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Abstract—Domain-specific languages (DSLs) are
popular for many reasons, such as increasing productiv-
ity for developers and improving communication with
domain experts. Both textual and graphical DSLs are
viable solutions with complementary pros and cons:
while graphical DSLs shorten the learning curve and
facilitate documentation and communication, textual
DSLs aim at higher productivity thanks to more ef-
ficient editor functionalities. This paper presents the
industrial experience on the adoption of a hybrid ap-
proach combining an existing textual DSL with a read-
only graphical state machine representation (visualiza-
tion), equipped with a selective abstraction functional-
ity that offers user-specific, highly configurable views
on states and transitions. Our approach is the result
of an evolutionary process to improve the modelling
experience, relying on frequent user feedback. We argue
that a well-tailored visualization is a suitable way to
shorten the learning curve and ease the adoption of
model-driven approaches in industrial settings.

Keywords-Industrial Experience, Domain-Specific
Language, Model-Driven Engineering, User Experi-
ence, Graphical Language

I. Introduction
More than ever, industry faces the problem of the con-

stantly growing complexity of technical systems. Model-
driven Engineering (MDE) [1] has emerged as a practice
to tackle this complexity increase. Models of real-world
systems are created through the process of abstraction - i.e.
the omission of irrelevant details. The level of abstraction
- i.e. the decision which information is or is not relevant
- ultimately determines the usefulness of a specific model.
The correct level of abstraction is as much determined by
the problem domain at hand as it is by the engineer’s
individual understanding thereof. It can therefore vary
from application to application and from person to person.
While the underlying data of a model remains on a fixed
abstraction level, engineers can use different representa-
tions of the same model which can further rise and fine-
tune the abstraction to highlight different model aspects
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and make the model accessible to people with different
backgrounds.

This work presents a combination of textual and graph-
ical modeling languages in the context of a Model-based
Testing [2] use case in the automotive domain [3], [4]. It
is a result of the HybriDLUX project on improving the
ease-of-use of domain-specific tooling in industry.

The AVL List GmbH is the world’s leading supplier
of testbeds for the automotive industry. Such testbeds,
whether for engines, batteries, powertrains or whole vehi-
cles, consist of a variety of measurement devices capturing
different quantities like fuel flow and temperature, torque,
amount of exhaust particles, among various others. The
measurement devices are connected to a testbed control
software running on a desktop PC. Due to the high
variety of devices, device firmware versions and control
software versions, integration testing for testbeds becomes
challenging. At AVL, we tackle this complexity through
the application of Model-based Testing approaches [2].
In our previous work [4], [5], we presented a textual
Domain-specific Language (DSL), the Measurement De-
vice Modeling Language (MDML), which is used by AVL’s
test engineers to specify measurement device models from
which integration tests can be generated. In the work
at hand, we extend our MDE approach by incorporating
a graphical DSL called State Machine Language (SML),
which serves to improve the intuitive understandability of
our models via visualisations whose content is determined
by users via a selective abstraction mechanism. Our cur-
rent MDE solution is the result of an evolutionary user-
centric development approach [6], which, as a side effect,
serves as a continuous evaluation of our work.

The contributions of this paper are i) the introduction
of our MDE framework (hereafter called the HybriDLUX
framework), in terms of its artefacts and relationships,
ii) its advanced visualization capabilities (i.e. selective
abstraction) for non-MDE experts, and iii) a retrospect
on the successful application of the aforementioned evolu-
tionary development process.

The rest of this paper is structured as follows. Sec-
tion II introduces the HybriDLUX Model-driven Engineer-



ing framework. Section III focuses on model visualisation
and selective abstraction concepts and their implementa-
tion in the HybriDLUX framework. Section IV outlines the
development and evaluation process of SML. Section V
refers to relevant related work. Finally, section VI con-
cludes the paper.

II. The HybriDLUX framework
The aim of the HybriDLUX project is to decrease

the complexity of our testing processes and increase the
degree of automation in our industrial setting through the
introduction of MDE principles. The minimal wealth of
knowledge for any MDE practitioners includes the three
pillar concepts of model, metamodel, and model transfor-
mation [1].

Models are abstractions of reality for a given purpose. In
MDE, they are prescriptive, machine-readable artefacts,
obtained at the end of a modeling activity. Models are
connected (i.e., model elements may be linked beyond the
boundary of one model), and dynamic (i.e., models may
be analyzed and executed in some form) [1], [7].

Metamodels define the modeling concepts and their rela-
tionships and provide the intentional description of all pos-
sible models, which, in turn, conform to the metamodel.
Metamodels define modeling languages in a purely con-
ceptual way and are independent of any form of concrete
representation. The concrete syntax of a language assigns
graphical or textual elements to metamodel elements that
can be understood by users and, possibly, edited through
model editors [1].

Model transformations are programs executed by a
transformation engine, which take one or more models as
input to produce one or more models as output, according
to rules that map source and target modeling concepts
as defined by the corresponding metamodels [1], [8]. In
MDE, model transformations are used to solve different
tasks [8], [9] such as code generation, model refactoring,
reverse engineering to name just a few.

In this context, the HybriDLUX project is focusing on
a Model-based Testing [2] scenario, thus combining mod-
eling and testing activities. Test engineers are demanded
to produce models representing the software behavior of
embedded devices, from which integration test cases are
generated, after the model has been validated. In partic-
ular, HybriDLUX aims at improving the user experience
during the modeling phase by combining textual editable
models with view-only graphical models or visualisations.

Fig. 1 shows the HybriDLUX framework in terms of
MDE artefacts, i.e., metamodels, models, transformations,
and supporting technologies. The framework comprises
two DSLs, namely MDML and SML, to represent the
software behavior of automotive measurement devices for
the purpose of test case generation. MDML and SML
models are integrated by means of an MDML2SML trans-
formation, defined on language concepts from the corre-
sponding metamodels. The modeling use case is detailed
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Fig. 1. Overview of the HybriDLUX framework.

by the workflow depicted in the activity diagram in Fig. 2,
where models represent the engineering data exchanged
among each single step. The rest of this section intro-
duces the MDE artefacts and technologies in Fig. 1 and
details the modeling workflow in Fig. 2 with the help
of an introductory example, which is intentionally trivial
due to space limitation. We model the control software
of a measurement device that switches between standby
and measurement mode and, at the same time, can be
controlled remotely via the control software or manually
supervised by an operator.

A. Measurement Device Modeling Language
The Measurement Device Modeling Language (MDML)

is a textual DSL that was introduced in [5]. It was designed
to model the software behavior of automotive measure-
ment devices, which can be expressed in the form of a
state machine. MDML was created in close cooperation
with its user base to efficiently encode these measurement
device state machines. MDML models represent one of the
outcomes of the modeling activity. They are directly edited
by users (see Fig. 2) via a dedicated textual editor.

Following the taxonomy by Utting and Legeard [2],
MDML can be classified as a pre/post language as it
expresses each state as a valuation of several state variables
and each transition through its pre- and post-conditions.
Therefore, neither states nor transitions are explicitly
represented in the MDML metamodel, whose excerpt is
depicted in Fig. 3, covering the necessary concepts for the
purpose of this work. For a thorough description, we refer
to [4].

The MDML model of our example use case is distributed
over Listings 1,2 and 3. Each MDML model starts with the
definition of one or more state variables. Each state vari-
able definition consists of a public or private qualifier
to indicate the variables’ visibility from the outside, the
keyword statevar, the variable name, its value domain
(i.e., set of possible values) and its value in the initial state:
1 private statevar Level {Manual , Remote } = Remote ;
2 public statevar Mode {Standby , Measure } = Standby ;

Listing 1. MDML State Variables
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Fig. 2. Modeling in HybriDLUX.
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Fig. 3. Excerpt of the MDML metamodel.

In the following, we use n to denote the total number
of state variables in a given MDML model and Dj to
denote the domain of the j-th state variable. For example,
the state variable definitions in Listing 1 induces D1 =
{Manual, Remote} and D2 = {Standby, Measure}. For the
domains of different state variables, we define:

Dj ∩Dk = ∅ for 1 ≤ j < k ≤ n (1)

The valuation of all state variables at a given time consti-
tutes the current state of the encoded state machine. The
expression of states as the valuation of state variables lends
a certain aspect of multi-dimensionality to state machines
defined in MDML. A similar effect can be achieved in UML
state machine diagrams [10] by using multiple regions.

In addition to the state variables, the user specifies one
or more input channels, each defining one or more inputs.
An input channel definition consists of the keyword input,
the channel name and its list of possible inputs:
3 input Action {SMAN , SMES , STBY };

Listing 2. MDML Inputs

These inputs are used to trigger the transitions of the
state machine. Their possible grouping into different input
channels is purely cosmetic. Henceforth, we will use I to
denote the cumulative set of inputs defined in a given
MDML model.

The rest of the model consists of a decision tree (Intro-
duced as an abstract metaclass for explanatory purposes).
This tree contains given statements, encoding conditions
on the current values of state variables (pre-conditions),
under which specific value changes can take place. The
inputs triggering these value changes are incorporated
via when statements. Finally, then statements specify the
individual value changes (post-conditions). If no value

change is specified for a specific state variable, its value
remains unchanged. The above keywords are reminiscent
of various Behaviour-driven Development languages like
Gherkin1, from which MDML was derived [4], [5]. In
addition, MDML models may also contain statements
in the form of Event-Condition-Action (ECA) notation,
similar to UML’s state entry actions, as well as time-
triggered actions (Time-triggers are treated like inputs and
are members of I.). Listing 3 shows a very simple example
of a decision tree:
4 when Action = SMAN then Level -> Manual ;
5
6 given Mode = Standby when Action = SMES
7 then Mode -> Measure and Level -> Remote ;
8
9 given Mode = Measure when Action = STBY

10 then Mode -> Standby and Level -> Remote ;

Listing 3. MDML Decision Tree

In more complex MDML models, multiple given state-
ments can be combined and cascaded to form a tree
structure, allowing for the concise modeling of multiple
transitions at once. The effect is similar to that of UML
super-states. However, MDML is even more flexible and
offers a multitude of options to structure the decision tree
and encode a specific state machine behavior. Each user is
free to choose a modeling style that suits him or her best.

B. State Machine Language
The State Machine Language (SML) is a graphical and

executable DSL. It was designed to give the users visual
feedback about MDML-encoded, implicit state machine
models. The SML model corresponding directly to the
textual MDML model given in Listings 1, 2, and 3, is
shown in Fig. 4. SML models cannot be directly edited.
Instead, each SML model is obtained from an MDML
model through a model transformation [1]. We refer to
such a graphical read-only model representation as a visu-
alization. Different SML visualizations can be generated
and inspected by the users to assess the correctness of
the source MDML model contents, and, together, they
represent the outcome of the modeling workflow that feed
the subsequent integration test activity (Fig. 2).

1https://cucumber.io/docs/gherkin/reference/

https://cucumber.io/docs/gherkin/reference/


Fig. 4. Visualization of an example state machine.

In contrast to MDML, SML can be classified as a
transition-based language, which expresses states and tran-
sitions explicitly [2]. The only direct overlap between the
MDML and SML metamodels are the concepts of state
variables and their respective values, as well as inputs.
MDML can represent a specific state machine in many
different ways, as previously stated. However, a specific
state machine is uniquely represented by one particular
SML model. Due to this lack of structural freedom, the
metamodel of SML is much simpler than that of MDML
and shown in its entirety in Fig. 5.

The runtime semantics of SML is well-defined and
similar to that of many other well-known state machine
formalisms. The set of states in a given state machine
model (i.e., SML model) is denoted by Q ⊆ D1×· · ·×Dn.
Each state q ∈ Q is an n-tuple of values from each domain.
Due to Equation 1, ordering and multiple occurrences
become irrelevant and we can express each state as a set
q = {x1, . . . , xn} of state variable values with xj ∈ Dj . We
write a transition from a pre-state q on an input i ∈ I to a
post-state q′ as 〈q, i, q′〉. The set of transitions in the state
machine model δ ⊆ Q× I ×Q is also called the transition
relation. The transition relation fully specifies the state
transitions of an SML model. SML allows no additional
behavioral specifications akin to ECA formalisms. While
the underlying MDML model may contain such elements,
they all have been factored into δ.

UML is the most widely-used modeling language in in-
dustry [11] and most practitioners are familiar with UML
or UML-like notations for state machines. Therefore, the
graphical concrete syntax chosen for SML renders states as
rounded boxes and transitions as directed arrows between
those boxes. Each state is labelled with its corresponding
state variable valuation. The initial state is highlighted by
a thick blue border. In addition to the model contents, each
visualization contains a legend, listing all state variables in
the model by name. The state variables are color-coded to
match their respective value within the individual states.
Transitions are labeled with their respective input.

The concrete syntax of SML is obtained by mapping
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Fig. 5. The complete SML metamodel.

SML metamodel elements to graphical shapes and it is
highly configurable through a mechanism called selective
abstraction, which will be described in detail in Section III.
As a result, different concrete syntax configurations (i.e.,
abstractions) can be assigned to SML models, producing
different visualizations of the same state machine model.

C. Model Validation and Transformation
The HybriDLUX modeling workflow (Fig. 2) comprises

model validation and transformation steps. Validation is
performed on both MDML and SML models. Here, the
term validation refers to the following actions: i) checking
the conformance of any MDML artefacts to the MDML
metamodel, ii) inspection of MDML and SML artefacts
performed by users during the modeling activity, and
iii) verification of constraints during the execution of
the MDML2SML model transformation. The conformance
of MDML models to their metamodel is automatically
checked by the model editor. Inspections can be performed
on MDML models and SML visualisations to determine
if the corresponding source MDML model needs changes.
However, thanks to the systematic mapping of MDML
to SML, inspections of complex behaviors are better sup-
ported by SML visualisations.

Finally, additional validation constraints are encoded
in the MDML2SML transformation. Indeed, the role of
the MDML2SML transformation is twofold: On the one
hand, as expected, it detects patterns of source MDML
model elements to be transformed into patterns of target
SML model elements. In addition, it verifies some static
semantics constraints in order to obtain a valid and ex-
ecutable SML model as an outcome. As a result of both
functions and the well-defined runtime semantics of SML,
the MDML2SML transformation effectively defines the
runtime semantics of MDML. The induced semantics is
most closely related to Synchronous Languages [12]–[14],
but also similar to that of Guarded Command Languages
[15] or Abstract State Machine languages [16], with dif-
ferences in the combination of individual rules and the
semantics of unspecified transitions.

In the following, we give a brief overview of the trans-
formation’s general functionality and provide an example
based on the MDML model given in Listings 1-3. The
transformation algorithm follows an exploratory approach.
It starts by establishing the initial state q0 ∈ Q of the
SML model, as determined by the initial values of each
state variable in the MDML model. The state variable
definitions in Listing 1, for example, yields the initial



state q0 = {Remote, Standby}. After the initial state
has been established, the transformation algorithm starts
to probe all available inputs. For the state q0 and the
input SMES defined in Listing 2, the decision tree in List-
ing 3 prescribes a value change of the variable Mode from
Standby to Measure, creating a newly discovered post-
state q1 = {Remote, Measure}. The state variable Level
does not change since it already had the value Remote
in q0. Therefore, the transformation logs a new state q1
and a new transition 〈q0, SMES, q1〉. If the decision tree
does not define a value change for a specific combination
of pre-state and input, the transition remains unspecified
and will not be included in the transition relation. If
the decision tree defines multiple contradictory (i.e., non-
deterministic) value changes, this constitutes a semantic
model validation error and no state machine model can
be obtained. This process is repeated for all states in Q
(which are discovered on the fly) and all inputs in I. In
essence, we perform a closure on Q under the pre/post-
relation defined by the MDML model for all inputs in I.
The state machine model in Fig. 4 has been obtained by
transforming the MDML model from Listings 1-3.

D. The MDML and SML Synergy
We use SML alongside MDML for two main reasons:

understandability and executability.
Firstly, SML provides an executable semantics to

MDML via the MDML2SML transformation [17]. An ex-
plicit state machine representation, as provided by SML, is
easily executable and very flexible to use for test case gen-
eration, error tracing and other operations that may be im-
plemented in future versions of the HybriDLUX toolchain.
Test cases, for example, can easily be represented as lists
of transitions. The more implicit MDML representation
of the same state machine would be much more unwieldy
to use, since the structural freedom of MDML decision
trees complicates the computation of the individual tran-
sitions. Therefore, we decided to transform each MDML
model into an executable state machine model early on
in the workflow and use the latter as a basis for all
subsequent activities. This allows all semantics-defining
code for MDML to be concentrated in the implementation
of the model transformation. Due to the aforementioned
structural freedom, an optimal transformation from state
machine models back to MDML would be highly non-
trivial. Thus, we designed the transformation to be unidi-
rectional and the concrete syntax of SML to be read-only.

Secondly, graphical languages have an advantage in
communicability and understandability, compared to tex-
tual ones [18]. While MDML gives the user a great deal
of control over the details of a model, it generally does
not offer an intuitive overview, i.e., the user cannot easily
judge the degree of completeness of an MDML model at
a glance. Therefore, we designed the concrete graphical
syntax of SML to mitigate the main drawback of MDML
and provide the test engineers with such an intuitive model

overview.

E. Model-based Test Engineering Process
The interplay between MDML and SML induces the

test engineering workflow depicted in Fig. 2: The test
engineer starts by creating an MDML model in a dedicated
textual editor. If the MDML model passes the automated
syntax and semantics checks, it is transformed into a
state machine model, conforming to the SML metamodel,
as described in Section II-C. Once the state machine
model has been obtained, a visualization can be shown
to the user. If this visualization does not suite the user’s
needs for visual clarity, he or she can obtain different
visualizations of the same state machine model through se-
lective abstraction. Once a suitable visualization has been
found, the user can judge the overall completeness and
correctness of the model. Afterwards, the user can either
start the process over by correcting any modeling error in
the MDML model, or proceed to use the finished state
machine model for the model-based integration testing
process, which is described in [4] and exceeds the scope
of this work. In short, we perform an automated test case
generation step, using fault-based, transition-based and
random coverage techniques [2]. The generated test cases
are then deployed to a test automation framework for re-
peated automated execution. After the test case execution,
feedback is collected by comparing the workflow outcomes
(MDML and SML models, generated test cases and their
execution traces). Whenever the generated tests turn out
to be inadequate due to a modeling error, the process can
again be repeated by refining and/or correcting the given
MDML model.

Generating tests according to state-machine-based cov-
erage criteria, such as transition coverage, requires a full
state space exploration, as it is accomplished by our model
transformation. Currently, our system models at AVL are
not large enough to cause a state space explosion. If
this were ever to change, we would likely abandon state-
machine-based coverage criteria and revert to structural
or mutation-based coverage criteria on the decision tree,
as we have used previously [4]. For model validation, we
could use techniques like Bounded Model Checking [19],
which checks the model against temporal logic formulas
while avoiding a full state space exploration.

F. Technologies
Our framework is built on an Eclipse2-based Rich

Client Platform, containing both the Xtext3 language
workbench for textual Domain-specific Languages, as well
as the Graphical Language Server Platform (GLSP)4 to
create graphical model representations in SML. GLSP
is currently being developed by our project partner

2https://www.eclipse.org
3https://www.eclipse.org/Xtext/
4https://www.eclipse.org/glsp/

https://www.eclipse.org
https://www.eclipse.org/Xtext/
https://www.eclipse.org/glsp/


EclipseSource5, who can quickly respond to our project-
related needs. We specified the MDML metamodel in
Xtext, thereby obtaining a textual editor prototype out-
of-the-box. Over time, this editor prototype evolved into
a modeling tool, which is used by AVL’s test engineers
on a daily basis. Due to historic reasons, the metamodel
for SML was never formally specified in EMF/Ecore6.
Instead, it has been realized as a hierarchy of plain Java
classes which is not based on any pre-existing framework.
This Java-API has, up until now, been maintained AVL-
internally and supports the execution of SML models.
We consider a formal Ecore-based definition of the SML
metamodel part of our future work. The MDML2SML
transformation algorithm is currently written in Java.

III. Visualisation and Selective Abstractions

State machine models for industrial use may contain
several tens to hundreds of states, resulting in overloaded
visualizations. Therefore, we integrated our visualization
concept with selective abstraction to help the user to
reduce this visual complexity. The selective abstraction
mechanism is realised via state variable reduction and state
hiding functionalities that are introduced in the rest of this
section. Both mechanisms can be thought of as functions,
mapping a visualization of the SML model to a more
abstract visualization. Both can be applied multiple times
and are mutually commutative.

A. State Variable Reduction
State variable reduction is a refinement of Ladenberg-

ers and Leuschels more general projection diagram ap-
proach [20]. As per the taxonomy of Liu et al. [21], it can
be classified as an attribute-based node grouping approach,
combining sets of states into superstates. Initially, the vi-
sualization contains no reduced state variables and shows
the full extent of the SML model given by Q and δ (see
Fig. 4). Therefore, all states q ∈ Q contain one value from
each domain Dj , respectively:

|q ∩Dj | = 1 for j ∈ [1..n] (2)

When the j-th state variable is reduced, a new visu-
alization is created, in which each state q is replaced by
a more abstract version q↓j of itself. This abstract state
lacks the value from Dj and therefore can no longer be
distinguished by it:

q
reduce j−−−−−→ q \Dj = q↓j (3)

All duplicated occurrences of q↓j emerging as a result of
the reduction are merged into one, creating a new set of
abstract states Q↓j . The “reduce” operation constitutes
a specific form of the more general projection function

5https://eclipsesource.com/
6https://www.eclipse.org/modeling/emf/

in [20]. As their pre- and post-states are abstracted, each
transition is as well mapped to a more abstract version:

〈q, i, q′〉 reduce j−−−−−→ 〈q↓j , i, q
′
↓j〉 (4)

All emerging duplicate transitions are merged into one,
resulting in the creation of a new abstract transition
relation δ↓j ⊆ Q↓j × I × Q↓j which now may be non-
deterministic7. However, the underlying model contents
are still represented by Q and δ, which are deterministic8.
All instances of non-determinism in δ↓j are merely arte-
facts of the visualization’s heightened abstraction level.

The user can reduce a state variable in the legend by un-
checking the box next to it (see Fig. 6). This triggers an
animation in which all states that were only distinguish-
able by this variable collapse into their common q↓j . This
animation is too fast to convey any detailed information
to the user but it allows an intuitive understanding of
the state variable reduction process. The abstract visu-
alization (Q↓j , δ↓j) can be further abstracted through the
reduction of additional state variables, until only one state
variable remains.

B. State Hiding
If the SML model visualization obtained by state vari-

able reduction is still deemed too complex to be intuitively
understandable, we offer an additional functionality called
state hiding to further reduce visual complexity. This
functionality can be classified as an attribute-based node
sparsification approach [21], as it allows the user to hide
specific states based on individual state variable values
x ∈ D1 ∪ · · · ∪Dn. If the user chooses to hide the value x,
each state q is hidden, iff x ∈ q. A transition is hidden iff
its pre- and/or post-state are hidden.

The legends in Fig. 4 and 6 display a “+” sign next
to each state variable. A click on this sign opens a list
of all values within the domain of this state variable.
Each value again comes with a checkbox through which
all containing states can be hidden and un-hidden. An
important difference between state variable reduction and
state hiding is that the former technically never removes

7This may happen if the pre-states of two transitions with the same
input are merged but their post-states are not.

8Being deterministic, δ could be written as a function from pre-
state and input to post-state, i.e. δ : Q× I → Q. This may no longer
be possible with δ↓j .

Fig. 6. An alternative visualization of the example state machine
with the state variable Level reduced.

https://eclipsesource.com/
https://www.eclipse.org/modeling/emf/


any states or transitions from the visualisation, but rather
combines several of them into one. In contrast, state
hiding completely removes states and transitions from the
visualisation. Therefore, it could potentially suggest to the
user that these states and transitions are not present in the
model. To mitigate the risk of such a misunderstanding, we
explicitly mark state variables in the legend with a specific
icon if their domain contains hidden values.

IV. Continuous Tool Evaluation and Evolution
A. The Value of Good User Experience

The notion of user experience (UX) encompasses but
at the same time goes far beyond mere tool usability.
Essentially, it is an umbrella term for all positive or
negative emotions that a user may associate with a given
tool. Therefore a tool’s user experience is strongly related
to its acceptance by a specific user base.

In this regard, if the learning process for a newly de-
veloped MDE tool is very long, its introduction to a work
environment with fast-paced development cycles becomes
difficult. While users invest considerable time to adjust
to the new model-driven approach, they endanger their
own deadlines and, at the same time, end up with quickly
outdated models. This, in turn, motivates the users to
adhere to their familiar non-model-based methods.

It was this predicament that led to the rejection of an
older and otherwise fully functional UML-based version
of our Model-based Testing approach [3]. It is therefore
essential to carefully consider how a new MDE approach
is introduced to a given user base to maximize its UX and,
consequently, its chance of acceptance.

B. MDE Micro-Injections
Stieglbauer and Rončević [6] have suggested an ap-

proach to maximize the UX of a planned MDE tool by
taking immediate influence on its development process.
This approach is called MDE micro-injections. Its central
idea is to synchronize tool development cycles with the
development cycles of its future users. In each cycle, a
tool prototype is created and evaluated against the current
non-model-based approach. This evaluation encompasses
both tool functionality as well as regular user feedback,
which is obtained through lightweight feedback rounds to
not endanger the users’ deadlines.

On the part of the tool developer, this process requires
the ability of fast tool prototyping, as it is, for example,
granted by the Xtext language workbench for textual
DSLs. The tool is developed in small increments and in
each iteration, the users are exposed to the new MDE prin-
ciples in tiny doses (hence, the name “micro-injections”).
Each new iteration must produce a small but measurable
benefit. This user-centric development process gives the
users the feeling that their opinions are heard and their
needs are met. They develop positive feelings towards the
MDE tool from the very beginning. They feel that they
are provided with a tool that suits their specific needs

and that they desire to use. The tool introduction process
is experienced positively and with confidence rather than
as a burden. In turn, the tool developer gains confidence
that, through this positive feedback loop, the MDE tool
quickly evolves to a form that adequately meets the user
and process requirements.

MDE micro-injections have already proven successful in
our industrial environment during the development and
introduction process of MDML [4], [22].

C. Evolution of SML
Since the inception of MDML, we planned to extend

our modeling approach by a graphical model representa-
tion [5]. The first viable visualization concept was created
by Altenhuber [23]. He proposed to highlight different
aspects of MDML models through four different types
of visualizations and validated his approach through a
series of user interviews. Notably, two of his visualizations
directly correspond to SML models with 0 and n − 1
reduced state variables, respectively. Upon evaluation, one
user suggested a generalization of this approach for a
selected subset of state variables. The other two visualiza-
tion types by Altenhuber allowed the users to selectively
show and hide parts of the state machine model. These
two aspects served as the direct inspiration for our state
variable reduction and state hiding functionalities. A new
specification, obtained from the results of Altenhuber’s
work, served as the basis to initiate a micro-injections
process which, at the time of writing, is still ongoing.

We regularly improve and evaluate our visualization ap-
proach in cooperation with our users, as well as UI experts.
In each development cycle, the users receive an updated
build of the modeling tool. While the tool is already in
productive use at the AVL Test Center and in various
stages of introduction in other departments of AVL, we
consistently include beta-versions of the SML-based model
visualization feature. After receiving the current build,
our users are interviewed about how well the newly made
improvements aid them in their modeling workflow, and
which aspects of the tool could still be improved. Early
on, our users confirmed that our selective abstraction
approach benefits their ability to intuitively understand
complex models and they expressed interest to use it in
their day-to-day work. Exemplary scenarios benefiting by
the visualization include i) manual completeness checking
when writing an MDML model from scratch (see the man-
ual model validation step in Fig. 2), or ii) verifying modi-
fications made to a pre-existing model. The user’s positive
feelings towards the visualization feature encourage them
to give constructive feedback, which is incorporated in
subsequent tool releases and helps to further streamline
their modeling workflow. It also enables the developers to
quickly react to unforeseen user requirements.

The aforementioned completeness checking step pro-
vides an example of such an unforeseen requirement. Pre-
viously, the manual completeness check of MDML models



against the used reference material involved printing or
hand-drawing a visual state machine model and checking
off inspected transitions with a highlighter. In response,
we have included the possibility to highlight transitions
directly in the SML model through a double-click. Other
features requested by the users include i) some additional
edge sparsification options - e.g. based on different input
channels, ii) different representations for input-triggered
and time-triggered transitions, e.g. through dashed lines,
iii) visual model comparison functionalities and iv) many
minor changes like smoother zooming behavior, config-
urable legend positions, etc. The users requested the vi-
sualization to be updated on demand, rather than upon
changing the MDML model. While they prefer to switch
between MDML and SML tabs, the Eclipse-based edi-
tor also allows to display both models side-by-side (see
Fig. 7), as well as in different windows. Currently, a UI
expert is working on a re-design of SML’s visual style,
preserving the underlying visual language but updating
it to a more compelling and modern look and feel. On
our largest productively used model (58 states, 231 tran-
sitions), the visualization currently takes a few seconds
to load, but the performance improves when the model
is simplified through the reduction of state variables. We
aim to improve performance on larger models in upcoming
iterations of the micro-injections process. The successful
application of MDE micro-injections to SML has further
shown that a combination of textual and graphical DSLs
can be developed in a sufficiently fast and flexible manner
with the GLSP framework and that we can maintain short
enough tool iterations.

V. Related Work
The most relevant related work is that of Ladenberger

and Leuschel [20], who visualized the state spaces of Event-
B models via projection diagrams in the ProB animator
and model-checker. Since Event-B is a pre/post-language,
they also obtain an explicit state machine representation
of the model via the ProB model checker. The authors
approach the problem of complexity reduction from the
point of view of formal methods. Our work approaches it

Fig. 7. Screenshot of the MDML editor, including the SML visual-
ization at the top left.

from a MDE-perspective. While the underlying formalisms
of projection diagrams and state variable reduction are
equivalent, they somewhat differ in their application. With
projection diagrams, the user explicitly selects the infor-
mation to be maintained by the visualization. With state
variable reduction, the user rather selects the information
to be abstracted away. Also, while the former approach
creates visualizations based on queries to the underlying
model, the latter is obtained in a step-wise manner by the
user as he or she progressively reduces or restores state
variables. While the approach in [20] is more general, we
believe that a selection of a few good abstraction options
helps to make our tool more accessible to users without
a background in formal methods. Although ProB offers
different options for state space visualization, the authors
did not mention any explicit combination of projection
diagrams with other complementary means to further
reduce the visual complexity of visualizations, like state
hiding. Instead, they incorporate customizable graphical
syntax elements to highlight the values of specific state
variables. The authors argued the usefulness of their ap-
proach through a quantitative evaluation against a large
state machine model. We find it interesting that we arrived
at very similar results through an iterative user-centric
approach. We argue that our independently obtained re-
sults further substantiate the usefulness of the underlying
approach.

Leuschel and Turner [24] describe two functionalities
called signature merge and DFA abstraction in ProB. Sig-
nature merge merges all states q with the same signature of
enabled inputs IS = {i ∈ I | ∃ q′ ∈ Q : 〈q, i, q′〉 ∈ δ}. DFA
abstraction defines a configurable abstraction function α :
I → Iα on the inputs. The input abstraction is followed by
a determinization and a minimization step, resulting in a
reduced state machine. Van Ham et al. [25] have created an
interactive visualization approach for state variable-based
state machines, which abstracts information through the
clustering of similar nodes by means of an equivalence
relation. The clusters are then arranged in a 3D-space in
a way that emphasizes symmetries between parts of the
state space. Other attributes, like state variable values,
are communicated through a configurable coloring func-
tionality. Liu et al. have compiled a survey of existing
graph summarization techniques [21]. They have created a
taxonomy to categorize existing techniques (like the ones
presented in this paper) and cite prototypical examples for
each technique.

VI. Conclusion and Future Work
We presented our industrial experience on a Model-

based Testing use case, involving the combination of
graphical and textual DSLs. We described the graphical
language SML, which we developed based on the work of
Altenhuber [23] to use in combination with - and mitigate
the drawbacks of our textual language MDML. We have
presented SML’s selective abstraction mechanism. We



have outlined the development of SML, which followed the
MDE micro-injections process. The successful application
of this process is indicated by our positive user feedback
and suggests that our visualization approach benefits the
intuitive understanding of our state machine models and
is an adequate solution to the problem of increasing
complexity in our application domain. The results show
that the GLSP framework is adequate for the fast-paced
development of graphical and/or hybrid MDE tools and
they further substantiate the findings of Stieglbauer and
Rončević [6], as well as Ladenberger and Leuschel [20].

We will likely continue the development of SML for some
time, with a possible focus on model debugging techniques.
Also, we plan to re-define the SML metamodel based on
EMF/Ecore and make it compatible to the AutomataLib9

Java library for state machine data structures to ensure
interoperability with other applications. Together with the
Ecore-based definition of the SML metamodel, we will
internally evaluate the benefits in using transformation
languages (e.g., ATL [26] or ETL [27]), instead of Java, for
implementing model transformations in the HybriDLUX
framework.
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