
Migrating Monoliths to Microservices-based
Customizable Multi-tenant Cloud-native Apps

Sindre Grønstøl Haugeland
University of Oslo

Oslo, Norway
sindrgro@ifi.uio.no

Phu H. Nguyen, Hui Song
SINTEF

Oslo, Norway
firstname.lastname@sintef.no

Franck Chauvel
Axbit

Molde, Norway
franck.chauvel@axbit.com

Abstract—It was common that software vendors sell licenses
to their clients to use software products, such as Enterprise
Resource Planning, which are deployed as a monolithic entity
on clients’ premises. Moreover, many clients, especially big
organizations, often require software products to be customized
for their specific needs before deployment on premises. While
software vendors are trying to migrate their monolithic software
products to Cloud-native Software-as-a-Service (SaaS), they face
two big challenges that this paper aims at addressing: 1) How to
migrate their exclusive monoliths to multi-tenant Cloud-native
SaaS; and 2) How to enable tenant-specific customization for
multi-tenant Cloud-native SaaS. This paper suggests an approach
for migrating monoliths to microservice-based Cloud-native SaaS,
providing customers with a flexible customization opportunity,
while taking advantage of the economies of scale that the
Cloud and multi-tenancy provide. Our approach shows not only
the migration to microservices but also how to introduce the
necessary infrastructure to support the new services and enable
tenant-specific customization. We illustrate the application of our
approach on migrating a reference application of Microsoft called
SportStore.

Index Terms—Microservices, Migration, Customization, Multi-
tenancy, Cloud-native, SaaS

I. INTRODUCTION

Migrating legacy software applications to become Cloud-
based software applications, or even Cloud-based software-as-
a-service (SaaS), is an undeniable trend. However, together
with the great benefits of Cloud-based SaaS [1] come some
big challenges that are still remaining to be addressed.

Monolithic applications have been the prevailing archi-
tecture for enterprise applications after the emergence of
frameworks like J2EE around 2000. As a result of this,
many legacy systems are performing and assisting in essential
tasks in organizations. Large legacy enterprise solutions make
use of monolithic architecture. Many companies today still
have applications following monolithic architecture where all
functions are coupled and built together as a single, inter-
connected unit. Monoliths have many drawbacks. They are
large and complicated, making them difficult to change, add
new features, or adopt new technologies. Their large sizes
also make them slower to move around networks, start or
restart on failure and also inhibits scaling with unclear resource
requirements. Reliability is impacted as even simple bug fixes
cause the entire application to be updated in every deployment.

Following the trend of cloud computing, enterprise software
vendors are moving from single-tenant on-premises appli-
cations to multi-tenant (Cloud native) SaaS [2]. Customer
companies no longer buy a license from the vendor and
install software products in their own premises. Instead, they
subscribe to an online service, which is also used by other
customers, known as tenants of the service. The SaaS model
brings new challenges to the software vendors with regard
to enabling customization. It is not possible for any tenant to
directly edit the source code of the same product service shared
by other tenants. Software vendors must enhance the SaaS
model with the ability to enable tenant-specific customization
in the multi-tenant context.

In this paper we explore the current approaches used in
the industry when migrating enterprise applications from a
monolithic architecture to the microservices architecture and
the different approaches used when transitioning an application
from single to multi-tenant. Through reviewing the existing
literature we found a number of different approaches that all
accomplish one of these two goals, either focusing on the mi-
gration from one architecture type to the other or transitioning
from single- to multi-tenant. Both microservices architecture
and multi-tenancy offer additional benefits to the end-users
of the application and the developers. Combining these two
principles allows us to better utilize the economies of scale
and the resource sharing found in SaaS applications. In the
end, we aim to suggest an migration approach for cases where
the target application follows a microservice architecture while
also allowing tenants to customize the business logic to better
fit their needs in a multi-tenant context.

Migrating to microservices architecture (MSA) is the right
way forward for legacy systems to be modernized [3], [4].
There are huge benefits for migrating to MSA such as
maintainability and scalability in the long run [5], e.g., by
adopting DevOps and benefiting from Cloud-native elasticity
[6]. Microservices can be packaged and deployed in isolation
from the main product, which is an important requirement for
multi-tenant context. Moreover, independent development and
deployment of microservices ease the adoption of continuous
integration and delivery, and reduce the time to market for
each service. Independence also allows engineers to choose the
technology that best suits one and only one service, while other
services may use different programming languages, database,

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,

creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.

This is the author accepted version of an article published in
2021 47th Euromicro Conference on Software Engineering and

Advanced Applications (SEAA)
https://doi.org/10.1109/SEAA53835.2021.00030

etc. Each service can also be operated independently, including
upgrades, scaling, etc.

The main contribution of this paper is the migration ap-
proach from monolith to MSA with specialised support for
making the target MSA as customization-ready.

We present the result of our migration approach through
a case-study describing each step of our approach while
applying it to an existing application following the Model-
View-Controller pattern. Our approach focuses on three stages
during the migration, analyzing and breaking down the appli-
cation into small bounded contexts, transforming the existing
infrastructure to fit the new architecture and implementing
functionality from the contexts as separate microservice, and
finally adding the necessary components to support tenant-
specific customization in the multi-tenancy context.

The remainder is structured as follows. Section II gives
the definitions of the key aspects in this work. To provide
a better understanding of the motivation and the requirements
for our migration approach, Section III discusses a legacy e-
commerce application that needs to be migrated. Then, we
describe our migration approach in Section IV. An evaluation
of our approach is presented in Section V. We discuss the
related work in Section VI. Finally, Section VII concludes the
paper.

II. BACKGROUND

In this section we provide some background for the paper.
We briefly introduce the main concepts for the migration.

A. Monolithic Applications

Monolithic application architecture is a common pattern
that software applications follow. The pattern contains all
the different layers of an application, including presentation,
logic and persistence. All of which are contained within a
single deployable package. The monolithic pattern is simple to
deploy, scale and develop initially, but as the application grows
and becomes more complex and developers encounter some
new drawbacks with this pattern. Over time the single code-
base for projects grows, and getting a complete understanding
of all the internal complexities can become overwhelming. The
frequency of changes in the application can potentially be an
issue when the size of the application grows. Even the smallest
changes require redeploying the entire application.

B. Microservice Applications

Applications following the microservices pattern consist
of loosely coupled and highly specialized cohesive services,
that work together to provide functionality. Compared to the
monolithic architecture each service provides their own logic
for a small part of the application. All these smaller services
are then combined and hidden from the end-user behind a
proxy, like an API-gateway.

C. Migration

When migrating software we split the process into three
general phases [7]. The initial recovery of functionality, trans-
formation of the current architecture and re-implementation

following the target architecture. We briefly recall two pop-
ular migration approaches namely Strangler and Blueprint as
follows.

1) Strangler: The Strangler approach is a typical approach
coined by Fowler [8]. The whole premise of this strategy is to
create new systems around the edges of the existing system.
This approach includes different ways of diverting the calls to
the old system, either by event interception, where the edge
system taps into the message-stream intended for the original
system and redirecting calls as new services are implemented.
The alternative is to use asset capture, working with simple
orders or specific customers.

2) Blueprint: The blueprint approach serves as a template
for further adjustment, depending on the goals of the migra-
tion. The approach consists of two parallel tasks, building the
required infrastructure to support the new system, and the
actual migration. This approach uses aspects from domain-
driven design (DDD) [9] to separate different functionality into
bounded contexts. These contexts are then iteratively migrated
into services or a set of services in the new architecture.
Identifying these contexts is normally done by analyzing
source-code, technical documentation, and in some cases,
from interviews with developers that have worked on the pre-
existing system [10]. The services migrated should ideally
include everything except the UI, implementing the logic of
the bounded context and a form of storage for the data related
to the service.

In parallel to this process, the required infrastructure for
the new architecture should be set up. While the existing
infrastructure might be able to support a small number of
services, future migration and expansion might require a more
specialized infrastructure that better support the system.

D. Multi-Tenancy

A multi-tenant application serves multiple customers or ten-
ants through an application shared by all the users [11]. Multi-
tenancy is prevalent, particularly in cloud-hosted software.
Since the application instance is shared among the different
users, the software only solves a common set of problems
for the users or a problem that the majority of the different
users have [12]. Since the application is shared among multiple
tenants, costs associated with the infrastructure and operations
of the servers are also shared between the tenants, resulting
in lower overhead for the application compared to running
individual instances for each customer

III. A MOTIVATIONAL EXAMPLE

In this section, we present a motivational example of why
and what are the requirements for migrating a monolith
to MSA that is customization-ready. We use a SportStore
application as an example.

SportStore, which is a web-based store for sports equip-
ment, is a software product of software vendor A. SportStore
provides many of the essential features of an online shopping
system such as user management, catalogue, shopping cart
and checkout. It is implemented in .NET Core with Views,

Fig. 1. Companies often need to customize software deployed for them

Models, and Controllers for ordering, product catalogs, and a
session-based shopping cart. Software vendor A has sold and
deployed separately their SportStore product for many sporting
goods retailers, including two big ones: retailer X and retailer
Y (Fig. 1). The big retailers such as retailer X and retailer Y
often do not use the SportStore as-is but hire either software
vendor A or a third-party consultant to customize or redevelop
the SportStore product further according to their own specific
needs. Retailers could have different business models leading
to different requirements for customization.

Following the trend of cloud computing [2], software vendor
A is migrating their software products such as SportStore
to become multi-tenant (Cloud-based) Software as a Service
(SaaS). Customer companies such as sporting goods retailers
no longer buy a license from software vendor A and install it
in their own premises. Instead, they subscribe to an online
service, which is also used by other customers, known as
tenants of the service. From each tenant’s perspective, they
still have the SportStore product as their own even though this
SportStore-aaS is also used by other tenants. The SaaS model
brings new challenges to software vendor A with regard to
enabling customization, which is often required by big retailers
like retailer X and retailer Y. It is not possible for any tenant
to directly edit the source code of the same product service
shared by other tenants. A major challenge is to ensure tenant-
isolation while enabling tenant-specific customisation, which
means that no customisation specific to a tenant shall ever
affect any other tenants. What software vendor A must do to
up their game for cloud computing model is finding a method
to refactor and migrate their monolithic SportStore product to
become multi-tenant customizable (Cloud-based) SaaS.

IV. OUR MIGRATION APPROACH

In this section, we give a brief overview of our approach
(IV-A) and how it relates to multi-tenancy and the ability to
provide deep customization for tenants (IV-B).

A. Overview of Our Approach

Our approach focuses on migrating applications that fol-
low the MVC design pattern. It draws inspiration from the
migration approach proposed by E. Wolff [13] in a survey
about migration approaches, and the generic re-engineering
tool in [7]. Moreover, we adopt the Blueprint approach to

include the initial phase of the proposed tool by Kazman that
allows the migrating party to gain an understanding of the
current application before starting the migration. The approach
becomes a three-phase approach, where the initial phase
consists of analyzing the application and discovering bounded
contexts and domains in the application according to domain-
driven principles [9]. The next two phases occur in parallel,
where we extract functionality from the existing application
while building the necessary infrastructure to support the
new services. Note that in this paper we do not address the
constraints of migrating currently in-use applications, which
the Strangler approach [8] can do best. We rather focus on
how to logically migrate a monolithic application to become
customizable in a multi-tenant context. Our approach can be
adopted to be part of the Strangler approach for migrating
currently in-use applications.

Three different phases of our approach: the analysis, trans-
formation and implementation. Each of these different phases
focuses on a separate aspect of the migration. During the initial
phase, we analyse the application we are migrating in order
to determine how the internals of the application works, and
how we can split up the different modules in the application
into separate microserivces. The goal is to identify and group
these modules into domains or contexts that focus on a specific
areas of the application.

The second phase of the migration consist of transforming
the existing infrastructure of the application to fit the new
architecture target. If the existing infrastructure can not be
transformed, or if more effort needed to transform the infras-
tructure, we implement additional infrastructure to support the
new application architecture (Fig. 2). Additional architecture
that we need in order to support the MSA compared to the
monolithic architecture is isolated storage for the different
services, a gateway that connects external clients, like a
web-application or external third party applications, to the
microservices, and a back-end communication system (e.g.,
an event bus for enabling event-based customization [14]).
The final phase consists of implementing the services we have
identified during the initial phase, and connecting them to the
infrastructure we add during the second phase (Fig. 2).

B. Multi-tenancy and Deep Customization

Our approach aims at enabling the target architecture to
be customizable for multi-tenant context as presented in [15],
[16]. The approaches in [15]–[18] offer tenants a way to
(deeply) customize the functionality of the multi-tenant ap-
plication without interfering with behavior for other tenants.
The customization-driven aspect makes our approach differ-
ent from other migration approaches. Adding customization
support for tenants can be done using the tenant-manager as
a lookup table (Fig. 2). Tenants register their customizations
with the tenant manager. These can be either standalone ser-
vices outside the main application, exposing endpoints that the
service can redirect calls to. The services and the customized
functions that they provide need to adhere to a predetermined
stable interface defined by the developers of the main applica-

Fig. 2. Target Architecture

tion. This interface serves as a contract between the service and
the customized endpoint, describing the expected result that
the service needs to continue operations after the customized
function has been called.

First, we focus on introducing multi-tenancy to the applica-
tion. To support multi-tenancy, we need a system for Identity
Access Management (IAM), and to support customization of
the application for the tenants and to configure the storage to
isolate tenant data, we need a tenant manager. The tenant man-
ager provides all the registered customizations and endpoints
for the logged-in user, which is retrieved using a bearer token
issued by the IAM system. Tenant isolation at application
level is crucial to avoid data leaks problem between tenants
as raised in [19], and more aligned with the concept security
by design [20], [21]. With the tenant manager and the IAM
system in place, we start adding support for customization.
We use the tenant manager to return external endpoints to
customized functionality in cooperation with the IAM system
to ascertain the “tenantID” of the user. The main service then
reroutes the request to the external endpoint along with the
information required by the customized function.

To support the customization of the services, they need to
use both the identity manager and tenant manager. The tenant
manager keeps a record of all the customizations associated
with a specific tenant, which can be looked up by services after
querying the identity server for the user profile of the token
attached to the request. We have two different scenarios for
how the tenant manager is used by the services. One scenario
is where the tenant has registered customization for some
of the functionality, and another where the tenant uses the
default functionality implemented in the service already. For
both of these scenarios, the configurations are retrieved from
the tenant-manager by the service. The response is cached for
quick access and reduced network traffic. The tenant manager
then push updates to the services when configurations are
updated.

Fig. 3. The monolithic application

V. EVALUATION

To validate the approach, we applied it to the SportStore
application [22], whose monolithic architecture is simplified
in Fig. 3. The application following the MVC pattern [22] is a
web-based store for sports equipment. We identify the different
groupings in the application during the first phase of the
migration. The sport store application consist of three different
groups; products, carts and orders. Each of these groupings has
their own models, views and controllers. The functionality in
these groups are closely related to each other. After the initial
analysis we introduce the additional infrastructure needed to
support the new architecture. In our case we add an API
gateway that connects the user interface to the services through
a single entry point, and a message-broker that the services
use to communicate. We then implement the groupings we
identified during the first phase as separate micro-services with
isolated storage. Once we have extracted the services from
the old application we connect them to multi-tenant specific
infrastructure.

SportStore is implemented in .NET Core with Views, Mod-
els, and Controllers for ordering, product catalogs, and a
session-based shopping cart. We use these “groupings” as our
bounded contexts during the analysis and extract functionality
during the decomposition part of the migration. After this, we
start implementing services to cover the functionality of the
existing application and set up the infrastructure to support
it (Fig. 4). The infrastructure includes typical components
like the API-gateway and a form of back-end communication
for the services. Fig. 5 shows the target architecture of the
SportStore application that we have used for our migration
experiments. We present the details of our migration process
in the following subsections.

The MVC pattern offers a natural separation between the
different layers. During the analysis and implementation we
extract or replicate from the controllers in their own microser-
vices. The application still has controllers; however, these only
serve as a way to make calls to the services. In a way, they
hide the fact that the back-end of the system is spread out into
microservices. The goal is to first analyze and break down the
modules in the sportsStore application into separate bounded
contexts following Domain-driven design and implementing
these contexts as microservices.

Fig. 4. Migrating functions to microservices with API gateway and Message
Broker

Fig. 5. Target architecture with customization possibility for multi-tenant

A. Analysis and decomposition

Once the structure and architecture of the existing appli-
cation are analyzed and mapped out, we start decomposing
the application into separate domains. During the analysis,
we found three different domains within the application—the
product domain, containing a template for the products. The
product template consists of a productID, product name, a
short description of the product, the price, and the category of
the product. The application stores the model in an MSSQL
database, which is stored in an Entity Framework repository,
with supporting methods for retrieving, updating, adding, and
deleting products in the repository. The shared resource be-
tween the product domain and the cart is the product (Fig. 4).
Each of these domains needs to have a shared understanding
of what a product is. The cart domain contains the cart for
the current session, and it consists of a list of cartlines, as
well as methods for adding and removing items to the cart.

Additionally, there are methods for computing the total cost
of all the items in the cart and clearing the cart. The cartline
class represents an item that has been added to the cart. It is
made up of a productId, quantity, and the id for that specific
cartline. The cartline resource is shared with the third domain,
the orders-domain (Fig. 5).

B. Additional Infrastructure

The migration to microservices requires some additional
supporting infrastructure. The introduction of an API gateway
and back-end communication is an integral part of the second
phase of the migration.

1) API Gateway: The API gateway is an integral part of the
microservice architecture. The gateway serves as a connecting
layer for clients and other consumers of the services, rerouting
requests to the right microservice, serving as a proxy for the
different services.

2) Message Broker/Event Bus: In the prototype, the back-
end communication moved through different stages. Each of
these stages aimed to further decouple the microservices from
each other. The first iteration of the back-end communication
implemented direct synchronous calls from service to service.
The calls are made to endpoints that the services expose to
each other. The second iteration involves adding a message
broker to the application to decouple the services further and
adding an asynchronous way for them to orchestrate events af-
fecting multiple services. The message broker is implemented
using RabbitMQ with a topic-based broker. Messages are
tagged with a specific topic, for instance, orderCreate, when
the cart of a session is checked out in the sportStore. The
new message is then routed to all the queues matching the
orderCreate tag, and the productOrder service then consumes
the messages and creates the order in a FIFO order. The topic
message broker was initially chosen to facilitate customiza-
tion for the different services further down the line, where
messages of a specific tenant would be published to a queue
being consumed by that tenant’s customized microservice.

3) Identity Server: In this section, we look at how the
Identity server component of the application works. We de-
scribe how the different features provided by IdentityServer
and OpenId connect help with authentication and authorization
for the different tenants. Clients represent the applications that
can request tokens from the identity server. In our case, only
the web store of the sportStore application use the tokens on
behalf of the user. The grant types we define, specify how
the clients can interact with the Identity Server. The tokens
issued allow both services and users to interact directly with
the identity server, because of the grant types we use. If we
were to define individual grants for the service and users,
we would use the Client Credentials type for the service,
and OpenID grant type for the users to interact with the
server. The identity resources define the functionality enabled
by the identity server. The OpenID identity resource allows
users to log in via the OpenIDConnect login screen, while the
profile resource type allows the services to retrieve the claims
of the users to check for customizations later on. The API

Fig. 6. Final architecture of the application after migrating all the different
services, and implementing the different additional infrastructure components
needed for the the new architecture

resource allows the client to access the gateway by defining
and associating access to a specific scope. In our case, we only
need one resource since all the services are hidden behind the
API gateway, and access to all of them on the user’s behalf is
necessary to provide the full functionality of the system.

4) Tenant Manager: The tenant manager is an essential
component of the multi-tenant aspect of the application. We
use it to configure the persistency layer for the tenants and
as a lookup for customized endpoints. Using the “/userInfo”
endpoint of the identity server, the tenant manager can retrieve
all the claims belonging to the logged-in user. The claims
contain information about where the user belongs and what
right he or she has for the services. With the “tenantID”, we
can look up the customization for the called functionality on
the main service. Initially, we implement the tenant manager
as a mock service in the main service. The TM uses the token
from the initial request and sends a request to the “/userinfo”
endpoint of the identity server, which returns all the claims
associated with the token.

C. Implementation

In this section, we go through the process following our
migration approach and applying it to the migration of the
SportsStore application, first to the microservice architecture,
and then implementing multi-tenancy for the application. We
split the migration up into different phases. Each phase in-
cludes the extraction of a single service from the pre-existing
system, as well as adding the necessary infrastructure to
support the new migrated functionality from the monolith.

In Figure 6 we see the final architecture of the application
after all the different services and infrastructure components
have been implemented or migrated.

1) Migration: We split the migration itself into different
phases, related functionality from the existing application
during each of these phases and adding the necessary infras-
tructure to the new application needed to support the extracted
components from the pre-existing application.

The initial phase of the migration consists of the analysis
and reverse engineering of the pre-existing application. During
phase one, the application is still in a single monolithic piece.
At this stage, the application consists of three different layers
typically found in MVC applications. A user-interface that
represents the view, controllers that contain the application
logic, and a persistent storage layer that handles the storage
of the models in different databases.

The second phase of the migration starts by picking a
service or some functionality for migration. Ideally, this func-
tionality should already be loosely coupled to the rest of the
code in the monolithic application to limit any dependency
back to the monolith. For this phase, we chose to focus on the
product module of the SportsStore application. The product
module contains all the logic associated with displaying prod-
ucts from the database, adding and updating products in the
database, and adding or removing products to a customer cart.
We add the additional infrastructure pieces associated with a
microservice architecture before we migrate the service. The
API-Gateway forwards and redirects calls originating from the
web applications to the specific services and act as a unifying
endpoint for the View instead of having the calls directed to
the specific service it targets an endpoint at the gateway.

In Phase 3 of the migration, we extract another service from
the monolith. With two services extracted, we need a way
to orchestrate how they cooperate. We introduce the message
broker as an additional piece of infrastructure to help with
orchestration. The message broker keeps a queue of messages
published by all services. Services can then subscribe to the
message queue to consume the messages and perform actions
with the content of the message. The new service is added
to the API-gateway behind the downstream endpoint “/cart”.
Collaboration and orchestration between the cart service and
product service use the message broker to add and remove
products to the customer cart. The primary use of the broker
at this time is to get information about the products in the cart.
Using the session data, we publish a message to the broker
requesting a lookup in the products database for the items in
the cart. Once the product service retrieves the message from
the queue, it aggregates all the products from the cart into a
list before returning it to the cart service

After the fourth phase of the migration, the application is
now following the microservice architecture design pattern.
The functionality from the monolith has moved into individual
services decoupled from each other. All calls from the web
client are passed through the gateway and forwarded to the ap-
propriate service. Orchestration and communication between
the services happen through the use of a message broker. The
development and deployment of different services are isolated
from each of the other services. There is also a clear separation
of the different layers of the application allowing tenants to
customize the different services.

The final phase of the migration introduces more infrastruc-
ture to support multi-tenancy. We add an IdentityManager to
support login, authentication, and authorization of users and
a TenantManager to provide the services with endpoints for

tenant-specific customizations. To support the customization
of the services, they need to use both the identity manager
and tenant manager. The tenant manager keeps a record of all
the customizations associated with a specific tenant, which can
be looked up by services after querying the identity server for
the user profile of the token attached to the request. We have
two different scenarios for how the tenant manager is used by
the services. One scenario is where the tenant has registered
customization for some of the functionality, and another where
the tenant uses the default functionality implemented in the
service already.

2) Tenant Customization: Configurations are retrieved from
the tenant-manager by the service. The response is cached for
quick access and reduced network traffic. The tenant manager
then push updates to the services when configurations are
updated. Once the service has the information about tenant
customization, it reroutes the information to the address and
endpoint specified. The customized endpoint then performs
the function and prepares the result for the response back
to the ordering service. Before the response is returned to
the ordering service, it needs to be fitted to the interface
determined by the provider of the application. The interface
includes the data types that should be present in the response,
how the data should be structured. Necessary data types
include, for example, the total cost of the order, and how the
object that the customized service should be structured.

One of the main benefits of the microservice architecture
is the decoupled nature of the individual services. Compared
to a monolith state in which the pre-existing application was
initially, any changes to to code required a full redeployment
of the system. The ease of development due to the isolated
nature of the services will be used to determine the benefit of
the migration. Time from code completion to live is measured
from the feature or change is implemented until the change
has propagated to the actual application and is visible or
observable to the end-user. Affected components is also a
metric used to determine the benefits of the migration. In
the monolithic system, a change would affect all the different
modules through the redeployment of the application. Once
more services are extracted we expect that the number of
affected components/modules that has to be redeployed as
a result of a change to decrease. To measure this we use
the different contexts or domains discovered during the initial
analysis. A component is considered affected when it has to
be redeployed due to a change somewhere else in the system.
While the number of affected components should decrease we
also expect that there will be changes affecting other services.

We break the categorisation of these effects into the different
phases during the migration. We measure the effect of a change
during each phase, and in all the existing components that we
have either belonging to the monolith or as separate services.
The additional infrastructure of the application once we start
the migration are considered as separate components for this
metric.

VI. RELATED WORK

This section discusses related approaches for migrating from
single-tenant to multi-tenant, and monoliths to MSA.

A. Single-tenant to Multi-tenant

One of the primary challenges with multi-tenant applica-
tions, according to Kwok et al. [11] is that the application has
to deliver a shared product to multiple tenants, resulting in
one-size-fits-all solutions even though the different user-groups
might have slightly different needs from the application.

A way to solve this is by allowing the individual users
to customize different aspects of the application for their
needs, but this introduces additional challenges, according to
Walraven et al. [12]. Ad-hoc handling of changes related to
one specific tenant can potentially affect all the tenants of the
application Multi-tenant applications is another way to take
advantage of economies of scale. Multi-tenant applications
share resources between multiple different user groups or
tenants, keeping the tenant-specific data separate.

Migrating an application from single to multi-tenant is a
large undertaking. There are certain requirements that need to
be in place before the application can be migrated, Furda et al.
[19] describe an approach for migrating legacy single-tenant
applications to multi-tenant. The approach moves through
three different phases during the migration. In the initial
phase, the legacy system supports only a single tenant, and
its structure and architecture have not been changed yet. The
second phase focuses on changing the design pattern of the
application into one that is better suited for multi-tenancy.

In [23], the authors propose a lightweight reengineering ap-
proach to migrate a single-tenant software system into a multi-
tenant one. The targeted multi-tenant software system can
provide capabilities for tenant-specific layout styles, configu-
ration and data management. Our migration approach enables
tenant-specific customization, which is beyond configuration
capabilities.

B. Migrating to microservices

The customization-driven aspect makes our approach dif-
ferent from other migration approaches like [3], [4], [24].
In [3], the authors present their migration approach using
migration patterns for managing service decomposition and
data isolation and replication. While in [4], the authors present
an incremental approach of re-engineering a mission critical
banking system that led to reduced complexity, lower coupling,
higher cohesion, and a simplified integration. Each of the
approaches has its specific contexts where they are the most
suitable. These approaches focus on migrating live systems
or systems that have been used extensively by organizations.
For our prototype, we found the blueprint approach most
suitable due to the ”stale” state of the application. By stale,
we mean that the application is no longer actively developed.
All the approaches we found follow a similar pattern, made
up of three-phases: Reverse-engineering, transformation, and
implementation. What separates them is the focus they put on
transforming and moving the existing functionality into new

services. The customization-driven aspect makes our approach
different from other migration approaches. The primary con-
tender for the approach we chose was the Strangler approach.
Comparing this approach to the blueprint approach, we see
that the focus is on following the new architecture with any
new functionality. Because the amount of new functionality we
are adding to the system is limited, we landed on the blueprint
approach for our MSA migration.

VII. CONCLUSIONS

This paper has presented an approach for migrating mono-
liths to microservices-based customizable Cloud-native SaaS.
Our approach splits the migration into three stages, where we
first analyze and break down the application into bounded
contexts separating the different responsibilities and applica-
tion areas. After the analysis, we start transforming the infras-
tructure to fit the MSA. This includes migrating information
from databases related to the contexts discussed above, and
setting up additional components necessary to support the new
services, like the API gateway and the message exchange.
Finally, we implement the functionality from the contexts as
separate services and connect them to infrastructure. Once the
functionality of the application has been migrated, we add
the infrastructure necessary for multi-tenancy. After having the
application in a suitable state, we can apply the approach to
migrate it. The initial phase analyzing the application creates
the foundation for the entire migration. It is the most crucial
part of getting the migration right.

When it comes to the multi-tenancy transition, there are
no other approaches that enables tenant-specific customization
capability in a multi-tenant context. Our focus for this tran-
sition was laying the groundwork for customization further
down the line. The primary concerns with multi-tenancy are
avoiding noisy neighbors and ensuring that the tenant data
is sufficiently isolated. Moving the customization outside the
same execution context of the main product solves this.
Customization no longer compete for computing resources
with the main application, and the data of other tenants remain
entirely isolated from the customization code.

VIII. ACKNOWLEDGMENTS

The research leading to these results has partially re-
ceived funding from the European Union’s Horizon 2020
Research and Innovation programme under Grant Agreement
No. 958363 (DAT4.Zero), and from the Research Council of
Norway under the grant agreement number 309700 (FLEET).

REFERENCES

[1] A. Lenart, “Erp in the cloud – benefits and challenges,” in Research
in Systems Analysis and Design: Models and Methods, S. Wrycza, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 39–50.

[2] IDG, “2018 Cloud Computing Survey,” Tech. Rep., 04 2018.
[Online]. Available: https://www.idg.com/tools-for-marketers/2018-
cloud-computing-survey/

[3] A. Henry and Y. Ridene, Migrating to Microservices. Cham: Springer
International Publishing, 2020, pp. 45–72.

[4] M. Mazzara, N. Dragoni, A. Bucchiarone, A. Giaretta, S. T. Larsen,
and S. Dustdar, “Microservices: Migration of a mission critical system,”
IEEE Transactions on Services Computing, pp. 1–1, 2018.

[5] D. Taibi, V. Lenarduzzi, and C. Pahl, “Processes, motivations, and issues
for migrating to microservices architectures: An empirical investigation,”
IEEE Cloud Computing, vol. 4, no. 5, pp. 22–32, 2017.

[6] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices architec-
ture enables devops: Migration to a cloud-native architecture,” IEEE
Software, vol. 33, no. 3, pp. 42–52, 2016.

[7] R. Kazman, S. G. Woods, and S. J. Carriere, “Requirements for
integrating software architecture and reengineering models: Corum ii,”
in Proceedings Fifth Working Conference on Reverse Engineering (Cat.
No.98TB100261), 1998, pp. 154–163.

[8] M. Fowler. (2004) Strangler Fig Application. [Online]. Available:
https://martinfowler.com/bliki/StranglerFigApplication.html

[9] E. Evans, Domain-driven design: tackling complexity in the heart of
software. Addison-Wesley Professional, 2004.

[10] P. Di Francesco, P. Lago, and I. Malavolta, “Migrating towards microser-
vice architectures: An industrial survey,” in 2018 IEEE International
Conference on Software Architecture (ICSA), 2018, pp. 29–2909.

[11] T. Kwok, T. Nguyen, and L. Lam, “A Software as a Service with Multi-
tenancy Support for an Electronic Contract Management Application,”
in 2008 IEEE International Conference on Services Computing, vol. 2,
Jul. 2008, pp. 179–186.

[12] S. Walraven, D. Van Landuyt, E. Truyen, K. Handekyn, and
W. Joosen, “Efficient customization of multi-tenant Software-as-a-
Service applications with service lines,” Journal of Systems and
Software, vol. 91, pp. 48–62, May 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121214000326

[13] E. Wolff, “Migrating monoliths to microservices: A survey of ap-
proaches,” in International Conference on Microservices 2019, 2019.

[14] E. T. Nordli, P. H. Nguyen, F. Chauvel, and H. Song, “Event-based
customization of multi-tenant saas using microservices,” in Coordination
Models and Languages, S. Bliudze and L. Bocchi, Eds. Cham: Springer
International Publishing, 2020, pp. 171–180.

[15] P. H. Nguyen, H. Song, F. Chauvel, R. Muller, S. Boyar, and
E. Levin, “Using microservices for non-intrusive customization of
multi-tenant saas,” in Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ser. ESEC/FSE 2019,
New York, NY, USA, 2019, p. 905–915. [Online]. Available:
https://doi.org/10.1145/3338906.3340452

[16] H. Song, P. H. Nguyen, and F. Chauvel, “Using microservices to
customize multi-tenant saas: From intrusive to non-intrusive,” in Joint
Post-proceedings of the First and Second International Conference on
Microservices (Microservices 2017/2019), 2020.

[17] H. Song, P. H. Nguyen, F. Chauvel, J. Glattetre, and T. Schjerpen, “Cus-
tomizing multi-tenant saas by microservices: A reference architecture,”
in 2019 IEEE International Conference on Web Services (ICWS), 2019,
pp. 446–448.

[18] H. Song, F. Chauvel, and P. H. Nguyen, Using Microservices to
Customize Multi-tenant Software-as-a-Service. Cham: Springer Inter-
national Publishing, 2020, pp. 299–331.

[19] A. Furda, C. Fidge, A. Barros, and O. Zimmermann, “Chapter
13 - reengineering data-centric information systems for the cloud
– a method and architectural patterns promoting multitenancy,”
in Software Architecture for Big Data and the Cloud, I. Mistrik,
R. Bahsoon, N. Ali, M. Heisel, and B. Maxim, Eds.
Boston: Morgan Kaufmann, 2017, pp. 227–251. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/B9780128054673000132

[20] P. H. Nguyen, M. Kramer, J. Klein, and Y. L.
Traon, “An extensive systematic review on the model-driven
development of secure systems,” Information and Software
Technology, vol. 68, pp. 62–81, 2015. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584915001482

[21] L. Lúcio, Q. Zhang, P. H. Nguyen, M. Amrani, J. Klein, H. Vangheluwe,
and Y. L. Traon, “Chapter 3 - advances in model-driven security,”
in Advances in Computers, ser. Advances in Computers, A. Memon,
Ed. Elsevier, 2014, vol. 93, pp. 103–152. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/B9780128001622000038

[22] A. Freeman, Pro Asp. net Core Mvc. Apress, 2016.
[23] C. Bezemer, A. Zaidman, B. Platzbeecker, T. Hurkmans, and A. . Hart,

“Enabling multi-tenancy: An industrial experience report,” in 2010 IEEE
International Conference on Software Maintenance, 2010, pp. 1–8.

[24] D. Taibi and K. Systä, “From monolithic systems to microservices: a
decomposition framework based on process mining,” in 8th International
Conference on Cloud Computing and Services Science, CLOSER, 2019.

