security, portability, etc.).

Furthermore, Table III shows the importance of the second

level (i.e., technical level) in the quantification/evaluation of

any change request. In fact, the percentages of the functional

size of changes related to the security controls (FS(TC) in

Table III) are at least equal to 50% of the total functional

size of the change. Hence, the security controls functional size

has a big impact on the total change size. For this reason,

quantifying the functional size of any change at the technical

level will provide a more realistic evaluation of the change

request, and hence an appropriate estimation of the effort

required for its implementation. Consequently, an accurate

decision responding to the change request will be made.

Threats to the validity of our study are pertinent to internal

validity, external validity, and finally construct validity.

• Internal validity: the main threat to the internal validity

of our approach is that the change, to be accurately

quantified, must be well detailed at both functional and

technical levels. However, this level of details is not

always available in practice. Nonetheless, further studies

will be needed to quantify changes at a high abstraction

level of details. Moreover, in the quantification of the

functional size of the security controls, we used the

FSM patterns to size security non-functional requirements

proposed by [2]. Hence, we were limited on the security

controls identified in this study. However, these patterns

are given based on a particular interpretation of relevant

quality controls (e.g., access control, encryption, etc.).

• External validity: deals with the generalization of the

results of this study to other case studies. In fact, the lack

of case studies makes the generalization of this study’s

results difficult. However, to test the proposed approach in

practice, we are collecting data from companies. On the

other hand, the herein presented work can be generalized

to cover other system-NFR since researchers proved that

COSMIC can be successfully used to quantify the func-

tional size of system-NFR (e.g., portability [25], main-

tainability [30], etc.). Thus, we believe that this method

can be used for sizing change requests affecting not only

273

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on September 05,2022 at 13:49:15 UTC from IEEE Xplore. Restrictions apply.

TABLE V
FS (“MODIFY A PROFESSOR”) OF C-REG V1.0 AND C-REG V2.0 INCORPORATING THE SELECTED SECURITY CONTROLS

“C-Registration System” case study v1.0
Functional User Sub-Process Description Data Group Data movement

type
CFP (first
level)

CFP (sec-
ond level)

Registrar Registrar enters Professor ID Professor ID Entry 1 -
Read validation reference for input validation Input Val.Ref Read - 1
Access Control Credentials eXit - 1
Access Control Privileges Entry - 1
The system retrieves the Professor information Professor data Read 1 -
Read Logging Data read details Read - 1
Encryption Request Data Pack eXit - 1
Encryption Return Data Pack Entry - 1
The system displays the Professor information Professor data eXit 1 -
Read validation reference for output validation Output Format - - -
The Registrar enters the modified Professor data Professor data Entry 1 -
Read validation reference for input validation Input Val.Ref Read - 1
Access Control Credentials eXit - 1
Access Control Privileges Entry - 1
When changes are complete, the Registrar se-
lects Save

- - - -

The system updates the Professor information Professor data Write 1 -
Write Logging Data write details Write - 1
Read validation reference for output validation Output Val.Ref. Read - 1
Display error message Message eXit 1 -

Total 6 CFP 11 CFP
“C-Registration System” case study v2.0

Functional User Sub-Process Description Data Group Data movement
type

CFP (first
level)

CFP (sec-
ond level)

Registrar The Registrar enters the modified Professor data Professor data Entry 1 -
Read validation reference for input validation Input Val.Ref Read - 1
Access Control Credentials eXit - 1
Access Control Privileges Entry - 1
C-Reg validates the details and updates the Pro-
fessor record

Professor details Write 1 -

Write Logging Data write details Write - 1
Read validation reference for output validation Output Val.Ref. Read - 1
Display error message Message eXit 1 -

Total 3 CFP 5 CFP

CFP (first level): size measurement of data movements related to the functionality, CFP (second level): size measurement of
data movements related to the security controls.

the ISO 25010 quality characteristics (e.g., portability,

performance, etc.) but also quality sub-characteristics

(e.g., availability, flexibility, etc.).

• Construct validity: is related to the relationship between

theory and observation. In our case, this approach must

be applied in industrial practice. In fact, the illustrative

example “C-Registration System” case study showed

that the proposed approach can be used to quantify the

actual size of both functional and technical changes, and

therefore identify the real change status. In addition, the

use of this approach provides a basis for clarifying the

boundary between functional requirements and software-

NFR. However, we believe that testing this approach with

real data is important to ensure its validity.

VI. CONCLUSION

Changing software requirements can be a challenging task

in the software development project. They may degrade the

software design and quality. In addition, changing system

requirements made the effort estimation difficult. Certainly,

changes in system requirements are one of the biggest foes

for the software development team. However, changes are

inevitable throughout the software life-cycle. For this reason,

the use of the COSMIC standard in quantifying the functional

size of a change and identifying its impact on the software

development progress will be helpful for the development

team. Based mainly on the functional size of the change,

decision-makers will make the appropriate decision whether

to accept, defer or deny the change.

In our previous work, we measured the functional size of a

change at the functional level [21]. In this paper, by zooming-

in the change, we quantified the functional size of the change

request at the second level of details (i.e., technical level),

in particular the security quality characteristic. Zooming-in

again may lead to the appearance of more data movements

related to quality sub-characteristics. However, the main focus

of this paper was on the security quality characteristic. Thus,

we showed, through the “C-Registration System” case study,

that the functional size of the change at the technical level has

a significant impact on the total change size. Hence, decisions

made without taking into account the technical level may not

reflect the quality aspect of the change.

The main question that we will address in our future work

is how functional changes impact on the software quality?.

274

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on September 05,2022 at 13:49:15 UTC from IEEE Xplore. Restrictions apply.

For this purpose, we will focus on other system-NFR such

as portability, performance, etc. In addition, although the

illustrative example showed the feasibility of the proposed

approach in this paper, it is also required to conduct an

empirical study to assess the importance of the technical aspect

in the evaluation of a change in practice. To prepare for such

empirical study, we are in the process of implementing CASE

tools to get automatically the quantification results.

REFERENCES

[1] T. Creasey and J. Hiatt, Best Practices in Change Management, Prosci,
Inc.; 1st edition, 2014.

[2] E. Ungan, S. Trudel, and L. Poulin, “Using fsm patterns to size security
non-functional requirements with cosmic,” in Proceedings of the 27th In-
ternational Workshop on Software Measurement and 12th International
Conference on Software Process and Product Measurement, ser. IWSM
Mensura ’17, 2017, pp. 64–76.

[3] B. Ozkan, O. Turetken, and O. Demirors, “Software functional size: For
cost estimation and more,” in Software Process Improvement. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 59–69.

[4] A. Abran, Software Project Estimation: The Fundamentals for Providing
High Quality Information to Decision Makers. Wiley-IEEE Computer
Society, 2015.

[5] IFPUG, ISO/IEC 20926:2009, Software and systems engineering –
Software measurement – IFPUG functional size measurement method,
December 2009.

[6] NESMA, ISO/IEC 24570:2018, Software engineering - NESMA func-
tional size measurement method - Definitions and counting guidelines
for the application of function point analysis, October 2018.

[7] COSMIC, The COSMIC Functional Size Measurement Method, Version
4.0.2, Measurement Manual, October 2017.

[8] C. Symons, A Comparison of the Key Differences between the IFPUG
and COSMIC Functional Size Measurement Methods, The Common
Software Measurement International Consortium, 2011.

[9] M. Haoues, A. Sellami, H. Ben-Abdallah, and N. Elleuch Ben Ayed,
“Quantitative functional change impact analysis in activity diagrams: A
cosmic-based approach,” in The 25th International Workshop on Soft-
ware Measurement and the 10th International Conference on Software
Process and Product Measurement (IWSM/Mensura), Kraków, Poland,
5-7 October, 2015, pp. 78–95.

[10] M. Haoues, A. Sellami, and H. Ben-Abdallah, “Functional change
impact analysis in use cases: An approach based on COSMIC functional
size measurement,” Science of Computer Programming, vol. 135, pp. 88
– 104, 2017, special Issue on Advances in Software Measurement.

[11] F. W. Vogelezang, E. R. Poort, E. van der Vliet, H. R. J. Mols,
R. Nijland, and J. de Vries, “A shortcut to estimating non-functional
requirements?: Architecture driven estimation as the key to good cost
predictions,” in Proceedings of the 27th International Workshop on
Software Measurement and 12th International Conference on Software
Process and Product Measurement, ser. IWSM Mensura ’17. ACM,
2017, pp. 77–81.

[12] M. Kassab, O. Ormandjieva, M. Daneva, and A. Abran, “Software
process and product measurement.” Springer-Verlag, 2008, ch. Non-
Functional Requirements Size Measurement Method (NFSM) with
COSMIC-FFP, pp. 168–182.

[13] K. Al-Sarayreh, “Identification, specification and measurement, using
international standards, of the system non functional requirements
allocated to real-time embedded software,” Master’s thesis, Ecole de
technologie superieure, University of Quebec, Montreal, Canada, 2011.

[14] T. Ben-Cnaan and C. Symons. Accounting for non functional and project
requirements - cosmic and ifpug development. Danske Bank. [Online].
Available: https://fr.slideshare.net/iwsm-mensura/accounting-for-non-
functional-and-project-requirements-cosmic-and-ifpug-development-
talmon-bencnaan-charles-symons-54258283

[15] ISO/IEC, “25010 system and software quality models,” Tech. Rep.,
2010.

[16] Software Engineering Research, C-Registration System case study with
ISO/IEC 19761, Version 1.0, 2008.

[17] Software Engineering Research, C-Registration System case study with
ISO/IEC 19761, Version 2.0, 2015.

[18] P. Singh, D. Singh, and A. Sharma, “Rule-based system for automated
classification of non-functional requirements from requirement specifi-
cations,” in 2016 International Conference on Advances in Computing,
Communications and Informatics (ICACCI), Sep. 2016, pp. 620–626.

[19] R. Fairley, Managing and Leading Software Projects. Wiley-IEEE
Computer Society Pr, 2009.

[20] S. Ghosh, S. Ramaswamy, and R. P. Jetley, “Towards requirements
change decision support,” in The 20th Asia-Pacific Software Engineering
Conference (APSEC). Bangkok, Thailand, 2-5 Dec, vol. 1, Dec 2013,
pp. 148–155.

[21] M. Haoues, A. Sellami, and H. B. Abdallah, “Towards functional change
decision support based on cosmic fsm method,” Journal of Information
and Software Technology, vol. 110, pp. 78–91, 2019.

[22] B. R. Maxim and M. Kessentini, “Chapter 2 - an introduction to modern
software quality assurance,” in Software Quality Assurance. Boston:
Morgan Kaufmann, 2016, pp. 19 – 46.

[23] COSMIC and IFPUG, Glossary of terms for Non-Functional Require-
ments and Project Requirements used in software project performance
measurement, benchmarking and estimating, September 2015.

[24] IFPUG, “The software non-functional assessment process,”
http://www.ifpug.org/about-snap/, 2018.

[25] F. A. Talib, D. Giannacopoulos, and A. Abran, “Designing a mea-
surement method for the portability non-functional requirement,” in
The Joint Conference of the 23rd International Workshop on Software
Measurement and the 8th International Conference on Software Process
and Product Measurement, Oct 2013, pp. 38–43.

[26] H. Hakim, A. Sellami, and H. Ben-Abdallah, “Evaluating security in web
application design using functional and structural size measurements,”
in 2016 Joint Conference of the International Workshop on Software
Measurement and the International Conference on Software Process
and Product Measurement, IWSM-MENSURA 2016, Berlin, Germany,
October 5-7, 2016, 2016, pp. 182–190.

[27] A. Sellami, H. Hakim, A. Abran, and H. Ben-Abdallah, “A measurement
method for sizing the structure of UML sequence diagrams,” Information
& Software Technology, vol. 59, pp. 222–232, 2015.

[28] K. Meridji, K. T. Al-Sarayreh, A. Abran, and S. Trudel, “System security
requirements: A framework for early identification, specification and
measurement of related software requirements,” Computer Standards
Interfaces, 2019.

[29] K. Gilb, Evolutionary Project Management & Product Development.
Evo - Evolutionary Project Management, 2017.

[30] K. T. Al-Sarayreh, A. Abran, and J. J. Cuadrado-Gallego, “A standards-
based model of system maintainability requirements,” Journal of Soft-
ware: Evolution and Process, vol. 25, no. 5, pp. 459–505, 2013.

275

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on September 05,2022 at 13:49:15 UTC from IEEE Xplore. Restrictions apply.

