
 

This is an electronic reprint of the original article. This reprint may differ from the original 
in pagination and typographic detail. 

 
MATERA2-AlfTester: An Exhaustive Simulation and Test Generation Tool for fUML
Models
Iqbal, Junaid; Ashraf, Adnan; Truscan, Dragos; Porres Paltor, Ivan

Published in:
45th Euromicro Conference on Software Engineering and Advanced Applications

DOI:
10.1109/SEAA.2019.00075

Published: 01/01/2019

Document Version
Accepted author manuscript

Document License
Publisher rights policy

Link to publication

Please cite the original version:
Iqbal, J., Ashraf, A., Truscan, D., & Porres Paltor, I. (2019). MATERA2-AlfTester: An Exhaustive Simulation and
Test Generation Tool for fUML Models. In M. Staron, R. Capilla, & A. S. (Eds.), 45th Euromicro Conference on
Software Engineering and Advanced Applications (pp. 466–470). IEEE.
https://doi.org/10.1109/SEAA.2019.00075

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

This document is downloaded from the Research Information Portal of ÅAU: 23. Apr. 2024

https://doi.org/10.1109/SEAA.2019.00075
https://research.abo.fi/en/publications/31edc562-ee7d-478a-8645-f04b4b1cbd63
https://doi.org/10.1109/SEAA.2019.00075


MATERA2-AlfTester: An Exhaustive Simulation
and Test Generation Tool for fUML Models

Junaid Iqbal, Adnan Ashraf, Dragos Truscan, Ivan Porres
Faculty of Science and Engineering

Åbo Akademi University, Turku, Finland
{jiqbal, aashraf, dtruscan, iporres}@abo.fi

Abstract—The Foundational Subset for Executable UML Mod-
els (fUML) and the Action language for fUML (Alf) can be used
for creating executable models in the Eclipse-based UML editing
tool called Papyrus. An fUML execution engine in Papyrus,
such as Moka, allows to simulate or execute fUML models
along with their associated Alf code. However, for exhaustive
simulation of such models, one must provide input data required
to reach and cover all important elements not only in the
graphical fUML models, but also in the textual Alf code. In
this paper, we present MATERA2-AlfTester, an Eclipse-plugin
for exhaustive simulation and test generation for fUML models.
MATERA2-AlfTester integrates with Papyrus and Moka tools
and extends their functionally by allowing one to automatically
generate test data, test suite with test oracle, and partial Java
code at design time. We also present the simulation and testing
process of MATERA2-AlfTester with the help of an example
and demonstrate how exhaustive simulation and test generation
with MATERA2-AlfTester can help designers in assessing and
improving the quality of fUML models.

Keywords-fUML, simulation, test generation, Papyrus, Moka,
Alf

I. INTRODUCTION

Papyrus [1] is a Unified Modeling Language (UML) [2]
modeling tool for the Eclipse Modeling Framework [3] and
provides tool support for executable UML modeling [4]. It
includes technologies for the simulation and debugging of
models, as well as editing facilities to produce executable
models more efficiently. The simulation and debugging part
is handled by a plug-in called Moka [5], which relies on
an implementation of the Foundational Subset for Executable
UML Models (fUML) standard [6] and the Precise Semantics
of UML Composite Structures (PSCS) standard [7]. These
specifications formalize the execution semantics of a UML
subset. In addition to graphical editing, Papyrus also supports
the Action language for fUML (Alf) standard [8], with an
editor and compiler for Alf.

The execution and simulation features of Moka allow one
to provide input data required to execute the graphical fUML
and textual Alf models. However, manual generation of input
data might be suitable for small and simple models, but it is
often not the case for real-life complex models. Similarly, test
generation for executable models is a difficult and tedious task
when performed manually.

To address these issues, we present an Eclipse plugin,
called the MATERA2-AlfTester (M2-AT), which implements
an exhaustive simulation and test generation approach with

the following objectives: (1) generate test data for simulation
to achieve maximum model coverage, (2) run these inputs
automatically in the Moka plugin to simulate the model (3)
generate a test suite with test oracle (expected output) that can
be used for testing the system implementation and 4) generates
corresponding Java code skeleton for fUML model which can
be used as a starting point for system development. To the best
of our knowledge, our tool is the first one which generates
test data from fUML activity diagrams (ADs) and associated
Alf code for exhaustive simulation in Moka. The underlying
approach of M2-AT can be found in [9].

II. TOOL OVERVIEW

Papyrus provides the ability to simulate fUML models via
the Moka plugin. During the simulation process, it allows to
measure model coverage graphically and produces a model
coverage report at the end of the simulation. However, one
must provide input data required to reach and simulate all
essential elements in the graphical fUML and textual Alf mod-
els. By using inputs during the simulation, one can observe
the model coverage in the simulation framework to identify
the potential uncovered parts of the model. The process can
be continued until a satisfiable quality and coverage of the
models is achieved. Moreover, the test inputs and test suite
also allow one to conform the specification to model at
an early stage in the system development. As presented in
Figure 1, M2-AT provides an automated way to generate
such test data, a JUnit test suite, and partial Java code with
convenience which reduces the cognitive effort and time in
system development and testing. It is important to note that our
use of Moka is mostly simulation-oriented. Other uses (e.g.,
code generation and deployment) from Moka would probably
require alternative solutions or implementation strategies as
discussed in [10], [11].

III. NAMING SCHEME AND MODELING GUIDELINES

By exploiting both graphical and textual notations [12],
the dominating modeling feature of Papyrus allow designers
to design models by using different architectural contexts
including UML and executable UML. The executable UML
models are based on graphical fUML models and textual Alf
code which enable the designers to model precise semantics of
the specifications. The architecture context of executable UML
in Papyrus is based on structure and behavior viewpoints.



fUML 
model

Simulation 
inputs

Java code 
skeleton 

JUnit test 
suite

Papyrus Moka
Simulation tool

Papyrus 
modeling tool

MATERA2-Alf 

Tester

Fig. 1: M2-AT : Automated generation of (1) input data
generation for simulation and its execution, (2) test suite
generation and (3) Java code skeleton generation

The structural viewpoint is based on class diagram (CD) and
component structure diagrams. The behavioral viewpoint is
described via state machines and Activity Diagrams (ADs).

To develop an fUML model, designers need to identify the
structural and behavioral aspects of the system to model the
static and dynamic part of the system. The CDs describe
the static part of the system via attributes and operations.
Additionally, associations are used to model the relationships
among them. In over approach, the behavioral model is mainly
composed of activity diagrams which describe precise step-
by-step actions to be performed to model the operation’s
functionality. In order to generate test inputs from syntactically
correct and a minimal functional Java code skeleton, we
propose some naming conventions and modeling guidelines
to be adapted during the modeling phase for designing both
structural and behavior models as follow:

A. Structural model

We propose the following naming conventions for static part
of the CDs as follow:

• Attributes must have a type and a field modifier.
• Operation must have a public field modifier, and must be

associated to a behavior model (i.e., activity) otherwise
not considered in test suite generation.

• Classes must belong to a package. A class may refer
objects from the same or different package which must be
generated in order to have syntactically correct and com-
pilable Java code. Therefore, we discourage standalone
classes and they are not included in the test generation
phase.

An example of the recommended structural hierarchy is shown
in Figure 2.

Fig. 2: Structural hierarchy of different elements in the model

B. Behavioral model

The behavior model in fUML is primarily based on ac-
tivities which describe the functionality of pairing classifiers
(operations). The activities can be modeled via either using
the graphical notation i.e., AD or Alf textual notation. In AD,
nodes are connected via control-flow and object-flow edges.
The control-flow edges denote the sequence of the nodes to be
followed in the execution of the AD without carrying a data
object. The object-flow edges are used to transfer the data
objects between nodes and connected via input and output
pins. The pins attached to the endpoints of the object-flow
connect the source and target nodes except for control nodes,
i.e., decision, fork, join, merge, and activity parameter node.
We propose the following guidelines while modeling AD:

• Both pins at the endpoints of an object-flow edge must
use the same name as the data object carried by the edge
to avoid syntactically incorrect code which may generate
imprecise test inputs.

• A decision node must have a paired merge node.
• AD must have at most one initial and complementing

final node.
• The input and output parameter nodes must be connected

with at most one object-flow edge.
Figure 3 presents an example AD with recommended model-
ing guidelines and naming conventions.

IV. EXAMPLE

We use the Book class in Figure 2 as an example. The
functionally of the book class is to add new book title in
a bookstore based on the base price, value added tax and
popularity of the book. The class operations are modeled with
fUML ADs and Alf code. The AddBook operation adds a book
by using the setSellPrice operation. Similarly, the getSellPrice
operation returns the selling price of the book. The setSellPrice
operation is modeled with fUML AD shown in Figure 3.

The setSellPriceActivity AD takes three input parameters
namely, BasePrice, BestSeller and value-added tax (VAT). The
discount is decided based on the BestSeller. The discount is
half if the book is a best seller otherwise full. Based on base



Fig. 3: fUML AD of setSellPriceActivity

price, VAT and discount, the selling price is calculated by
calcSellPrice activity, written in Alf, and stored in the sellPrice
attribute. The setSellPriceActivity AD returns true if the selling
price is successfully stored. Otherwise, if the base price or
discount is below zero the activity returns false via return
parameter node Success.

V. SIMULATION AND TEST GENERATION

M2-AT tool is implemented as an Eclipse plugin, integrated
with the Eclipse Modeling platform and it is based on the
Papyrus and Moka tools. The tool generate simulation inputs
that cover 100% of the specification and executes them auto-
matically. This can help in detecting problematic parts of the
model, such as non-reachable elements, uninitialized objects,
or illegal input combinations. In addition, the tool can generate
simulation inputs, execute them automatically and generate
tests with test oracle and Java code skeleton. The tool takes
advantage of Eclipse UML2 implementation along with the
Eclipse Graphical Modeling Framework (GMF) to parse the
fUML model. The fUML model is parsed to extract packages
containing classes and activities later used to generate static
and dynamic parts of the model. Hence, the static part of

the fUML model is generated via attributes and operation
signatures while the dynamic part of the fUML model is
generated by processing activities.

By using the line and branch coverage criteria, M2-AT
is expected to yields 100% coverage in the generated Java
code ensuring 100% node and edge coverage in fUML ADs.
However, the coverage less the 100% indicate a potential
unreachable area in model as well in generated Java code. In
the following subsections, we present the steps to use M2-AT
by using the example presented in Section IV.

A. Model transformation and test suite generation

In order to generate test suite along with test data for
simulation, the fUML model is loaded in Papyrus. The model
transformation and test suite generation can be triggered via
selecting MATERA2-Package code option from the context
menu in Papyrus model explorer as shown in Figure 4. The
generated Java code is stored in user’s selected directory.

M2-AT invokes EvoSuite, must be downloaded separately
and accessible to M2-AT, uses the generated Java code and
generates a test suite. Figure 5 presents the EvoSuite console
log during the test suite generation.



Fig. 4: Generating test suite from fUML package

Fig. 5: EvoSuite console log during test suite generation

B. Alf test script generation and simulation

An Alf test script, which encodes the test inputs in ALF,
can be generated by accessing the context menu of the AD
in the model explorer view of Papyrus. The generated test
script, as shown in Figure 6, is added into the original model
as a testing activity and can be executed by using the context
menu and selecting: Moka− > Run. As shown in Figure 7,
one can observe the model coverage during the execution
via green and black color edges. The green edges shows the
covered areas of the model during the simulation, however, the
black color edges may identify the potential uncovered areas
in the model. In Figure 7, the edge between Discount < 0
and MergeDiscountBasePrice nodes is unreachable during the
simulation, which identifies a modeling error in the AD.
Consequently, the log presented in Figure 5 showing the
overall coverage reported by EvoSuite is 91% including 96%
of line and 86% of branch coverage.

Additionally, an illegal input combination can be detected

Fig. 6: Alf test script for setSellPriceActivity

during simulating via exceptions raised by the simulation
engine. The designer can benefit form exhaustive simulation
to identify potential unreachable areas in the model and rectify
the modeling errors.

When the models are of good quality with desired coverage,
Java code skeleton can be used as a starting point in system
development. Furthermore, the generated test suite can be run
in later stages to conform the specification to the developed
system. The main benefits of M2-AT include the automation of
the process which ensures good quality models, testing at an
early stage during system development process, and providing
a starting point for the actual development of the system.

VI. CONCLUSION

The Foundational Subset for Executable UML Models
(fUML) and the Action language for fUML (Alf) allow to
create executable models, which can be executed using an
fUML execution engine. However, to execute such models
exhaustively, one must provide input data required to reach and
cover all essential elements not only in the graphical fUML
models, but also in the textual Alf code associated with the
graphical models. In this paper, we presented an Eclipse-based
tool, called MATERA2-Alf Tester (M2-AT), which translates
fUML ADs and associated Alf code into equivalent Java code
and then automatically generates: (1) input data needed to
cover or execute all paths in the executable fUML and Alf
models and (2) a test suite comprising test cases with test
oracle for testing the actual implementation of the system
under development. The generated test cases in M2-AT satisfy
100% code coverage of the Java code. The generated input data
is used for executing the original fUML and Alf models in the
Moka simulation engine. The interactive execution in Moka
allows to measure model coverage of the executable models.
In addition, the generated Java code can be reused as a starting
point for the actual implementation of the system. We also
presented our tool and demonstrated our proposed approach
with the help of an example. Our proposed tool integrates
M2-AT code generation and Alf script generation components



Fig. 7: Running Alf test script for setSellPriceActivity and observing model coverage

with the state-of-the-art model simulation and test generation
tools allowing researchers and practitioners to generate test
suites and input data for exhaustive model simulation at early
stages of the software development life cycle.

ACKNOWLEDGMENTS

This work has received funding from the Electronic Com-
ponent Systems for European Leadership Joint Undertaking
under grant agreement number 737494. This Joint Undertaking
receives support from the European Unions Horizon 2020
research and innovation programme and Sweden, France,
Spain, Italy, Finland, the Czech Republic.

REFERENCES

[1] E. Foundation, “Eclipse papyrus modeling environment.” [Online].
Available: http://www.eclipse.org/papyrus

[2] OMG, “About The Unified Modeling Language Specification,” 2017.
[Online]. Available: https://www.omg.org/spec/UML/

[3] Eclipse, “Eclipse Modeling Framework (EMF),” 2019. [Online].
Available: https://www.eclipse.org/modeling/emf/

[4] S. J. Mellor and M. Balcer, “Executable UML,” A Foundation for Model-
Driven Architecture. Addison-Wesleyy, 2002.

[5] E. Foundation, “Eclipse papyrus moka.” [Online]. Available:
https://git.eclipse.org/c/papyrus/org.eclipse.papyrus-moka.git/

[6] OMG, “About the semantics of a foundational subset
for executable uml models specification.” [Online]. Available:
https://www.omg.org/spec/FUML

[7] OMG, “About the precise semantics of uml composite
structures specification PSCS,” 2019. [Online]. Available:
https://www.omg.org/spec/PSCS/About-PSCS/

[8] OMG, “About the action language for foundational uml specification.”
[Online]. Available: https://www.omg.org/spec/ALF

[9] J. Iqbal, A. Ashraf, D. Truscan, and I. Porres, “Exhaustive simulation
and test generation using fUML activity diagrams,” in International
Conference on Advanced Information Systems Engineering (CAiSE),
P. Giorgini and B. Weber, Eds. Cham: Springer International Publishing,
2019, pp. 96–110.

[10] G. Dévai, G. F. Kovács, and Á. An, “Textual, executable, translatable
uml.” in OCL@ MoDELS, 2014, pp. 3–12.

[11] Z. Micskei, R.-A. Konnerth, B. Horváth, O. Semeráth, A. Vörös, and
D. Varró, “On open source tools for behavioral modeling and analysis
with fuml and alf.” in OSS4MDE@ MoDELS. Citeseer, 2014, pp. 31–
41.

[12] S. Guermazi, J. Tatibouet, A. Cuccuru, S. Dhouib, S. Gérard, and
E. Seidewitz, “Executable modeling with fUML and Alf in Papyrus:
tooling and experiments,” in 1st International Workshop on Executable
Modeling MODELS,Ottawa, Canada, P. L. Tanja Mayerhofer, Ed.,
2015. [Online]. Available: http://ceur-ws.org/Vol-1560/


