
Improving Quality of a Post’s Set of Answers in
Stack Overflow

Mohammadreza Tavakoli
Computer Engineering

Sharif University of Technology
rtavakoli@ce.sharif.edu

Maliheh Izadi
Computer Engineering

Sharif University of Technology
maliheh.izadi@sharif.edu

Abbas Heydarnoori
Computer Engineering

Sharif University of Technology
heydarnoori@sharif.edu

Abstract—Community Question Answering platforms such as
Stack Overflow help a wide range of users solve their challenges
on-line. As the popularity of these communities has grown over
the years, both the number of members and posts have escalated.
Also, due to the diverse backgrounds, skills, expertise, and
viewpoints of users, each question may obtain more than one
answers. Therefore, the focus has changed toward producing
posts that have a set of answers more valuable for the community
as a whole, not just one accepted-answer aimed at satisfying
only the question-asker. Same as every universal community, a
large number of low-quality posts on Stack Overflow require
improvement. We call these posts deficient, and define them as
posts with questions that either have no answer yet or can be
improved by other ones. In this paper, we propose an approach
to automate the identification process of such posts and boost
their set of answers, utilizing the help of related experts. With
the help of 60 participants, we trained a classification model to
identify deficient posts by investigating the relationship between
characteristics of 3075 questions posted on Stack Overflow and
their need for better answers set. Then, we developed an Eclipse
plugin named SOPI and integrated the prediction model in the
plugin to link these deficient posts to related developers (in terms
of their development context and expertise area) and help them
improve the answer set. We evaluated both the functionality
of our plugin and the impact of answers submitted to Stack
Overflow with the help of 10 and 15 expert industrial developers,
respectively. Our results indicate that decision trees, specifically
the J48 algorithm, predicts a deficient question better than
the other methods with 94.5% precision and 90.3% recall. We
conclude that not only our plugin helps programmers contribute
more easily to Stack Overflow, but also it improves the quality
of existing answers.

Index Terms—Question Answering, Recommender systems

I. INTRODUCTION

Stack Overflow (SO) is a successful example of Commu-
nity Question and Answering (CQA) platform, specifically
designed for solving programmers’ and software engineers’
challenges. According to the 2019 global survey of SO,
approximately 50M people visit SO monthly. Professional
developers and university-level students cover 42% of these
visits1. As of October 2019, about 18M questions have been
posted on SO. Approximately, users have posted 28M answers
to these questions, from which only 9.6M answers have been
accepted. SO also reports users post on average 7.9K new
questions and 8.1K new answers each working day2. Although

1SO Survey 2019: https://insights.stackoverflow.com/survey/2019
2This data has been updated on Oct, 14th, 2019 using Stack Exchange API

some questions have no answer, others receive numerous ones.
This shows the difference between users’ views and usage
types, thus emphasising the importance of constructing high-
quality answer sets.

On the other hand, due to the fast-growing community of
SO and the inability to carefully assess the content being
published, a large number of poorly edited answers, incorrect
or obsolete ones, incomplete code snippets, too-specific or
too-general answers, misleading information, and other perils
exist among the answers set of posts. Posts on SO, as other
software artifacts, need to change and evolve over time. Edits
include fixing code snippets’ bugs, updating them to work
with a more recent version of a library, or addressing the
issue from other perspectives [1], [2]. The numbers confirm
this notion as 13.9M SO posts have been edited after their
creation time, 19K of them more than ten times [2]. To
illustrate a case of such need for attentive maintenance and
evolution overtime, we use a SO post as an example3. This
post contains a question that potentially can be improved
with new answers. “How do I convert from Int to Long in
Java?” This post has been viewed 581K times and has 13
answers. From this answers set, our SOPI generated answer
has obtained 11 up-votes so far. Although this question has
been asked 10 years ago, it is still active, which indicates the
continuous interest in the topic and the need for better answers.
However, programmers are not always motivated to answer
or update CQA websites inherently [3], since it is a time-
consuming activity and needs focus. So we can motivate them
either through rewarding mechanisms, or by simplifying the
answering process as much as possible [4]. Although SO has
used various motivating approaches such as awarding badges,
studies have shown these approaches have not been successful
enough in the task of improving overall quality of SO’s posts
[5]. Furthermore, Treude and Robillard [6] studied the quality
of code examples on SO and reported less than half of them
have self-explanatory code fragments and therefore require
improvement. Considering that existing code snippets may be
faulty, hard to understand, or have a low quality which is
misleading in new user-queries [7], it is extremely important
to correct errors and improve the quality of code snippets.

Therefore, SO needs a more efficient and easier solution

3https://stackoverflow.com/questions/1302605

ar
X

iv
:2

00
6.

00
34

1v
1 

 [
cs

.S
E

] 
 3

0 
M

ay
 2

02
0

https://insights.stackoverflow.com/survey/2019
https://stackoverflow.com/questions/1302605


for continuous improvement and control over the content. We
believe this is possible through exploiting the community itself
to fix the existing flaws, improve answers, update obsolete
answers, generalize too-specific answers, address issues from
different views, enrich available code snippets, etc. collec-
tively. Different studies have addressed this problem from
various aspects and tried to propose solutions for identifying
and improving the quality of SO posts [8], [9]. To the best of
our knowledge, while previous work has focused on improving
the process of finding better answers or speeding up the
process, none have tried to identify questions that need better
answers and enhance the quality of such posts. We set the
criteria for posts that need improvement as posts that have no
answer or have some sort of an answer, but can have better or
extended ones in terms of quality, level of expertise, details,
etc. to satisfy different programmer’s needs. For instance,
while an answer can solve an expert’s question, it can be very
hard for a novice to comprehend. Contrary to that, some posts
have highly-detailed answers, whereas a group of the audience
may prefer a brief answer to solve their problems faster. We
call these posts “deficient”.

Our contributions include:

• Addressing a practical problem, i.e., improving the qual-
ity of a post’s answers set using developers’ coding
context.

• Training a classification model to automatically identify
deficient posts of SO.

• Developing a tool, SOPI, to facilitate and accelerate
the process of answering and contributing to SO with
minimal distraction.

• Three-fold evaluation involving 85 industrial Java devel-
opers.

Our study consists of four steps. In step 1, we performed
an exploratory analysis on 3075 questions from SO with the
help of 60 developers to understand the properties of deficient
posts. For their For the assessment, developers considered
four measures of answers including completeness, correctness,
conciseness and comprehensibility; then we investigated the
relationship between 11 properties, such as their score, has
accepted answers, and view count of posts with their need for
improvement. From these properties, we chose the most influ-
ential features and trained three classifiers to predict whether
a post needs enhancement. We used Neural Network (NN),
Decision Tree (DT), and Support Vector Machine (SVM)
models to classify the posts. According to our evaluation
results, J48, a DT classifier, best predicted these posts with
94.5% precision and 90.3% recall. For step 2, 3, and 4 we
developed an Eclipse plugin named SOPI (Stack Overflow
Post Improver). SOPI first finds related questions based on a
developer’s programming context, then it filters them based on
the developer’s area of expertise using the history of selected
user in SO as the second stage of filtration. SOPI then predicts
which questions are deficient as the last filtration and based
on the preference of the developer (suggestions frequency),
it prompts the developer to improve the content of selected

posts. To make it even more simple and time-efficient, SOPI
recommends a code snippet according to the programmers’
code and the question’s code snippets [8]. Finally, the new
confirmed answer is submitted to SO with minimum interrup-
tion. Therefore, our research questions include:

• RQ1: Can we train a model to predict deficient posts?
• RQ2: Does SOPI facilitate the process of answering SO

questions?
• RQ3: Do the posted answers improve the quality of posts?

II. PROPERTIES OF DEFICIENT POSTS

Here we describe the process of identifying a set of prop-
erties for deciding whether a post needs improvement or not.

A. Data Collection

Using Stack Exchange API4, we randomly collected data of
3600 posts with the last activity in the time range of 2013 to
2019. These questions have a “Java” tag and are not deleted or
closed in SO. We also retrieved 11 properties that are available
for collection using the SO API to investigate the necessity of
enhancement for a post. These properties are:

• Has Accepted Answer (HAA): Whether the post has an
answer that satisfies the asker?

• Answer Count (AC): The number of answers in a post.
• Score (S): The score of a question based on up-votes and

down-votes.
• Sum of the Answer Scores (SAS): The sum of set of

answers’ scores based on their up-votes and down-votes.
• View Count (VC): The view count of a post.
• The Ratio of Sum of Scores to the View Count (SSVC):

The sum of answer scores divided by the view count of
a post.

• Comment Count (CC): The number of comments on a
question.

• Favorite Count (FC): The number of users who liked the
question.

• Average of Comment Count (ACC): The average number
of comments on the set of answers.

• Average of the Answerer Reputation (AAR): The average
reputation of answerers.

• Asker Reputation (AR): The reputation of the asker.
Then, we assigned these posts to 60 experts with a degree in
Computer Science and three months to five years of industrial
experience. Furthermore, each post was covered by at least
three participants. That is, each participant labeled 180 posts.
We asked them to check whether these posts require more
appropriate answers, considering the following four criteria
which are utilized in previous studies as well [8]:

• Completeness: Whether the post has at least one answer
complete enough to solve the problem.

• Conciseness: Whether the post has at least one concise
answer without non-informative parts.

• Correctness: Whether all answers to the question are
without errors.

4https://api.stackexchange.com/

https://api.stackexchange.com/


• Comprehensibility: Whether the answers are easy to
understand.

We first held a three-hour meeting with the participants and
established basic definitions to reach a common ground. Then,
we asked the participants to label a question with the tag
“YES” if at least one of the above conditions is not satisfied
(regarding the four criteria). Otherwise, if they think that
the post’s quality measures are fulfilled concerning all four
aspects, they should label it as “NO”. That is if a post
needs further improvement, it is considered deficient in its
current state, and subsequently is labeled “YES”. Otherwise,
it is labeled “NO”. To prevent biasing the participants, posts’
information such as their score, has accepted answer, score,
etc. is hidden during the manual labeling. We labeled a post
YES, if it had three YES tags which means it is deficient and
needs improvement. Similarly, if a question had three “NO”
tags, we set its label to NO. It is worth mentioning we omitted
525 posts after the first round of labeling because we could not
collect three labels for them. In the end, 3075 posts remained.
For other cases (when a post had two “YES” tags and one
“NO” tag or had one “YES” tag and two “NO” tags), we
created a five-member group and they discussed each post
together. After the negotiation, all the posts obtained at least
four similar labels, so we labeled them based on the majority
of the votes5.

Below, we provide some information about the sample.
• About 66% of posts have an accepted answer.
• A third of posts have at least two answers.
• Half of posts have at least one score.
• SAS for about 70% of posts is between 1 to 8.
• About 75% of posts are viewed between 18 to 2000 times.

Also, the maximum view of the sample count is 159,745.
• The maximum SSVC is around 25%. Also, for around

75% of the posts, the ratio is less than 1%. Note that
some posts have negative values for SSVC since sum of
their scores is negative.

• About 33% of posts do not have any comments. However,
60% of them have between one to seven comments.

• About 66% of posts do not have any FC.
• About 57% of posts on average have one to 11 comments

on their answers.
• The AAR of 50% of posts is between 12K to 32K.
• The AR in only 25% of posts is more than 1K.

B. Comparing the Properties of the Two Groups

To show the difference between the two types of posts,
we depicted the probability density function of the feature
associated with each property of interest, and tried to find
out whether they differ considerably. The goal was to find
properties that will help the model find the deficient posts
more accurately. We used Inter-quartile Ranges to remove the
outliers. Accordingly, in each feature, we removed the values
below the lower bound or above the upper bound. Figure 1

5The labeled data is available at https://github.com/MalihehIzadi/SOPI
stackoverflow answer quality

provides multiple figures for each feature. We show deficient
posts with dotted Blue lines and the rest with simple Red lines.

C. Qualitative Analysis

We present some insights about deficient posts in this
section. As illustrated in Figure 1(a), when HAA is FALSE, the
number of posts requiring improvement increases. Figure 1(b)
shows that the probability of the deficiency would increase if
the post has no answer yet. Although it seems that the Answer
Count is an effective property, this feature does not impact the
final label alone. This is probably because answer’s quality
is extremely important. Also as mentioned before, there can
be various solutions to a problem. Therefore, there are posts
that have more than three answers but are labeled as YES.
As shown in Figure 1(c), although the score of a question
does not have a close relationship with the target class (label
YES), in lower scores, the probability of needing improvement
is higher than in higher scores. Figure 1(d) depicts the high
correlation between SAS and the target class. If we have a
post with a low sum of answer scores, we may have a post
that needs improvement. As presented in Figure 1(e), there
are several post that have been viewed many times, but need
better answers. It seems this property is related to deficiency
as well. According to Figure 1(f), another significant feature
related to the target class is the SSVC. If a post has a low value
of this property, probably many users who view the question
are not satisfied with its answers. If a post has a high value
for this feature, it is highly probable that it has appropriate
answers with many up-votes. According to Figure 1(g), the
number of comments of a question does not have any obvious
relation with the target class. As we see in Figure 1(h), FC of
target posts are higher than the others. However, this is not a
strong relationship because FC’s value is zero for many posts.
According to Figure 1(i), ACC cannot help our model since
the figure is similar for both classes YES and NO. As we see
in Figure 1(j), AAR has higher values in posts that do not
need improvement. However, it does not make a noticeable
difference in the figures of the two classes. Figure 1(k) shows
AR does not have any apparent relation with the target class.

III. THE PREDICTION MODEL

In this section we will answer the following research
question:

RQ1: Can we train a model to predict deficient posts?
To find deficient posts, we used state-of-the-art classification

models with high performance in this research field. We
used feature selection methods to narrow down the set of
related features to the most important ones. A wrapper method
identifies important features. We used three wrapper methods,
namely Recursive Feature Elimination, Genetic Algorithm, and
Simulated Annealing with 10-fold cross-validation. We con-
cluded SAS, VC, HAA, SSVC, and AC are the most important
features for our models. Then, we tuned each learning method

https://github.com/MalihehIzadi/SOPI_stackoverflow_answer_quality
https://github.com/MalihehIzadi/SOPI_stackoverflow_answer_quality


0

1

2

3

4

0.00 0.25 0.50 0.75 1.00

D
en

si
ty

 F
un

ct
io

n

(a) Has Accepted Answer (HAA)

0.0

0.5

1.0

5 10

D
en

si
ty

 F
un

ct
io

n

(b) Answer Count (AC)

0.0

0.5

1.0

2 4 6

D
en

si
ty

 F
un

ct
io

n

(c) Score (S)

0.0

0.5

1.0

0 5 10

D
en

si
ty

 F
un

ct
io

n

(d) Sum of the Answers’ Score (SAS)

0e+00

3e−04

6e−04

9e−04

0 1000 2000 3000 4000

D
en

si
ty

 F
un

ct
io

n

(e) View Count (VC)

0

10

20

30

−1 0 1 2

D
en

si
ty

 F
un

ct
io

n

(f) Sum of the Scores/View Count (SSVC)

0.0

0.1

0.2

0.3

0.4

0 2 4 6

D
en

si
ty

 F
un

ct
io

n

(g) Comment Count (CC)

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.5 1.0 1.5 2.0

D
en

si
ty

 F
un

ct
io

n

(h) Favorite Count (FC)

0.00

0.25

0.50

0.75

1.00

1.25

0 1 2 3 4
D

en
si

ty
 F

un
ct

io
n

(i) Avg of Comment Count (ACC)

0e+00

5e−05

1e−04

0 20000 40000 60000

D
en

si
ty

 F
un

ct
io

n

(j) Avg of Answerers’ Reputation (AAR)

0.000

0.001

0.002

0 1000 2000 3000

D
en

si
ty

 F
un

ct
io

n

(k) Asker’s Reputation (AR)

Fig. 1. Comparing The properties of the two groups of posts, namely Deficient (YES) vs Not-Deficient (NO).

with its appropriate features. We use 80% of the data as the
training set, and the rest 20% as the test set6.

A. Decision Tree (DT)

To build our predictive model, we used Leave One Out
Cross Validation (LOOC) to tune the Complexity Parameter
(CP) of the DT. We tested values between infinity to 0.005
and concluded the best value for CP is equal to 0.012.

6Most of our implementations for creating the models using R language can
be downloaded from https://github.com/MalihehIzadi/SOPI stackoverflow
answer quality

B. Neural Network (NN)

We utilized a neural network with one hidden layer and
configured our model using LOOC. We set the number of
hidden units between zero and 100. Through our experiments,
we concluded 66 units in the hidden layer leads to the best
results.

C. Support Vector Machine (SVM)

We used the polynomial kernel and LOOC to find the best
values for gamma and cost. We tested gamma values between

https://github.com/MalihehIzadi/SOPI_stackoverflow_answer_quality
https://github.com/MalihehIzadi/SOPI_stackoverflow_answer_quality


2−15 to 2−1 and cost values between 20 to 230. Eventually,
we set gamma to 2−5 and cost to 218.

D. Classification Results and Evaluation

After selecting the features and tuning each machine learn-
ing method, we ran our model on the test data. Table I provides
the results of each learning method in percent. DT’s results of
94.5% precision, 90.3% recall, and 92.4% F1 score indicate
it performed better than the other two models, thus we used
it in our prediction model7. To answer RQ1, we conclude our
classifier can predict deficient posts with good performance.

TABLE I
LEARNING METHODS’ RESULTS

Learning
Model

Recall
Sensitivity Precision Balance

Accuracy Kappa F1

DT 90.3% 94.5% 94.4% 90.3% 92.4%
NN 88.8% 92.2% 93.3% 87.9% 90.5%

SVM 87.3% 95.1% 93.0% 88.7% 91.0%

E. Feature Selection

Decision Trees show important features when the final tree
is generated. We conclude important features are SSVC, SAS,
HAA, and VC, respectively. The reason is that the DT tries
to classify the posts using SSVC at first. Then, it uses SAS
(sumScore) and HAA (accepted) for separating the posts.
According to Sec. II, we expected the ratio of Sum of Answer
Scores to the View Count (SSVC), Sum of Answer Scores
(SAS) and Has Accepted Answer (HAA) to be highly related
to predicting our target class.

IV. SOPI (STACK OVERFLOW POST IMPROVER)

In this section, we explain how SOPI works. After users are
logged in, SOPI tracks their activities in the IDE and suggests
related deficient posts in need of more/better answers based
on the developing context. Users can select their desirable
maximum contribution rate (e.g., once a day) in the plugin
setting. This is because we take precautions not to disturb
developers or decrease their productivity while coding by
excessive pop-ups or interruptions. Our goal is to make it
simpler for the willing ones to contribute and share their
knowledge at the right time, that is when they are working
on a specific context related to unanswered/poorly answered
questions in SO. It is entirely up to the developers how often
(if ever) they will be prompted by the plugin. It is needless to
say in cases that the code should not be shared or analyzed in
any way due to security or licensing issues, users can turn off
the plugin at any moment. Also, contributions take place in
the plugin’s window, not the programming windows. So they
are not in the immediate viewing area of developers and hence
the distraction is reduced further.

SOPI, first, interprets the programming context of the user
and then filters related posts to this context. As a finer-grained

7A sample image of this model is accessible at https://github.com/
MalihehIzadi/SOPI stackoverflow answer quality

1. Login to 
SO

2. First filtering 
stage of related 

posts

3. Second 
filtering stage

5. Suggest one of 
them from time 

to time 

7. Edit the 
draft 

8. Post the 
new answer 

to SO

4. Predict 
deficient 

posts

Prediction 
Model 

J48

User’s 
top tagsIDE

6. Provide a 
related code 

snippet

Start

Developer 
Preferences

Programming 
Context

developer’s 
expertise

Developer

Fig. 2. The SOPI process

filter, it selects questions from the retrieved set of posts that
are related to the user’s expertise as well. SOPI determines
this based on the top tags of this user in SO. Then using
the DT classifier, it predicts which posts need improvement
and suggests them to the developer to improve. It should
be mentioned that if SOPI does not find any post after the
mentioned process, it retries after a specified period which is
set in the setting by the programmer. SOPI also provides a
draft answer for the developer to edit. The draft is generated
using the code fragments of the question. In the end, the
improved answer is sent to SO community with minimum
interrupts for the developer. We depict this process in Figure 2.
At first, we define each component of our proposed approach,
and then, we integrate those components to form the whole
approach.

A. Identifying Related Posts

To minimize the context switch for programmers to answer
the questions, we try to find related questions according
to the developer’s programming context. Therefore, we use
Prompter, a tool for extracting developer’s coding context
[9]. While the authors use community-related aspects (such
as reputation and scores) in conjunction with code-related
aspects, in this step we focus on coding-context-related aspects
such as code similarity, API similarity (types of the used API),
and text similarity (e.g., names of methods invoked in the
API). This is because we intend to minimize the coding context
switch as much as possible. This step helps refine posts based
on relevant coding context.

B. Identifying Programmers’ Expertise

In SO, each user has a few Top Tags according to his
previous activities. When all tags of a question exist in the set
of a programmer’s top tags in SO, he probably can provide

https://github.com/MalihehIzadi/SOPI_stackoverflow_answer_quality
https://github.com/MalihehIzadi/SOPI_stackoverflow_answer_quality


good answers for those topics. Therefore, we filter the posts
of the previous step based on the programmers’ top tags. This
step helps refine posts based on relevant expertise as well.

C. Finding Deficient Posts

We used the DT classifier in this step as described in
Sec. III. Here we find highly-related deficient posts that the
programmer can answer with high quality.

D. Recommending a Code Snippet

To facilitate the process of answering questions, we use
the approach proposed by Tavakoli et al. [8]. We retrieve
the code snippets of a selected question and look for similar
code segments in the programmer’s IDE using clone detection
techniques. To find similar code segments in the programmer’s
IDE we use simian-2.3.358 clone detection tool. Then, we use
the related code parts and create an appropriate code snippet by
adding the relevant code of the programmer using Backward
and Forward Slicing. We believe this will accelerate and sim-
plify the answering process for our cooperative developer. To
apply the slicing technique and find other relevant parts of the
programmer’s program, we exploit the Wala9 tool. Although
a good question should have code segments according to SO
guidelines, if a question does not have any code segment, we
will not recommend any code snippets.

Finally, we integrated all the above parts in our Eclipse
plugin, SOPI. Note that we only use posts that have not had
any activities in the recent 90 days. The reason is that the
quality of a question may be improved due to the activity, but
it has not affected the data about the post. Also, we assign
the posts to the programmer based on the score calculated
using Prompter’s approach. That is if a selected post has 60%
similarity with the programmer’s programming context, it will
be assigned to her/him with a probability of 60%. On the other
hand, with a probability of 40%, the plugin similarly tries
to assign another post to the user. This assignment process
would continue until a post is assigned to the programmer.
Although our goal is to improve the posts using the help of
the community and facilitating this process, we also try not
to disturb the developers more than needed. If a programmer
prefers to contribute to SO daily, the plugin suggests a deficient
post once a day, no more. Finally, the plugin recommends a
code snippet that the user can edit or add an explanation to,
then SOPI submits the answer to SO.

E. An Example of Utilizing SOPI

Remember the post mentioned in Sec. I. Assume a developer
with expertise in Google APIs is doing his daily programming
tasks. SOPI detects this post as a related deficient post and
assigns this to the user. Then it recommends a code snippet
from the developer’s IDE using clone detection and slicing
techniques. Finally, after a few edits by the developer, the code
snippet shown in Figure 3 is posted to SO as a new answer
to the question.

8http://www.harukizaemon.com/simian/
9http://wala.sourceforge.net/

final HttpTransport transport = new NetHttpTransport();
final JsonFactory jsonFactory = new JacksonFactory();
GoogleIdTokenVerifier verifier = new GoogleIdTokenVerifier.Builder(transport,

jsonFactory)
.setAudience(Arrays.asList(clientId))
.setIssuer("https://accounts.google.com")
.build();

GoogleIdToken idToken = null;
try {
idToken = verifier.verify(ID_TOKEN);

} catch (GeneralSecurityException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

}
GoogleIdToken.Payload payload = null;
if (idToken != null) {

payload = idToken.getPayload();
}
String firstName = payload.get("given_name").toString();
String lastName = payload.get("family_name").toString();

Fig. 3. A code snippet created by the SOPI

V. EVALUATIONS

We evaluated our approach in two phases. First, we eval-
uated SOPI’s helpfulness for the users while contributing to
SO. Then, we evaluated the effect of our approach on the
qualities of posts in SO in terms of completeness, conciseness,
correctness and comprehensibility as four metrics on the
quality of a set of answers.

A. Evaluating the Usefulness of SOPI

We first address the usefulness of SOPI for developers who
contribute to SO while working on their code in the IDE. The
goal of this experiment is to answer the following research
question:

RQ2: “Does SOPI facilitate the process of answering SO
questions?”

We asked 10 programmers with at least four years of Java
programming industry experience to use the SOPI for three
weeks, while they were doing their daily tasks. The partic-
ipants had four different role levels, namely chief technical
officer (1 participant), technical project lead (2 participants),
senior software developer (2 participants), and software de-
veloper (5 participants). In the period of using SOPI, the
programmers were developing a Back-end as a Service (Baas)
platform such as object storage, cloud code, authentication,
etc. Therefore, they faced several programming tasks such as
string operations, database operations, and RESTful APIs. This
strengthened our evaluation because the participants performed
various programming tasks that could cover different topics of
questions on SO. Detailed information about the participants
in this experiment is available in our repository 10.

We assigned deficient posts to the participants every three
days and asked them to answer at least two questions. We also
designed a questionnaire and asked the participants about the
similarity of assigned posts with their programming context
and expertise. Moreover, we asked them whether these posts
needed improvement. If yes, according to which criteria this
improvement should take place. Finally, we asked them about

10We reported the number of years of programming experience for each
participant in the last three columns. https://github.com/MalihehIzadi/SOPI
stackoverflow answer quality

http://www.harukizaemon.com/simian/
http://wala.sourceforge.net/
https://github.com/MalihehIzadi/SOPI_stackoverflow_answer_quality
https://github.com/MalihehIzadi/SOPI_stackoverflow_answer_quality


the usefulness of recommended code snippet. Table II presents
the results of this experiment11. We report the number of
average assigned posts to participants in column Assigned
Count, average number of posts related to programmer’s
developing context in column Related Context and average
number of posts related to each programmer’s field of expertise
among all the assigned posts in column Related Expertise. The
Deficient Count column shows average number of deficient
posts and the next four columns report average number of
deficient posts regarding our four metrics from all participant’s
view. Finally, the last two columns report average number of
cases that our plugin recommended code snippets and how
many of them were useful for the participant.

For instance, SOPI on average assigned 5.4 posts to each
programmer from which on average 4.5 of them were related
to their coding-context and so on.

TABLE II
RESULTS OF THE SOPI EVALUATION

Pa
rt

ic
ip

an
t

A
ss

ig
ne

d
C

ou
nt

R
el

at
ed

C
on

te
xt

R
el

at
ed

E
xp

er
tis

e

D
efi

ci
en

t
C

ou
nt

C
om

pl
et

en
es

s

C
on

ci
se

ne
ss

C
or

re
ct

ne
ss

C
om

pr
eh

en
si

bi
lit

y

R
ec

om
m

en
de

d
C

ou
nt

U
se

fu
l

R
ec

om
m

en
da

tio
ns

Avg 5.4 4.5 5.1 4.4 2.4 1.0 0.6 1.4 3.8 3.1

The Experiment’s Results: SOPI assigned 94% and 83%
of the posts correctly regarding relatedness to developers’
expertise and programming context, respectively. About 81%
of posts assigned by the plugin (classified by the DT model in
the previous step) were determined deficient by the participants
of this experiment as well. In about 70% of cases, SOPI
suggested code snippets for the participants, from which 82%
facilitated the process of answering. According to the results,
it seems that utilizing code aspects used in Prompter [9] can
help assign appropriate posts to programmers. SOPI was also
successful in assigning questions to the programmers who
have enough experience for answering them. This indicates
that using the history of a user’s activities and question’s
tags are indeed effective. However, in some cases, participants
were unable to answer the assigned questions. In further
investigations, we concluded that one reason for this problem
is indeed inappropriate question’s tags which misled the SOPI.
SOPI was also successful in recommending code snippets
to help programmers contribute to SO easier and faster.
Therefore, using the ExRec method [8] can help produce
good code snippets for the programmers. Note that we use
the method only for questions and thus, some problems of
the existing code in SO’s answers, such as errors and low
comprehensibility, are not included in our recommendation.
To answer RQ2, we can conclude SOPI is indeed successful

11Detailed information can be found at https://github.com/MalihehIzadi/
SOPI stackoverflow answer quality

in recommending relevant posts to users and at the same time
provide them with good initial answers (code snippets) to
facilitate answering process.

Furthermore, we analyzed how this set of participants
perceived low-quality posts in terms of the four criteria we
used to label deficient posts as well. Participants believed that
more than half of posts (about 54%) need more complete set
of answers. This issue can be caused by various reasons. For
instance, users tend to answer fast, maybe just to collect repu-
tation. So they may become hasty and not address all aspects
of a question being asked. This also can make answers hard
to understand, as participants claimed one-third of the posts
have comprehensibility problems in their answers. Therefore,
it is better that SO users take more time to comprehend
the question thoroughly, and then add some details to their
answers to explain their replies more clearly. About 23% of
posts were reported to contain useless information in their
answers set. This issue can occur when the answerers copy and
paste all parts of their methods including unhelpful segments.
Participants claimed 14% of answers were incorrect. This is
probably due to the fact that answerers usually do not test their
code snippets before posting them on SO and they may have
syntactic or semantic errors. Furthermore, some of the posts
needed to be improved from various aspects at the same time.
For example, an answer can be enhanced regarding complete-
ness and comprehensibility areas. Therefore we suggest that
SO changes some of its policies on how it rewards users for
answering questions in a way that users try to provide more
comprehensive, understandable, correct and concise answers
rather than just answering faster than others.

Moreover, participants were asked to determine which as-
pects of the post they want to improve. Table III reports these
findings. For instance, programmer P1 submitted answers to
three of the four deficient posts to improve completeness in
two, conciseness in one, and correctness in one of the posts.

TABLE III
IMPROVEMENT TYPE BASED ON THE METRICS

Pa
rt

ic
ip

an
t

D
efi

ci
en

t
C

ou
nt

Su
bm

it
C

ou
nt

C
om

pl
et

en
es

s

C
on

ci
se

ne
ss

C
or

re
ct

ne
ss

C
om

pr
eh

en
si

bi
lit

y

P1 4 3 2 1 1 0
P2 3 3 2 0 1 1
P3 6 3 2 1 0 1
P4 5 2 1 0 1 1
P5 4 2 2 0 0 1
P6 5 3 2 1 0 1
P7 4 2 1 0 0 1
P8 6 4 3 1 1 0
P9 6 3 2 1 0 1
P10 6 2 2 1 0 0

https://github.com/MalihehIzadi/SOPI_stackoverflow_answer_quality
https://github.com/MalihehIzadi/SOPI_stackoverflow_answer_quality


B. Evaluating the Effects of SOPI in Stack Overflow

This experiment was designed to answer the following
research question:

RQ3: “Do the posted answers improve the quality of
questions?”.

To find the answer to the above research question, we
utilized 26 answers that had been created using our plu-
gin in the previous experiment12. Next, we asked 15 other
programmers with at least two years of Java programming
language experience in the industry to qualify the answers.
We randomly assigned about 12 answers to each programmer
in a way that each answer was validated at least seven times.
Detailed information about the participants in this experiment
is available in our repository 13.

First, we asked the participants whether the posts needed
improvement and concerning what metric. Then, we asked
them to investigate the effect of the new answers based on the
four metrics. Table IV reports the result of this experiment14.
On average, programmers claim 11.8 posts were deficient and
the deficiency of 10.9 of them was resolved by utilizing the
answers generated with the help of SOPI.

The Experiment’s Results: According to our user study,
about 50% of the problems lied with the completeness of
answers’ set, 19% with conciseness, 13% with correctness,
and 22% with comprehensibility. Therefore, to answer RQ3,
SOPI improved the perceived quality of 92% of the deficient
posts on average.

TABLE IV
RESULTS OF THE PROPOSED APPROACH EVALUATION

Pa
rt

ic
ip

an
t

D
efi

ci
en

t
C

ou
nt

So
lv

ed
C

ou
nt

C
om

pl
et

en
es

s

C
on

ci
se

ne
ss

C
or

re
ct

ne
ss

C
om

pr
eh

en
si

bi
lit

y

Avg 11.8 10.9
(92%)

5.9
(50%)

2.3
(19%)

1.6
(13%)

2.6
(22%)

VI. THREATS TO VALIDITY

In this section, we discuss potential threats to the validity
of our approach and results in four categories of Internal,
External, Construct and Reproducibility threats as follows.

A. Internal Validity

The main threat to our internal validity is the set of posts
collected from SO which affected the learning model. We tried
to mitigate this threat through a random selection of a large
number of posts in a prolonged time interval (2013-2019). We
also covered various areas of programming in Java. Moreover,
85 participants were engaged in the assessment of our model.

12The links to the answers which have been sent to SO by SOPI during our
evaluation will be added for the camera-ready version.

13https://github.com/MalihehIzadi/SOPI stackoverflow answer quality
14Access detailed information from our repository

Logically, the characteristics of these individuals can affect the
outcome of our evaluation. To reduce this threat, we tried to
get help from a large number of programmers with various
skills and different experience levels.

B. External Validity

Selecting questions of one program language (Java) to train
a model can limit the expandability of our tool. However,
Java is one of the main programming languages which is
widely used in practice. Furthermore, our proposed approach
can be adapted for other programming languages using the
variety of questions and answers in these languages available
on SO or similar CQA platforms. Also, there are various code
analyzing techniques for other languages (e.g., clone detection,
and forward and backward slicing) and one can find related
posts and recommend useful code snippets to programmers in
a similar process.

C. Construct Validity

The main threat to our construct validity is the labeling
process of posts. We addressed this threat by assigning each
post to three experts and choosing the final label based on
the three generated labels. Also, in cases that programmers
did not agree with each other, we held meetings with groups
including three participants and two other programmers to
reach a consensus agreement. The group would discuss the
post and choose an appropriate label altogether.

Note that the decision of labeling a set of answers as being
deficient inherently depends on people’s subjective opinions.
Therefore, we intentionally used our qualitative metrics (com-
pleteness, conciseness, correctness, comprehensibility) that are
subjective to some extent and can vary from one person to
another. However, we clearly defined each one and com-
municated the definitions to the participants in face-to-face
meetings to obtain more or less consistent evaluations. We also
used a large number of participants with diverse backgrounds
and expertise to represent a wide range of users on SO to
mitigate this threat. We also used 85 different programmers in
three different levels of evaluation to mitigate these threats.

D. Reproducibility

We have shared our data set along with our source code
on-line for replication by other researchers.

VII. RELATED WORK

In this section, we review previous work on improvement
of posts in CQA websites, specifically in SO. We categorize
previous studies in three groups of (1) facilitating the use
of SO; (2) investigating properties of SO elements such as
questions, answers, and users; and (3) improving the efficiency
in the processes of SO.

A. Facilitating the use of SO

Researchers have tried to help programmers use SO more
easily. For example, they would develop a plugin which helps
programmers browse useful and related SO posts, without the
need to exit their IDEs and switch between platforms. Most

https://github.com/MalihehIzadi/SOPI_stackoverflow_answer_quality


of these approaches use developers’ programming context and
properties of posts (e.g., score, the reputation of an answerer,
etc.) to recommend better pages to users [9].

B. Investigating properties of SO elements

Several studies try to identify important properties of SO
pages, users, etc. Others search for features of unusual ques-
tions such as unanswered, closed and deleted questions with
the goal to model and predict such questions [10], [11].
Some researches try to find high-quality questions, answers
and code snippets posted on SO to help users find high-
quality elements efficiently [12], [13], [14]. Moreover, they
model such behaviors and help programmers produce high-
quality posts [15], [16]. Finally, some studies have focused on
modeling expert finding and routing questions to appropriate
answerers [17].

C. Improving efficiency in the processes of SO

The last group tries to automate the quality assessment of
posts and provide solutions on how to prevent low-quality
posts from being published on CQA platforms. They use
content-related properties of posts such as having code snip-
pets, readability, and their community-related properties (e.g.
reputation) to predict posts that need more review and edit
before being published. The goal is to help administrators
validate the tremendous number of posts more effectively [18].
Several studies also focused on investigating effects of differ-
ent policies (such as badge policies) on the quality of posts
[19], [5].

In recent years, several approaches were introduced to help
programmers find related questions and hints from SO such
as Prompter[9]. However, none of them have tried to both
facilitate the process and improve the quality of the posts
which are done by SOPI. Note that our proposed model does
not necessarily compete with the previous methods. In fact,
SOPI can complement their functionality.

VIII. CONCLUSIONS AND FUTURE WORK

In recent years, SO has played an important role in solving
programmers’ challenges. Although highly popular, SO has
not been exploited to its highest potential by its community
due to several obstacles. The existence of a large number
of posts with low-quality answers has been recognized as
one of the main shortcomings of SO in this research field.
These posts are either without any accepted answered or their
existing answers are incomplete or incorrect. Therefore a well-
organized, collective and continuous effort should be allocated
to identification and improvement of these posts. However due
to time-limitations, deadline pressures and lack of incentive,
programmers tend to neglect to answer these types of posts. To
mitigate this issue, we introduced SOPI, an Eclipse plugin, that
finds relevant posts based on developers’ programming context
and expertise. Then, it selects a post in SO which requires
improvement. To identify such deficient posts, we trained a
model using the Decision Tree approach on 3075 questions
with a balanced accuracy of 94.4%. Finally, SOPI recommends

a code snippet to facilitate the process of generating answers
for programmers and submits the new post to SO.

We evaluated our approach in two phases and confirmed
its efficiency in both facilitating the process of answering
questions and improving the quality of answers in SO. It also
reduces the allocated time and effort needed to do so through
automating this process.

In the future, we plan to improve our model by using the
content of posts. For example, the topic of a post can affect the
way it is answered. That is, some topics are more specific and
few users can answer them, while others are easier and more
general, thus will be answered faster. We also intend to extend
the functionality of SOPI in finding highly skilled experts to
assign questions to the best programmers. In particular, we will
integrate more community aspects of programmers’ profiles in
our model as well.

REFERENCES

[1] H. Zhang, S. Wang, T.-H. P. Chen, Y. Zou, and A. E. Hassan, “An empir-
ical study of obsolete answers on Stack Overflow,” IEEE Transactions
on Software Engineering, 2019.

[2] S. Baltes, L. Dumani, C. Treude, and S. Diehl, “The evolution of
Stack Overflow posts: Reconstruction and analysis,” arXiv preprint
arXiv:1811.00804, 2018.

[3] C. Treude, O. Barzilay, and M.-A. Storey, “How do programmers ask and
answer questions on the web?” in Proceedings of the 33rd International
Conference on Software Engineering. IEEE, 2011, pp. 804–807.

[4] Z. Liu and B. J. Jansen, “Identifying and predicting the desire to help in
social question and answering,” Information Processing & Management,
vol. 53, no. 2, pp. 490–504, 2017.

[5] S. Wang, T.-H. P. Chen, and A. E. Hassan, “How do users revise
answers on technical Q&A websites? a case study on Stack Overflow,”
IEEE Transactions on Software Engineering, 2018, Avaiable Online at
https://ieeexplore.ieee.org/abstract/document/8485395.

[6] C. Treude and M. P. Robillard, “Understanding Stack Overflow code
fragments,” in Proceedings of the 2017 International Conference on
Software Maintenance and Evolution. IEEE, 2017, pp. 509–513.

[7] D. Ford, K. Lustig, J. Banks, and C. Parnin, “We don’t do that here:
How collaborative editing with mentors improves engagement in social
Q&A communities,” in Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems. ACM, 2018, p. 608.

[8] M. Tavakoli, A. Heydarnoori, and M. Ghafari, “Improving the quality
of code snippets in Stack Overflow,” in Proceedings of the 31st Annual
ACM Symposium on Applied Computing. ACM, 2016, pp. 1492–1497.

[9] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza,
“Prompter: A self-confident recommender system,” in Proceedings of the
IEEE International Conference on Software Maintenance and Evolution.
IEEE, 2014, pp. 577–580.

[10] M. Asaduzzaman, A. S. Mashiyat, C. K. Roy, and K. A. Schneider,
“Answering questions about unanswered questions of Stack Overflow,”
in Proceedings of the 10th Working Conference on Mining Software
Repositories. IEEE Press, 2013, pp. 97–100.

[11] D. Correa and A. Sureka, “Chaff from the wheat: Characterization and
modeling of deleted questions on Stack Overflow,” in Proceedings of
the 23rd international conference on World wide web. ACM, 2014, pp.
631–642.

[12] D. Yang, A. Hussain, and C. V. Lopes, “From query to usable code:
an analysis of stack overflow code snippets,” in 2016 IEEE/ACM 13th
Working Conference on Mining Software Repositories (MSR). IEEE,
2016, pp. 391–401.

[13] Z. Yao, D. S. Weld, W.-P. Chen, and H. Sun, “Staqc: A systematically
mined question-code dataset from stack overflow,” in Proceedings of the
2018 World Wide Web Conference, 2018, pp. 1693–1703.

[14] P. Yin, B. Deng, E. Chen, B. Vasilescu, and G. Neubig, “Learning to
mine aligned code and natural language pairs from stack overflow,”
in 2018 IEEE/ACM 15th International Conference on Mining Software
Repositories (MSR). IEEE, 2018, pp. 476–486.



[15] L. Nie, X. Wei, D. Zhang, X. Wang, Z. Gao, and Y. Yang, “Data-driven
answer selection in community qa systems.” IEEE Trans. Knowl. Data
Eng., vol. 29, no. 6, pp. 1186–1198, 2017.

[16] F. Calefato, F. Lanubile, and N. Novielli, “How to ask for technical help?
evidence-based guidelines for writing questions on Stack Overflow,”
Information and Software Technology, vol. 94, pp. 186–207, 2018.

[17] M. Neshati, “On early detection of high voted Q&A on Stack Overflow,”
Information Processing & Management, vol. 53, no. 4, pp. 780–798,
2017.

[18] L. Ponzanelli, A. Mocci, A. Bacchelli, and M. Lanza, “Understanding
and classifying the quality of technical forum questions,” in Proceedings
of the 14th International Conference on Quality Software. IEEE, 2014,
pp. 343–352.

[19] C. Chen, X. Chen, J. Sun, Z. Xing, and G. Li, “Data-driven proactive
policy assurance of post quality in community Q&A sites,” Proceedings
of the ACM on human-computer interaction, vol. 2, no. CSCW, p. 33,
2018.


	I Introduction
	II Properties of Deficient Posts
	II-A Data Collection
	II-B Comparing the Properties of the Two Groups
	II-C Qualitative Analysis

	III The Prediction Model
	III-A Decision Tree (DT)
	III-B Neural Network (NN)
	III-C Support Vector Machine (SVM)
	III-D Classification Results and Evaluation
	III-E Feature Selection

	IV SOPI (Stack Overflow Post Improver)
	IV-A Identifying Related Posts
	IV-B Identifying Programmers' Expertise
	IV-C Finding Deficient Posts
	IV-D Recommending a Code Snippet
	IV-E An Example of Utilizing SOPI

	V Evaluations
	V-A Evaluating the Usefulness of SOPI
	V-B Evaluating the Effects of SOPI in Stack Overflow

	VI Threats to Validity
	VI-A Internal Validity
	VI-B External Validity
	VI-C Construct Validity
	VI-D Reproducibility

	VII Related Work
	VII-A Facilitating the use of SO
	VII-B Investigating properties of SO elements
	VII-C Improving efficiency in the processes of SO

	VIII Conclusions and Future Work
	References

