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Abstract—Application Programming Interfaces (APIs) are
means of communication between applications, hence they can
be seen as user interfaces, just with different kind of users, i.e.,
software or computers. However, the very first consumers of the
APIs are humans, namely programmers. Based on the available
documentation and the “ease of use” perception (sometimes led
by corporate decisions and/or restrictions) they decide to use
or not a specific APL. In this paper, we propose a data-driven
approach to measure web API usability, expressed through the
predicted error rate. Following the reviewed state of the art in
API usability, we identify a set of usability attributes, and for each
of them we propose indicators that web API providers should
refer to when developing usable web APIs. Our focus in this
paper is on those indicators that can be quantified using the API
logs, which indeed reflect the actual behaviour of programmers.
Next, we define metrics for the aforementioned indicators, and
exemplify them in our use case, applying them on the logs from
the web API of District Health Information System (DHIS2) used
at World Health Organization (WHQO). Using these metrics as
features, we build a classifier model to predict the error rate
of API endpoints. Besides finding usability issues, we also drill
down into the usage logs and investigate the potential causes of
these errors.

Index Terms—API usability, API logs, log mining, web APIL.

I. INTRODUCTION

Application programming interfaces (APIs) represent the
abstraction layer built upon sets of low-level methods and
functions, in order to make them easily reused by third parties
[6]. They are a means of communication between applications.
Thus, we can say that APIs are user interfaces, just with dif-
ferent users in mind, meaning software or computers [22]. But
we should not exclude from API users the human dimension.

Actually, the very first consumers of the APIs are humans,
namely programmers. They are the ones who decide to use
or not a specific API in their applications (sometimes under
some corporate decisions and restrictions, e.g., pricing). If
developers want to build a mobile application, and one of
the features that they want to add to their application is the
user location, usually it is up to them which location API to
choose: Google Map API, OpenStreetMap API, Bing Maps
API, Foursquare API, etc. Usually, API consumers decide to
use an API by reading its documentation and by trying to
perform different small tasks with it [22]. So, if API providers
want to increase their costumer outreach or the number of
users of their API, they should focus on improving the API
documentation and its easy-to-use interface.

In this paper, we propose a data driven approach to measure
API usability, based on how API consumers perceive and
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use APIs. Throughout our work we focus on web APIs,
which differ from the traditional ones (statically linked APIs)
mostly in the way providers and consumers are connected
(via internet, typically by HTTP protocol) or how consumers
adapt when APIs change (if web API providers decide to
disconnect an older version of web API, its consumers are
forced to upgrade to the newer versions) [19], [25]. We use
the API usability taxonomy proposed by Mosqueira-Rey et al.
[4], which is based on the work of Alonso-Rios et al. [3]. We
adopt this taxonomy to describe the usability of web APIs.
As we explain in more detail in Section III, there are some
usability sub-attributes, which can not be investigated from
the logs (they are related to the API source code and not to
the interface). Therefore, for (almost) each of the usability
sub-attributes, we propose some indicators that API providers
should refer to. Based on these indicators, we define some
metrics to measure each of the attributes. Then, we assess the
relevance of these metrics in evaluating the usability of web
API (reflected in the error rate of API endpoints), by building a
classifier model that predicts the kind of error rate of endpoints
based on the computed metrics.

We aim to not only find usability issues, but also to
investigate about their root causes by drilling down into the
usage logs. Consumers’ behaviour is imprinted in these logs,
so their monitoring and analysis is crucial as they can play an
important role in revealing usability issues. Since log data are
semi structured and often noisy, we explain how to perform
the pre-processing step before doing the analysis.

We introduce and further use the following concepts:

o API resources - the data that API provides.

o API endpoints - the location where the resources can be
found.

« API elements - resources, parameters, schema attributes.

Here we focus only on the interface level of the APIs. In
other words, we evaluate API usability abstracting from the
implementation code and the functionalities that API offers.
Putting all together, our study is driven by the following
research questions:

RQ1: Which are the usability sub-attributes that mostly
influence the API consumers experience?

RQ2: Can we find issues impacting these usability sub-
attributes by analyzing the API usage logs?

RQ3: Can the usability issues found in the API usage logs
be measured in a meaningful way from the API consumer
point of view?
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RQ3.1: How to carry out the pre-proccessing of API log
data before performing usability analysis?
The main contributions of the paper are as follows:
o We perform an empirical study in measuring the web API
usability, by monitoring and analyzing the API usage data.
o We define and adapt a set of measurable indicators for
web API usability attributes, and quantify in terms of API
usage log traceability the indicators of one of the usability
attributes, know-ability.
e« We perform an experimental validation of the importance
of these metrics, by applying our approach in a real-world
case study.

The remaining of this paper is organized as follows: in
Section Il we present the related work on API usability
evaluation. In Section III we frame our approach. We describe
the API log data pre-processing phase in Section IV and
present our case study in Section V. We discuss our findings
in section VI, and conclusions and future work in Section VII.

II. RELATED WORK

The evaluation of APIs usability has gained a lot of attention
in the recent years [2], [14]. Based on the methods used, we
can see two main categories: works that analyze the APIs
design and their structural metrics, not taking into account
how the API is being used (analytic methods [5], [9], [10]),
and works that study how the API users are using the API
(empirical methods [1], [13], [7]). We give a general overview
of these works here, while the relevant usability attributes that
we use in our study are explained in Section III.

Rama et al. [5] presented a set of structural metrics that can
be evaluated on the API interface, or on the API implementa-
tion source code. Scheller and Kiihn [9] also provided several
metrics to measure the usability of APIs. They conducted a
literature review to identify factors that affect API usability,
and investigated more in depth few of these factors. De Souza
and Bentolila [10] provided visual representation of APIs
complexity based on complexity metrics of Bandi et al. [15].

Gerken et al. [1] on the other hand, used the concept
map method to study and evaluate API usability. But, their
longitudinal approach can only be applied on long time
segments. McLellan et al. [11] used the think aloud protocol.
They gave API code examples to four programmers and asked
them to analyze and understand. They found usability testing
very effective, based on the usability issues identifies by
the participants. Thus, they suggested iterative API redesign
and testing phases. Piccioni et al. [7] designed an empirical
usability study by interviewing 25 programmers, and giving
them a concrete task to accomplish using the API under study,
in order to compare the participants’ expectations with their
actual performance. Grill et al. [13] evaluated API usability by
applying a methodology of three phases: a heuristic evaluation
(based on Zibran et al. [21]), a developer workshop and
interviews, following this way both analytic and empirical
methods.

Actually, as Rauf et al. [2] stated in their work on systematic
mapping of API usability studies, the most used methods to

evaluate APIs usability were empirical ones: usability tests,
controlled experiments, surveys, etc. In fact, these methods
are the most consolidated in software usability or human
computer interaction (HCI) studies. As APIs differ from
regular traditional software (can be used in scenarios that
even API designers have not thought before, are prone to
frequent changes, etc.), their usability evaluation requires more
automated, scalable and time-efficient methods [2].

Few studies focus on mining repositories. Zibran et al.
[21] studied five different bug repositories to identify the
most reported API usability issues (by the API consumers).
More than one third (37.14%) of the bug-reports in their
study were related to API usability. From these, the most
frequent ones were about missing features, correctness, and
documentation. Macvean et al. [8] analyzed specifically the
usability of web APIs. They took data from Google API
Explorer to identify APIs, with which developers struggle
more and spend more time and effort in learning and using.
The metric they used to measure API usability was API
request error rate (client side erroneous requests (4XX) per
total requests to the API). Nonetheless, they recognized that
other metrics can also be considered to better evaluate the
usability, like API consumer satisfaction measured by API
surveys or the number of erroneous requests consumers make
until they achieve a successful call (known also as time to
first hello world or ah ha moment [17]). Although their results
were still preliminary and, as they stated, early in nature, the
methodology used seems promising and opens a lot of areas
for future research. Murphy-Hill et al. [12] developed a tool
that analyzed consecutive snapshots saved by developers to
derive problems of the APL. They checked the API methods
that developers changed between snapshots, but more than the
‘worst’ usability problems, these changes reflected the most
used API. They suggested the use of other heuristics, like
analyzing consumers experience, comparing the experience of
novice API consumers with the more familiar ones, etc.

Mosqueira-Rey et al. [4] used both analytic and empirical
methods. They adopted a general usability framework from
Alonso-Rios et al. [3]. They derived from it a set of heuristics
and guidelines for traditional APIs, and used these to evaluate
the usability of a given API. Nevertheless, they pointed out
the need to expand their work towards web API. Indeed, we
use and follow their taxonomy that comprises six top-level
attributes, refined into 21 more specific sub-attributes, to give
and define a set of indicators that web API provider should
use to offer usable web APIs. As Wittern et al. [19] stated in
their work, there is still a lack of research on the consumption
of web API (strongly related to the usability). As already
annotated, web APIs differ from the traditional ones, hence,
new methods need to be used in evaluating their usability, as
well as other assumptions need to be taken into account. To
understand and analyze the web API consumers behaviour,
we do not conduct observational or controlled experiments,
but instead monitor and analyze the web API log data, which
indeed contain the interaction between API and its consumers.



TABLE I
API USABILITY

tht?})l;lllltteys Sub-attributes Indicators ]i‘;a;?:t;glg?
. API elements’ name clearness, descriptiveness, unambiguity,
1.a Clarity similarity [21]. (121, (91, [5). 7] s v
1.Know-ability 1.b Consistency Uniformity in naming API elements [21] v
1.c Memorability The number of API endpoints’ parameters [21], [S], [9], [15] v
1.d Helpfulness The use of different status codes for different situations [21], [5] 4
2.a Completeness Consumers workaround solutions for the missing features [23] v
- .. Proper data types to avoid loss of precision
2. Operability 2.b Precision and unngcessary t};l;e—casting [3], [21],p[13], [51, [91 x
2.c Universality The use of universally recognized names, formats, etc., for API elements [4] v
2.d Flexibility Multiple ways to do the same thing [21], [7] 4
N The balance between the flexibility of having different ways
3.a In human effort of doing a task and the complexity of having to%) many options [7] v
3. Efficiency 3.b In task execution API response time [17] v
3.c In tied up resources The excessive use of shared resources made by API [4], [21] X
3.d To economic costs The excessive costs required for the API use [4] 4
4.a To internal error The proper handling of internal errors [9], [21] v
4. Robustness 4.b To improper use The proper handling of consumers errors [9], [21] 4
’ T 4.c To third party abuse The handling and mitigation of abusive behaviour of third party 4
4.d To environment problems The handling of errors coming from environment problems 4
5.a User safety The use of safe HTTP methods to change resources v
5. Safety 5.b Third party safety The confidentiality protection of the users’ personal information [4] 4
5.c Environment safety The security of the users’ assets [4] X
. . . 6.a Interest The trend of API users over time (API new consumers, API churn rate) [17] v
6. Subjective satisfaction h hetic of APT el t’ C wd
6.b Aesthetic e aesthetic o elements’ name (no weird names v
or special characters used in an inappropriate way) [4]

III. THE PROPOSED APPROACH

In this section we describe the key elements of our approach.
We start with explaining the different types of API logs and
which usability attributes can be evaluated using each of them.
Then we introduce the usability attributes, sub-attributes and
the indicators inferred and adapted from the literature review.
Last, we interpret these indicators in terms of API usage log
traceability, where possible.

A. Measuring web API usability in web API logs

Web API usage logs can be collected at the provider side,
at the consumer side, or at proxy servers [20], [26]. The usage
data collected at each case reflect different aspects of the API
usage. Data collected from the consumer side have all the
requests made to the API, but only from that consumer. Log
data from different consumers should be gathered to have more
generalizable results from the analysis. On the other hand,
the data logged at the API provider side contain information
about all the consumers of the API, but if consumers have
adopted API response caching, they do not record the requests
for which the responses are cached. Moreover, development
logs cannot be distinguished from production logs [8].

Nevertheless, the information transmitted through develop-
ment logs differs from those in production logs. The former
are created while the developers are creating and testing their
applications. We can see the developers learning curve as well
as their difficulties while using the APIs, only on development
logs [8]. On the other hand, production logs are created
during the post-development phase of the applications, after
the applications are launched and used by their end users. The
analysis of these logs can give us insights about API new
usage scenarios, not evident even to API providers. Here we
can address issues related to all the other usability aspects.

All in all, we cannot evaluate all the usability attributes
in one type of API logs: different API logs are needed to
evaluate different attributes. For example, we cannot measure
the completeness of an API, if we have development logs from
one API consumer. We need production logs from different
API consumers to conclude if the API in study lacks in some
features, forcing this way its consumers to come up with
different workarounds.

B. API usability aspects

API usability represents a qualitative characteristic [2]. As
such, there exist different interpretations, different terminolo-
gies, and different definitions [2], [3]. After choosing the
usability taxonomy to expand for web APIs, we performed a
literature review in order to quantify each of the sub-attributes
into indicators.

Initially, we searched for works on API usability assess-
ment, for both traditional and web APIs. As in our study
we measure the usability based on the API interface, we
filtered out the works that focused their analysis in the API
implementation code. Next, we consolidated into indicators
for each sub-attribute, all the information gathered. Then,
considering that most of the information was for traditional
APIs, we adapted it for web APIs. For example, Rama et al.
[5] mentioned in their work as structural metric the one related
to exception classes “Using exception throwing classes that are
too general with respect to the error conditions that result in
exceptions”. We link this with the status codes returned, and
give as indicator the use of different status codes in different
situations, so that web API consumers would know the exact
error that happened. We classify this as an indicator for the
helpfulness of the API. Finally, there were some sub-attributes
for which we could not find any pertinent information in the




literature review, thus we extend the current state of the art
with additional indicators. Table I summarizes our findings
and reports main usability attributes with their sub-attributes,
their indicators, and points out if such indicators can be traced
in API logs.

C. Usability issues detected in API usage logs

As already stated, we evaluate API usability by analyzing
API usage logs. Due to different server setting parameters,
logs may comply to different formats, but typically each log
entry has information about the client’s IP address, the request
time, the request method (GET, POST, etc.), the request body,
the protocol, the time needed to respond to the request, the
status code, and the size of the object returned.

We evaluate from the API logs those attributes and sub-
attributes that can be mapped to the information in the log
entries (see Table I). Thus, we focus on indicators consisting
of the information about the interface of the API (naming of
API elements, number of parameters) and indicators about the
interaction consumer - API (status codes, duration, request
sequences).

As a matter of fact, not all the usability sub-attributes of
the taxonomy can be evaluated based on the information in
the logs. For example, the precision of the API, an operability
sub-attribute, is mostly related to the precision of the data
types used. Data types selection is seen as too critical. API
consumers should not perform type casting when it is not
necessary, as this will not only increase their effort but also
affect the precision [3], [21], [13], [5], [9]. However, in the
log entry, requests are just strings, so we cannot analyze the
parameters’ data types (part of the implementation code of the
functions and methods under the APIs).

Know-ability implies the ease of understanding, learning
and remembering the API. Among others, this attribute is
mainly related to the naming of the API elements. To properly
evaluate the naming, it is essential to take into account the
purpose and the functions of the API elements, and then
to perform semantic analysis of their names. In automated
solutions this is almost infeasible [9]. Hence, the controls
that we perform for clarity, consistency, and memorability
sub-attributes are channeled in names’ similarity, the style
of naming, path/query length, query complexity features, etc.
On the other hand, helpfulness is related mostly to accurate
documentation and detailed error messages. In the logs this
can be manifested in the erroneous repeated requests.

Operability is mostly associated to the API consumers’
needs fulfillment. Tracking workarounds built by consumers
when API is not offering them a direct solution, is quite diffi-
cult. Anyway, consumers interaction with the API is imprinted
in the API logs, so from there we can infer behaviours that
address this issue. Part of operability is also universality, which
implies the use of universal names and symbols. Next, flexi-
bility is a double-edged sword: for experienced programmers,
it is considered beneficial, but for novice ones, it increase the
complexity of APIs (as explained below).

Efficiency can be evaluated in terms of human effort, time
and resources spent while using the API. Regarding human
effort, usually, the more complex the API is, the more effort
is spent from the consumers’ side. Complexity is a very
general concept, and comprises several usability attributes. As
having several ways to do the same thing sometimes confuses
the programmers [7], we consider this as an indicator in
evaluating efficiency according to human effort. Efficiency in
task execution is reflected in the time that an API needs to
respond to a request, which in the logs is stored as duration.
For the costs of using the API, we look at the API endpoints,
that can be optimized regarding number of calls. Consumers
have to pay for number of calls for non-free APIs. So, if there
are endpoints that are always called one after the other, their
merging can reduce the consumers’ expenses. We do not have
a log-based indicator for the efficiency in tied up resources
sub-attributes, as this is not related to the API interface, and
is not reflected in any log entry fields.

Robustness, defined as the property of an API to handle
errors and adverse situations, it is strongly related to the
status codes that APIs send to their consumers. Even thought
applications that consume the API should also be robust and
treat properly the error situations, APIs should not fail in front
of incorrect or even improper use. Therefore, APIs have to
handle both the errors that come from their side (5xx errors),
and the errors from the consumers’ side (4xx errors).

Safety deals with the challenge of mitigating risks or
damage while the consumers are using the API. Consumers
typically access web APIs using HTTP requests. APIs should
not allow the consumers to change resources using safe HTTP
methods (methods that do not modify resources, e.g. GET).
The safety of the APIs is also associated with the third party
safety, as well as API environment safety. For the last one, we
do not have a log-based indicator.

Subjective satisfaction is the capacity of the API to engage
their users and preserve their interest. API providers can
evaluate this by monitoring the trend of new API consumers.
Additionally, the aesthetic of API is related to the aesthetic of
API elements’ name.

IV. API LOG DATA PRE-PROCESSING

An API log file contains the requests made to the API. This
information is raw, so before applying any analysis technique,
the data should undergo a pre-processing phase (see Figure
1), typically counted as the most difficult task in the Usage
Mining process [18], [20]. While it usually consists of three
steps, namely data fusion, data cleaning, and data structuring,
we include a fourth step, data generalization [18]. See the final
steps in Figure 1.

Data fusion. We already explained part of the data fusion
step discussing different types of API log data (see Section
III-A). Based on where we collect the data (consumers’ or
providers’ side), we extract the log files and merge them (if
they are in different servers). Before proceeding with the pre-
processing steps, the data might be anonymized, because log



files might contain information considered sensitive (identifi-
able personal information). One way of handling this concern
is by masking the sensitive data (i.e., IDs, or IP addresses)
with surrogate identifiers and then proceed with the next steps
[18].

Data cleaning. This step mainly consists of removing
irrelevant and noisy data from the files, and correcting the
data by means of adding or completing missing values. When
fusing data from several sources, the logs from different
sources can have different formats. Thus, when merging them,
we may need to adapt their formats: adding/removing certain
fields, dealing with quoted/unquoted fields, etc. On the other
hand, whether to keep or remove certain log entries depends
much on the purpose of the further analysis [18]. For example,
if one wants to discover user session profiles in web log data,
he/she should filter out: (i) the log entries that result in errors,
(ii) the log entries that have a request method different from
GET, and (iii) the ones that accesses image files [16]. If the
purpose of the analysis is to support caching or pre-fetching,
then log entries for accessing images should not be excluded
from the analysis [18]. Since we aim to measure the usability
of the APIs, the status code is one of the most valuable fields
in the log entries. The error rate of each API endpoint can
reveal usability issues that can highly affect API consumers.
Therefore, for purpose of measuring the usability of the APIs,
we keep the erroneous requests, and filter out from the file,
the log entries that are not API requests, and the ones that do
not imply API resources manipulation. These are some typical
examples, but we certainly do not exclude the possibility of
having to remove other log entries, depending on how the
information is logged. After this step, the number of log entries
will be highly reduced [24], [18], [20].

Data structuring
Extract the API Delete irrelevant
usage logs log entries

{ |
- Extract log files - Delete not API log entries

>Merge files > Complete missing data
> Anonymize > Adapt different log formats

|

Identify Users ]—D[Idemify sessions
Generalize the
data

> Mask all parameter values

Data fusion Data cleaning Data generalization

Fig. 1. Data pre-processing.

Data structuring. This step includes user and session
identification. By users here we mean the applications that are
consuming the API, so this step should be performed when
working with API logs from the provider side. Ideally, when
an application uses an API, the logs generated should have
an ID that identifies their pathway with the API. Usually, the
log file contains only the device’s address (i.e., IP) and the
user agent (i.e., software agent like a browser or an email
reader). When applications’ identifiers are not in the API logs,
each IP might be counted as a user [18]. On the other hand,
log data are usually not completed with the session ID, and

session identification results also specially challenging, due to
several reasons (i.e., caching, proxy servers, same device used
by several users, etc.) [18]. Thus, session must be inferred
combining available user identification and approximate time-
out simulating the time spent by a single user using the API.

Data generalization. This step is considered an ad-
vanced pre-processing step, comprising one of the most
complex tasks in API log data analysis [19], [24]. It
consists of extracting general API specifications from
the requests in the log files. For instance, if we have
“https://.../api/country/Spain/regions”, the
challenge would be to detect “/country/” and “/re-
gions/” as resources’ name (fixed part of the path) and
“/Spain/” as a parameter value (dynamic part of the path).
Synthesising general API description from API usage is a
hard problem, and existing solution are hampered by API
logs nature (noisy, incomplete) and also API design and
implementation problems [24], [19].

V. CASE STUDY DESIGN
A. DHIS2 Web API

We analyzed the log data of the District Health Information
Software 2 (DHIS2) web API. DHIS2 is an open source, web-
based health management information system platform used
worldwide for data entry, data quality checks and reporting.
It has an open REST API, used by more than 60 native
applications. External software can make use of the open API,
by connecting directly to it or through an interoperability layer.

DHIS2 is as well instantiated as WHO Integrated Data
Platform' (WIDP) at World Health Organization (WHO), and
is used by several departments for routine disease surveillance
and country reporting. For the analysis, we use API log data
from the development instance of WIDP, with more than 50
applications installed, core or built in-house. The logs date
from September 2018 to November 2019.

B. Data pre-processing

We instantiate the data pre-processing workflow previously
introduced in Section IV, and further discuss the challenges
encountered in different steps of the process.

Data fusion. As previously mentioned, we had the log data
from WIDP, which is a DHIS2 API consumer. But as several
applications are installed on this platform, it partly behaves as
provider. The logs were recorded using a customized Apache
log format, which contained the following information: client
IP, request long date (date, time, timezone), duration (time
needed to send the response), keepalive, request (method +
resources URL + protocol), response code, the size of the
object returned and the user agent.

Data cleaning. We discarded the log entries with request
method HEAD or OPTIONS, as they do not imply any
resource manipulation or resource retrieval [24]. We filtered
out also the log entries that were not related to APIs, thus

Uhttp://mss4ntd.essi.upc.edu/wiki/index.php?title=WHO_Integrated_Data
_Platform_(WIDP)



not containing the “/api/” entry point, predefined to be in the
API request. These are usually log entries for loading of style
files, fonts, or graphics. But at the same time we were careful
not to remove key log entries (i.e., log entries about the login,
logout and applications’ first access) that, even though did not
contain the ‘“/api/” entry point, played an important role in
data structuring. After data cleaning, our log file contained
2,268,291 log entries (i.e., requests), out of 5,936,203 that it
had initially.

Data structuring. For user identification, we used the
information under “client IP” in the log entry to identify
different API consumers (i.e., users). We considered as a
session all the requests made by one user (client IP), with
time difference no more than 15 minutes. We assigned
incrementally a number to each session as an identifier,
ending up with 40,067 sessions, from 849 users. As we
were analyzing the know-ability of the API, our focus was
not on the applications that were using the API (i.e., the
real consumers of API), but on the programmers (i.e., the
first consumers of the API). However, if measuring, for
example, the completeness (investigate about workarounds)
of an API, one should identify which application submitted
each request, in order to be able to build an exact sequence
of the requests for each application. As already mentioned,
in our case, the log files contained log entries from each of
the applications installed in the platform. But the log entries
did not have information about which application submitted
each requests. The only information we had was the log entry
specifying the opening of any application: “GET /dhis2-
dev/{nameOfTheApplication}/index.action”.
But the same user could open several applications at the same
time. So, from the moment the same user (ClientIP1) opened
more than one application, we could not be sure about the
origin of the next log entries:

ClientIP1 "GET /{Appl}/index.action"
ClientIP1 "requests from Appl"
ClientIP1 "GET /{App2}/index.action"
ClientIP1 "requests from Appl or App2"

In these analysis scenarios, we might need to make approx-
imations and combine IP information, current app(s) opened
and the timeout. The lack of applications’ identifiers can
impede not only the user identification, but also hinder the
data cleaning.

Apart from user and session identification, we performed
also “target endpoint” identification. In order to be able
to aggregate statistical information for each endpoint
(total number of requests, requests with client side
error, etc.) we assigned a “target endpoint” to each
request that got a client side error response code. For
example, if we want to compute statistical metrics for the
endpoint “/api/organizationUnitGroupSets”,
then we should somehow match it with the endpoints:
“/api/organization-unit-group-sets” or
“/api/organizationsUnitsGroupsSets”, which
have a wrong syntax, but the programmer intent was the
first endpoint. We started by extracting all the requests

that got a status code not related with syntax errors. Using
the Levenshtein distance algorithm [27], we computed the
similarity of these endpoints with each real endpoint in the
requests body, and grouped together the most similar ones.

Data generalization. During this step we had to
define which parts of paths were fixed (i.e., resources)
and which were dynamic (i.e., parameter values).
That is, for several endpoints with path body like
“api/userGroups/uNJOBalw/users/H4atNsEr”, or
“api/userGroups/BzbYRSpk/users/D78WJIM8J”,
we inferred from them a general one, with generic API
specifications “api/userGroups/ID/users/ID”. We
applied some ad hoc procedures, and masked all the parameter
values with the same string “ID”.

C. Data Analysis

We assumed that an API that suffers from poor know-ability,
will have a high error rate. For each sub-attribute, based on
the defined indicators, we computed the below metrics and
created a model to predict the kind of error rate.

o Clarity: We analyzed the endpoints’ names and the
similarity between them, assuming that similar names
confuse users and increase the chances of making
errors. We expect that endpoints with higher similarity
will have more client side errors response codes. We
split each “target endpoint” into its elements. For
each of them, we found the most similar one, by
computing their similarity. For example, the account
resource had the highest similarity of 0.71 with count,
constants 0.82 with constraints, and so on.
Using this information, we then computed two metrics
for each endpoint: the average similarity and the
maximum similarity. For example, userDataS-
tore/gridColumns/eventCaptureGridColumns
has three elements, userDataStore with similarity
0.69, gridColumns with similarity 0.48, and
eventCaptureGridColumns with similarity 0.72.
So the endpoint average similarity coefficient will be 0.63,
while the maximum similarity will be 0.72, coming from
eventCaptureGridColumns.

« Consistency: We focus on the syntactical aspects of naming
to evaluate the consistency. Thus, we analyzed the naming
style of endpoints (names that contain only lower case
or numbers, upper cases, underscores, hyphens, special
characters, or more than one of these “styles”). Actually,
we do not expect a specific naming style to be the cause of
errors from client side. We will investigate the impact that
the existence of several naming styles, can have on API
consumers. Clearly, the semantic aspects (use of synonyms,
homonyms, etc.) are also very important when we analyse
the consistency of an API and can be evaluated using
different tools for natural language processing. We will
include this in our future work.

o Memorability: We analyzed the path part as well as
the query part of the requests. First we computed
the path length as the overall number of characters;



and stored under path elements the information about
the number of elements in the path (e.g., “analyt-
ics/events/aggregate/ID” has three elements in the
path body). Then, we examined the query part to quantify
its complexity. We measure the query length as the number
of characters; we analyze the query syntax and impute the
transformation metric as the number or transformation
functions in the query; we represent the logical operators
as the number of logical operators used; we defined the
query depth as the number of nested objects, giving to each
nested object the same weight, despite the number of fields
it contains, as we are analyzing the complexity of the query
part from the programmer point of view (amount of code to
be written) and not the machine point of view (amount of
time to compute the results of the query); we counted the
query parameters; and also the schema attributes used in
each request. Both are part of the query length, commonly
used to evaluate query complexity, but as they represent
different ways of reducing the result size, we choose to
count them separately. As we realised that consumers often
use the same query parameter or schema attribute several
times in a single request, we decided to reflect this also in
different metrics: unique query parameters and unique
schema attributes.

o Helpfulness: To measure this sub-attribute, we analyzed the
endpoints that got repeated client side error codes from the
same user. We assume that the lack of details in the error
messages and the lack of examples in the documentation
can lead consumers to repeat the same mistakes. Therefore,
we grouped all the requests with the same “target endpoint”,
from the same client IP, and analyzed those that had 2 or
more client side error. We imputed the error repetition rate
as the number of error per total number of request for the
same endpoint for each programmer.

Besides the metrics per each request, we computed the error
rate as the number of erroneous requests per all requests. We
first selected only those endpoints that were in requests with
error rate greater than zero and divided them in two classes:
endpoints with error rate higher than 0.3 were considered
with poor usability, and the ones with error rate lower than
0.3 with no usability issues. There were 1128 endpoints with
certain values of the metrics. In order to balance the classes
distribution to 40% for poor usability and 60% for no usability
issues, we randomly extracted endpoints with error rate zero
to obtain the desired proportion.

First, in order to reduce over-fitting and facilitate inter-
pretability of results, we performed attribute (i.e., metrics)
selection, keeping only those metrics that were more relevant
for predicting the class. We run the CorrelationAttributeEval
with Rank method on WEKAZ2, which ranks the attributes by
measuring the correlation between them and the class. From all
the aforementioned metrics, maximum and average similarity,
query depth, logical operators, and path length were the more
relevant ones.

Zhttps://www.cs.waikato.ac.nz/ml/weka

Then, to see if we could predict the class based on these
metrics, we built a decision tree using WEKA implementation
of J48, with the default parameterization and 10-fold cross-
validation. We used a classification model because we were
interested in finding if the API had or not usability issues,
more than predicting the exact error rate (as a regression model
would imply). Thus, using the selected attributes from the
information in the logs, we obtained a model able to predict
the class of the endpoints with an accuracy of 72.25%. Con-
sidering that in our analysis we do not take into account other
factors in APIs usability like: APIs functionality, semantic of
API names, API programmers experience, etc., we aimed at a
high precision, more than at a high recall. But, even though
we were not aiming to find all the endpoints with usability
problems only from the data in the API logs, our model
performed quite good with a recall of 0.722 (Table II, III).

TABLE 11 TABLE III
CONFUSION MATRIX J48 RESULTS
a b classified as Correctly Classified 72.25%
272 | 280 a Incorrectly Classified 27.75%
103 | 725 b Kappa statistic 0.389
Mean absolute error 0.399
a=poor usability Weighted Avg Recall 0.722
b=no usability issues Weighted Avg Precision 0.723

VI. DISCUSSION

To get finer insights for the gained classification, we an-
alyzed in more detail the branches of the decision tree. We
found that requests that did not have a query part tend to
have lower error rate, even when the path had an average
similarity higher than 0.61. The error rate was also low for
those endpoints with both average and maximum similarity
low, respectively lower than 0.61 and 0.75. On the other hand,
the error rate was high for those endpoints that even though
had low average similarity, they had at least one element
in their path with very high similarity. Endpoints with high
average similarity and a query part, had also high error rate.

Additionally, we examined closer the endpoints with higher
error rate, to see which were the most common mistakes done
by the programmers. We point out the following issues:

o Consumers try different name styles until they find the right
one. The fact that in the same API, different resources are
named using different styles, confuses them. For example,
before typing userRoles/ID, one of the consumers tried
with userrole/ID and user—-roles/ID.

« We encountered another consistency issue in the naming
of API, plural and singular form of resources’ name. As
some of the resources’ name were in plural, and oth-
ers in singular, consumers tried their different forms. For
objects with composed names (i.e., multi-word names),
the error rate increased. For example, before typing or-—
ganisationUnitGroups, one consumer tried three dif-
ferent versions: organisationUnitGroup, organ-—
isationUnitsGroups and organisationUnits-
Group. The lack of consistency in naming resources de-
creases the memorability of the API. Different naming
conventions (pascal or camel case, underscore, etc.) and



the semantic nature of the analysis needed were the main
reasons why these two aspects (plural/singular form and
multi-word names), were not reflected in any of the metrics.

o When analyzing the repeated errors for the same endpoints
from the same consumers, to measure the helpfulness, we
noticed low memorability perception from consumers. From
1,283 cases of repeated client side errors, 659 of them had a
non client side error response code for the first request. This
implies that even after understanding the API and submitting
correct requests, consumers fall in mistakes.

Threats to validity. The main threat to construct validity
involve the arbitrary chosen threshold of 0.3 for the error rate
class. To mitigate this, we plan to re-define the threshold by
conducting other use cases (i.e., independent datasets). This
way, we will also minimize the external validity threat, whose
main concern is related to the one API we have as use case.

VII. CONCLUSION AND FUTURE WORK

We reviewed the current state of the art in API usability
evaluation in order to identify those usability attributes that
mostly affect the programmers experience in using the APIs.
We combined the gathered information and for each usability
attribute, we specified an indicator that web API providers
should use to provide usable web APIs. We embodied the
indicators for the know-ability attribute into several metrics,
which we later computed using the web API usage data from
our case study. In order to assess the significance of these
metrics, we built a classifier to predict the kind of error rate
based on the endpoints’ specifications. Know-ability issues
that more influenced the API consumers experience were more
related to similar API elements’ names, multi-word names, and
lack of consistency in naming convention.

As future work, we plan to define more metrics for the
attributes under study and expand our analysis to other
usability attributes. In order to re-define the threshold and
the generalizability of our model, we will take under study
other use cases. On the other hand, to evaluate the analysis
results we plan to conduct a supplementary empirical analysis,
directly asking the API users for their opinion on whether they
encountered usability issues while using the API or no.
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