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Abstract—Software quality estimation is a challenging and
time-consuming activity, and models are crucial to face the
complexity of such activity on modern software applications.

One main challenge is that the improvement of distinctive
quality attributes may require contrasting refactoring actions
on an application, as for trade-off between performance and
reliability. In such cases, multi-objective optimization can provide
the designer with a wider view on these trade-offs and, con-
sequently, can lead to identify suitable actions that take into
account independent or even competing objectives.

In this paper, we present an approach that exploits the
NSGA− II multi-objective evolutionary algorithm to search op-
timal Pareto solution frontiers for software refactoring while
considering as objectives: i) performance variation, ii) reliability,
iii) amount of performance antipatterns, and iv) architectural dis-
tance. The algorithm combines randomly generated refactoring
actions into solutions (i.e., sequences of actions) and compares
them according to the objectives.

We have applied our approach on a train ticket booking
service case study, and we have focused the analysis on the
impact of performance antipatterns on the quality of solutions.
Indeed, we observe that the approach finds better solutions when
antipatterns enter the multi-objective optimization. In particular,
performance antipatterns objective leads to solutions improving
the performance by up to 15% with respect to the case where
antipatterns are not considered, without affecting the solution
quality on other objectives.

Index Terms—multi-objective optimization, software perform-
ance, software reliability, antipatterns, refactoring.

I. INTRODUCTION

In the last decades, multi-objective optimization techniques
have been successfully applied to many model-driven soft-
ware development problems [1]–[7]. These techniques are
evidently more effective on problems whose objectives can
be expressed through quantifiable metrics. Problems related
to non-functional aspects undoubtedly fit into this category,
as witnessed by the vast literature in this domain [8]–[10].
Most approaches are based on evolutionary algorithms [11]
that allow exploring the solution space by (re-)combining
solutions.

Software refactoring is a task that can be triggered by
different causes, such as the introduction of additional re-
quirements, the adaptation to new execution contexts, or the

This research was supported by the AIDOaRt project (ECSEL-JU program
- grant agreement n.101007350).

degradation of non-functional properties. The identification
of optimal refactoring actions is a non-trivial task, mostly
due to the large space of solutions, and there is still lack of
automated support in this context. A common aspect of multi-
objective optimization approaches applied to model-driven
software refactoring problems is that they search among design
alternatives (e.g., through architectural tactics [12], [13]).

In this paper, we present an approach based on a
multi-objective evolutionary algorithm (i.e., NSGA− II) that
searches sequences of refactoring actions to be applied on
UML software models, leading to the optimization of several
objectives, namely: i) performance variation (analyzed through
Layered Queueing Networks), ii) reliability (analyzed through
a closed-form model), iii) number of performance antipatterns
(automatically detected) and iv) architectural distance. In par-
ticular, we are interested in studying the impact of performance
antipatterns on the quality of refactoring solutions. Since it has
been shown that removing performance antipatterns leads to
systems that show better performance than the ones affected
by them [14]–[16], we aim at studying if this phenomenon
also holds in the context of muti-objective optimization, where
performance improvement is not the only objective.

Since UML represents a commonly recognized standard
in the software modeling domain, our approach applies to
UML models augmented by MARTE [17] and DAM [18]
profiles, which allow to embed performance and reliability
properties into UML models. However, UML does not provide
native support for performance analysis, thus we introduce a
novel model-to-model transformation that generates Layered
Queueing Networks (LQN) from annotated UML models.
The solution of LQN models feeds the performance variation
objective.

Here we consider refactoring actions that are designed to
improve performance in most cases. Since such actions may
also have an impact on other non-functional properties, we
introduce the reliability among the optimization objectives
to study whether their combination could keep satisfactory
levels of performance and reliability at the same time. To
quantify the reliability objective, we adopt an existing model
for component-based software systems [19] which can be
generated from UML models.

In this context, a multi-objective optimization should also
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consider the distance between the initial model and the models
resulting from applying refactoring actions. Indeed, without an
objective that minimizes such distance, the proposed solutions
could be impractical because they would require to completely
disassemble and re-assemble a model architecture. This is the
rationale behind the inclusion of the architectural distance as
an objective to minimize in our optimization.

We recently investigated the effect of performance in
a multi-objective optimization problem by presenting EA-
SIER [20], where we also observed the contribution of
performance antipattern and architectural distance in the
generation of Pareto frontiers. However, EASIER relies on
a performance-oriented architectural description language
equipped with its own performance solver, thus limiting its
application to more complex cases.

Summarizing, the main contributions of this paper are the
following:

• we adopt UML as modeling notation, instead of DSLs
that have been adopted in existing multi-objective ap-
proaches [9], [10], [21], [22], thus we move toward a
widely adopted standard;

• we introduce a novel model-to-model transformation to
generate Layered Queueing Networks from annotated
UML models;

• we introduce an automated refactoring engine equipped
with four refactoring actions that can be applied to UML
models;

• we adopt a probabilistic concept of antipattern occur-
rence [23], which allows us to analyze the sensitivity of
solutions to the antipattern detection capability;

• we consider measures of performance, reliability, dis-
tance, and the number of performance antipatterns as
competing objectives of our evolutionary process.

We extensively applied our approach to the Train Ticket
Booking Service [24], [25] in order to answer the following
three research questions:

• RQ1: Does antipattern detection contribute to find better
solutions compared to the case where antipatterns are not
considered at all?

• RQ2: Does the probabilistic nature of fuzzy antipatterns
detection help to include higher quality solutions in
Pareto frontiers with respect to deterministic one?

• RQ3: Is the approach able to keep the system reliability
satisfactorily high?

Indeed, the experimentation lasted approximately 80 hours and
generated more than 31,000 solutions. Our results show that,
by considering the reduction of performance antipatterns as
an objective, we are able to obtain refactoring solutions that
improve the performance by up to 15% with respect to the
case where antipatterns are not considered.

The structure of the paper is the following: Section II
introduces basic concepts, Section III describes the approach,
in Section IV we evaluate our approach on the case study and
discuss the results and threats to validity. Section V reports
related work, and Section VI concludes the paper.

II. BACKGROUND

We identify the four competing objectives of our evolu-
tionary approach as follows: PERFQ is a performance quality
indicator that quantifies the performance improvement/detri-
ment between an initial model and one obtained by applying
the refactoring actions of a solution (Section II-A); RELIAB-
ILITY is a measure of the reliability of the software system
(Section II-B); #PAS is a metric that quantifies the amount of
performance antipattern occurrences while considering the in-
trinsic uncertainty rising from thresholds used by the detection
mechanism (Section II-C); ARCHDIST represents the distance
between an initial model and one obtained by applying the
refactoring actions of a solution (Section II-D).

We employ the Non-dominated Sorting Algorithm II
(NSGA− II) as our genetic algorithm [26], since it is extens-
ively used in the software engineering community, e.g., [12],
[27]. NSGA− II randomly creates an initial population from
that the offspring population is created by applying the
Crossover operator with probability Pcrossover, the Mutation
operator with probability PMutation. The union of the initial
and the offspring populations is sorted by the Non-dominated
sorting operator, which identifies different Pareto frontiers
with respect to considered objectives. Finally, the Crowding
distance operator cuts the worse half the sorted union off, and
the remaining population becomes the initial population for
the next step.

A. Performance Quality Indicator (PERFQ)

PERFQ quantifies the performance improvement/detriment
between two models, and it is defined as follows:

PERFQ(M) =
1

c

c∑
j=1

pj ·
Fj − Ij
Fj + Ij

where M is a model obtained by applying a refactoring
solution to the initial model, Fj is the value of a performance
index in M , and Ij is the value of the same index on the initial
model. p ∈ {−1, 1} is a multiplying factor that holds: i) 1 if
the j–th index has to be maximized (i.e., the higher the value,
the better the performance), like the throughput; ii) −1 if the
j–th index has to be minimized (i.e., the smaller the value,
the better the performance), like the response time.

Notice that, for performance measures representing utiliza-
tion, p also holds 1 but we define a utilization correction factor
∆j to be added to each j–th term above, as defined in [20].
The utilization correction factor penalizes refactoring actions
that push the utilization too close to 1, i.e., its maximum value.

Finally, the global PERFQ is computed as the average
across the number c of performance indices considered in the
performance analysis.

As mentioned in the introduction, in order to obtain per-
formance indices of a UML model, the analysis has to be
conducted on a performance modeling notation, and we have
adopted the Layered Queueing Networks (LQNs)1 for this

1http://www.sce.carleton.ca/rads/lqns/LQNSUserMan-jan13.pdf
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Table I: Detectable performance antipatterns in our approach.

Performance antipattern Description

Pipe and Filter Occurs when the slowest filter in a “pipe and filter” causes the system to have unacceptable throughput.
Blob Occurs when a single component either i) performs the greatest part of the work of a software system or ii) holds the

greatest part of the data of the software system. Either manifestation results in excessive message traffic that may
degrade performance.

Concurrent Processing System Occurs when processing cannot make use of available processors.
Extensive Processing Occurs when extensive processing in general impedes overall response time.

Empty Semi-Truck Occurs when an excessive number of requests is required to perform a task. It may be due to inefficient use of
available bandwidth, an inefficient interface, or both.

Tower of Babel Occurs when processes use different data formats and they spend too much time in convert them to an internal format.

goal. LQNs have been introduced to give a layered structure
to Queuing Networks [28]. Each layer contains software re-
sources providing different classes of service. These elements
are named tasks, while classes of service are identified by
entries. Each task implements a queue that is served by a
processor. The behavior of tasks is modeled through requests
among entries, or it is specified using activities. An activity
is the atomic unit of computation in an LQN. Activities can
be related using ordering operators. An ordering operator
indicates precedence between activities. Figure 2 shows a
graphical example of an LQN.

An LQN is solved by decomposing it in several conventional
Queuing Network submodels related to each other, one for
each layer of the whole model. Each submodel is in turn made
of two layers: the top layer includes tasks interpreting the
clients, while tasks in the bottom layer are intended to be
servers of the top ones.

B. Reliability model

The reliability model that we adopt here to quantify the
RELIABILITY objective is based on the model introduced
in [19]. The mean failure probability θS of a software system
S is defined by the following equation:

θS = 1−
K∑
j=1

pj

(
N∏
i=1

(1− θi)InvNrij ·
L∏

l=1

(1− ψl)
MsgSize(l,j)

)
This model takes into account failure probabilities of com-

ponents (θi) and communication links (ψl), as well as the
probability of a scenario to be executed (pj). Such probabilities
are combined to obtain the overall reliability on demand of
the system (θS), which represents how often the system is not
expected to fail when its scenarios are invoked.

The model is considered to be composed of N components
and L communication links, whereas its behavior is made
of K scenarios. The probability (pj) of a scenario j to be
executed is multiplied by an expression that describes the
probability that no component or link fails during the execution
of the scenario. This expression is composed of two terms:∏N

i=1(1− θi)InvNrij , which is the probability of the involved
components not to fail raised to the power of their number
of invocations in the scenario (denoted by InvNrij), and∏L

l=1(1 − ψl)
MsgSize(l,j), which is the probability of the

involved links not to fail raised to the power of the size

of messages traversing them in the scenario (denoted by
MsgSize(l, j)).

C. Performance Antipatterns

A performance antipattern describes bad design practices
that might lead to performance degradation in a system. Smith
and Williams have introduced the concepts of performance
antipatterns in [14]. These textual descriptions were later
translated into first-order logic (FOL) equations [29].

A performance antipattern FOL is a combination of multiple
literals, where each one represents a system aspect (e.g., the
number of connections among components). These literals
must be compared to thresholds in order to reveal the occur-
rence of a performance antipattern. The identification of such
thresholds is a non-trivial task, and using deterministic values
may result in an excessively strict detection where the smallest
change in the value of a literal determines the occurrence of
the antipattern. For these reasons, we use the fuzzy threshold
concept that has been introduced in [23]. An example of a
performance antipattern fuzzy threshold is the following:

1− UB(literal)− literal
UB(literal)− LB(literal)

The upper (UB) and the lower (LB) bounds, in the above
equation, are the maximum and minimum values of the
literal computed on the entire system. Instead of detecting a
performance antipattern in a deterministic way, such thresholds
lead to assign probabilities to antipattern occurrences.

In this study we detect the performance antipatterns listed
in Table I.

D. Architectural distance

The architectural distance ARCHDIST quantifies the distance
of the model obtained by applying refactoring actions to the
initial one. On one side, a baseline refactoring factor (BRF)
is associated with each refactoring action in our portfolio, and
expresses the refactoring effort to be spent when applying
the action. On the other side, an architectural weight (AW)
is associated with each model element on the basis of the
number of connections to other elements in the model. Hence,
the effort needed to perform a refactoring is quantified as the
product between the baseline refactoring factor of an action
and the architectural weight of the model element on which
that action is applied. ARCHDIST is obtained by summing the
efforts of all refactoring actions contained in a solution.



As an example, let us assume that a refactoring sequence
is made up of two refactoring actions: A1 with BRF (A1) =
1.23, and A2 with BRF (A2) = 2.3. For each refactoring
action the algorithm randomly selects a target element in
the model. For instance, let those target elements be: E1
with AW (E1) = 1.43, and E2 with AW (E2) = 1.32. The
resulting ARCHDIST of A1 and A2 would be:

ARCHDIST(A1, A2) = 1.23 · 1.43 + 2.3 · 1.32

Details about the baseline refactoring factor for each con-
sidered refactoring action are in Section IV-B.

III. APPROACH

Our process starts from an initial UML model and, through
refactoring actions, generates alternative models that are func-
tionally equivalent to the initial one, but that show different
values for the non-functional attributes considered as object-
ives. Once an initial population is available, the evolutionary
process starts seeking the optimal Pareto frontier. Figure 1 is
a graphical representation of the approach we present in this
paper.

Figure 1: Our multi-objective evolutionary approach

A. Assumptions on UML models

In our approach, we consider UML models including three
views, namely static, dynamic and deployment views. The
static view is modeled by a UML Component diagram in
which static connections among components are represented
by interface realizations and their usages. The dynamic view is
described by UML Use Case and Sequence diagrams. A Use
Case diagram defines user scenarios, while a Sequence dia-
gram describes the behavior inside a single scenario through
component operations (as defined in their interfaces) and inter-
actions among them. A Deployment diagram is used to model

platform information and map Components to Deployment
Nodes. As mentioned before, we use an augmented UML nota-
tion by embedding two existing profiles, namely MARTE [17]
that expresses performance concepts, and DAM [18] that
expresses reliability concepts.

B. The Refactoring Engine

The automated refactoring of software models is a key point
when evolutionary algorithms are employed in order to optim-
ize some model attributes. For the sake of full automation of
our approach, we have implemented a refactoring engine that
applies refactoring actions on UML models.

Each solution that our evolutionary algorithm produces is
a sequence of refactoring actions that, once applied to an
initial model, leads to a model alternative that shows different
non-functional properties. Since our refactoring actions are
combined during the evolutionary approach, we exploit the
feasibility engine that verifies in advance whether a sequence
of refactoring actions is feasible or not [30].

The engine is based on the Cinnéide and Nixon [31]
framework. Each refactoring action is equipped with a pre- and
post-condition, which describe the state of the subject model
before and after the application of the action. The engine re-
duces a sequence of refactoring actions to a single refactoring
action, which includes all the changes (see Equation (1a)). For
example, considering two refactoring actions (Mi, and Mj),
then the global pre-condition is obtained by logical ANDing
the first action pre-condition (PrMi) and all the parts of Mj

pre-condition that are not yet verified by Mi post-conditions
(MPr

j / Mi
Po ) (see Equations (1b)). Since the status of the

model after a refactoring is synthesized by its post-condition,
we can discard the parts of a subsequent refactoring pre-
condition that, by construction, are already verified by its post-
condition. The global post-condition is obtained by logical
ANDing all post-conditions within the sequence (MPo

i ∧M
Po
j )

(see Equation (1c)).

PrMPo
i ∧

PrMPo
j 7−→ PrMPo (1a)

PrMi ∧MPr
j / Mi

Po 7−→ PrM (1b)

MPo
i ∧M

Po
j 7−→MPo (1c)

Our feasibility engine also allows to reduce the number of
invalid refactoring sequences, thus reducing the computational
time. In the following, we report the four refactoring actions
considered within the optimization process to generate model
alternatives.

a) Clone a Node: This action is aimed at introducing a
replica of a Node. Adding a replica means that every deployed
artifact and every connection of the original Node has to be
in turn cloned. Stereotypes and their tagged values are cloned
as well. The rationale of this action is to introduce a replica
of a platform device with the aim of reducing its utilization.

b) Move an Operation to a new Component deployed on
a new Node: This action is in charge of randomly selecting
an operation and moving it to a new Component. All the



elements related to the moving operation (e.g., links) will
move as well. Since we adopt a multi-view model, and
coherence among views has to be preserved, this action has to
synchronize dynamic and deployment views. A lifeline for the
newly created Component is added in the dynamic view, and
messages related to the moved operation are forwarded to it.
In the deployment view, instead, a new Node, a new artifact,
and related links are created. The rationale of this action is to
lighten the load of the original Component and Node.

c) Move an Operation to a Component: This action is
in charge of randomly selecting and transferring an Opera-
tion to an arbitrary existing target Component. The action
consequently modifies each UML Use Case in which the
Operation is involved. Sequence Diagrams are also updated
to include a new lifeline representing the Component owning
the Operation, but also to re-assign the messages invoking the
operation to the newly created lifeline. The rationale of this
action is quite similar to the previous refactoring action, but
without adding a new UML Node to the model.

d) Deploy a Component on a new Node: This action
simply modifies the deployment view by redeploying a Com-
ponent to a newly created Node. In order to be consistent
with the initial model, the new Node is connected with all
other ones directly connected to the Node on which the target
Component was originally deployed. The rationale of this
action is to lighten the load of the original UML Node by
transferring the load of the moving Component to a new UML
Node.

C. UML to LQN Transformation

As mentioned before, for a full automation of our approach
we have implemented a model transformation (UML2LQN)
that generates a Layered Queuing Network (LQN) starting
from a UML model compliant with our assumptions. The
performance metrics that are required from the evolutionary
algorithm come out from the LQN analysis and are reported
back in the UML model. The analysis is conducted using the
LQN solver 2 provided by Franks et al. [32].

The transformation engine is based on the Extensible
Platform for Integrated Languages for model management
(Epsilon) [33].

UML2LQN mappings are listed in Table II, and schematic-
ally exemplified in Figure 2. The first column of Table II lists
the UML Elements that are consumed by the transformation,
while the third column lists the corresponding LQN Elements
generated by the transformation. The second column, instead,
lists the stereotypes that filter elements within the UML model.

The transformation maps each UML Node to an LQN Pro-
cessor. A node is included in the transformation if stereotyped
with MARTE GaExecHost. The transformation considers all
nodes deploying at least an interacting component. A com-
ponent is considered to be interacting if there is at least a
UML Lifeline describing its behavior in at least one of the
considered scenarios (i.e., UML Use Cases).

2https://github.com/layeredqueuing/V5

Table II: The stereotype application on UML Elements and
their mapping to LQN ones.

UML Element Stereotype LQN Element

Model - lqnmodel
Node MARTE::GaExecHost processor
CommunicationLink DAM::DaConnector -
Component DAM::DaComponent task
Actor MARTE::GaWorkloadEvent task
Behavior Execution Specification - entry
Message MARTE::GaStep activity
Message Occurrence Specification - synch-call
Use Case MARTE::GaScenario -

Each Sequence Diagram should contain at least a lifeline
representing the element (e.g., a user or another system) that
triggers the scenario. This element is annotated as MARTE
GaWorkloadEvent. In our context, each scenario is activated
by a UML Actor. Components and Actors are the elements
that send and receive requests in the Sequence Diagram that
describes the behavior originated by triggering a Use Case.
For this reason, Components and Actors are mapped to LQN
Tasks. Each lifeline has one or more units of behavior rep-
resented by a UML Behavior Execution Specification (BES).
A BES represents a set of events. Each event stands for the
reception or the emission of a message and is modeled by a
UML Message Occurrence Specification (MOS). MOSs are as-
sociated with the requests made in an LQN, and consequently
mapped to LQN synch-call. It follows that BESs are mapped
to LQN Entries.

A UML Message is transformed into an LQN Activity if
stereotyped by MARTE GaStep. Each LQN Entry holds at
least an LQN Activity that models a synchronous call to a
different LQN Entry. The GaStep.rep tagged value denotes
the number of requests of an LQN Activity. Instead, the
GaStep.execTime tagged value indicates the service time of
a UML Message. This information is needed to calculate the
demand for a call.

In an LQN, a request may be executed by multiple pro-
cessors. UML2LQN exploits this feature by calculating the
number of UML Nodes deploying the same component. These
nodes are represented, in the obtained LQN, as a single
processor having multiplicity larger than one.

Our approach is similar to the one from Altamini et al. [34],
but we could not adopt the latter because it starts from UML
Activity Diagrams, whereas we introduce Sequence Diagrams
to more explicitly express the interactions among components.
Both approaches report the results produced by the LQN
solver back in the original UML model. In Altamini et al.,
this is accomplished using a trace model generated during
the transformation. UML2LQN exploits an Epsilon Object
Language (EOL) script that reads the solver output and dir-
ectly introduces the results in the original UML model. The
generation of a trace model would have added unnecessary
complexity to the transformation. Hence, given our mapping,
it is sufficient to use an EOL script that reports performance
results back into the original model.

https://github.com/layeredqueuing/V5
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Figure 2: Graphical representation of the UML to LQN
mapping.

D. Computing reliability on UML models

The reliability parameters of the model introduced in Sec-
tion II-B are annotated on UML models by means of the
MARTE-DAM profile. The probability of executing a scenario
(pj) is specified by annotating UML Use Cases with the
GaScenario stereotype. This stereotype has a tag named root
that is a reference to the first GaStep in a sequence. We
use the GaScenario.root tag to point to the triggering UML
Message of a Sequence Diagram and the GaStep.prob to set
the execution probability. Failure probabilities of components
(θi) are defined by applying the DaComponent stereotype on
each UML Component and by setting, in the failure tag, a
DaFailure element with the failure probability specified in
the occurrenceProb tag. Analogously, failure probabilities of
links (ψl) are defined in the failure.occurrenceProb tag of
the DaConnector stereotype that we apply on UML Commu-
nicationPath elements. Such elements represent the connec-
tion links between UML Nodes in a Deployment Diagram.
Sequence Diagrams are traversed to obtain the number of
invocations of a component i in a scenario j (denoted by
InvNrij in our reliability model), but also to compute the
total size of messages passing over a link l in a scenario
j (denoted by MsgSize(l, j)). The size of a single UML
Message is annotated using the GaStep.msgSize tag. The Java
implementation of the reliability model is available online3.

IV. EVALUATION

In this section, we apply our approach to the Train Ticket
Booking Service (TTBS) case study [24], [25]. We report
results of Pareto frontiers shapes, with a special focus on the
role of performance antipatterns in the solution quality4.

3https://github.com/SEALABQualityGroup/uml-reliability
4Due to lack of space, we evaluated our approach on a single case study.

However, its characteristics allowed a non-trivial validation exercise.

A. Case Study

TTBS is a web-based booking application, and its archi-
tecture is based on the microservice paradigm. The system
is made up of 40 microservices, and it provides different
scenarios through users that can perform realistic operations,
e.g., book a ticket or watch trip information like intermediate
stops. The application employs a docker container for each
microservice, and connections among them are managed by a
central pivot container.

Our UML model of TTBS is available online.5 The static
view is made of 11 UML Components, where each component
represents a microservice. In the deployment view, instead,
we consider 11 UML Nodes, each one representing a docker
container.

Among all available TTBS scenarios shown in [24], in this
paper we have considered 3 UML Use Cases, namely login,
update user details and rebook. We selected these three scen-
arios because they commonly represent performance-critical
ones in a ticketing booking service. In particular, each scenario
is described by a UML Sequence Diagram. Furthermore, the
model comprises two user categories: simple and admin users.
The simple user category can perform the login and the rebook
scenarios, while the admin category can perform the login and
the update user details scenarios.

B. Experimental setting

A configuration is defined by the combination of parameters
related to the genetic algorithm, the performance antipattern
detection, and the refactoring engine. In order to investigate
which configuration produces better Pareto frontiers, we have
executed multiple tuning runs to find a set of optimal config-
urations.

Table III: The baseline refactoring factor for actions belonging
to our portfolio.

Refactoring action BRF

Clone UML Node 1.23
Move Operation to a New Component to a new Node 1.80

Move Operation to a Component 1.64
Deploy a Component to a new Node 1.45

To set parameters related to the genetic algorithm, we have
performed a tuning phase with the intent of increasing the
quality of the Pareto frontiers. In particular, we have set
the length of refactoring sequences to four actions, which
represents a good compromise on the number of refactoring
actions usually applied by a designer in a single session. We
have set the Pcrossover and Pmutation probabilities to 0.8 and
0.2, respectively, following common configurations [35]. The
higher the values of these two probabilities, the greater the
chance of generating an unfeasible sequence of refactoring
actions, which in turn causes a longer simulation time due
to a higher number of discarded sequences. For example,

5https://github.com/SEALABQualityGroup/SEAA-replication-package/tree
/main/case-study

https://github.com/SEALABQualityGroup/uml-reliability
https://github.com/SEALABQualityGroup/SEAA-replication-package/tree/main/case-study
https://github.com/SEALABQualityGroup/SEAA-replication-package/tree/main/case-study


increasing Pcrossover could cause a lot of permutation among
sequences, and it might lead to wrong or unfeasible sequences
of refactoring actions. The initial population size has been set
to 16 elements (i.e., 16 different UML alternative models).We
have chosen this size for the initial population because it
represents, for this case study, a good compromise between
the diversity of solutions considered and the time required to
create them.

Also, we have considered {0.55, 0.80, 0.95} as fuzziness
thresholds to study the impact of performance antipatterns on
Pareto frontiers. Regarding parameters related to refactoring
actions, we have set the BRF of each refactoring action as
reported in Table III. Since a tuning phase of the BRF is out
of the scope of this paper, we did not investigate the impact
of other BRF values on the overall quality. Thus, for the sake
of the evaluation, we have chosen the values reported in the
table, which represent the effort for applying those actions
onto a model.

Furthermore, in order to reduce the randomness of the
genetic algorithm, a variable number of multiple runs have
been executed for each configuration. In the following, a
Reference Pareto Frontier (RPF) refers to those solutions
outcoming from the same problem configuration that are not
dominated by other ones.

Our experimental settings on the TTBS case study has
generated 31,404 model alternatives and it has taken 82.4
hours of computation. We performed our experiments on
a server equipped with two Intel Xeon E5-2650 v3 CPUs
at 2.30GHz, 40 cores and 80GB of RAM. The replication
package including the Java implementation of the approach,
the case study and the results of our experimentation are
available online6.

C. Results and discussion

Results presented in this section are aimed at answering the
aforementioned three research questions.

RQ1: Does antipattern detection contribute to find better
solutions compared to the case where antipatterns are not
considered at all?

In order to answer this research question, we have conducted
additional experimentation on the same problem configura-
tions, where we have removed performance antipattern occur-
rences from the fitness function, thus reducing the optimization
to the remaining three objectives.

Figure 3 reports the solutions in Reference Pareto Fronts
across different problem configurations, where two objectives
are represented on the axes and the architectural distance is
represented by the symbol size of each solution. Hence, better
solutions are the small sized ones located in the upper right
corner of the figure. Two RPFs are reported in the figure: gray
diamonds are solutions without PAs, whereas pink triangles
with PAs, with a 0.95 fuzziness value. The initial model is
identified by a black x.

6https://github.com/SEALABQualityGroup/SEAA-replication-package
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Figure 3: Reference Pareto Fronts obtained when consider-
ing performance antipatterns (with PAs) and without them
(without PAs).

Figure 3 provides clear evidence of higher quality solutions
in the case with PAs, where antipattern detection helps to
drive the evolutionary algorithm towards solutions that achieve
PERFQ improvements even twice higher than the ones without
PAs (i.e., 0.25 vs 0.12).

On the basis of our experimentation, we can state that
considering the performance antipattern occurrences in the
optimization leads to better solutions than ignoring them.

RQ2: Does the probabilistic nature of fuzzy antipatterns
detection help to include higher quality solutions in Pareto
frontiers with respect to deterministic one?

In order to answer this research question, we run different
problems while varying the values of the fuzziness threshold
of the performance antipattern detection within {0.50, 0.80,
0.95}. The obtained RPFs are reported in Figure 4.

The figure shows that moving from blue squared to green
round solutions (i.e., in an increasing fuzziness value direction)
already leads better solutions, at least in terms of reliability. By
further moving from green round to pink triangle solutions it
is possible to identify even better solutions, especially in terms
of PERFQ performance objective.

Hence, it seems that having a more deterministic antipattern
detection (i.e., higher values of fuzziness) is better than a
probabilistic one. However, the deterministic detection has the
drawback of relying on fixed thresholds that must be computed
in advance for each model alternative. For this reason, the
trade-off between better quality solution and the effort to bind
thresholds is likely domain-dependent and worth to be more
investigated.

On the basis of our experimentation, we can state that
performance antipattern fuzzy detection does not help to
improve the quality of Pareto frontiers.

https://github.com/SEALABQualityGroup/SEAA-replication-package
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Figure 4: Reference Pareto Fronts obtained when varying the
fuzziness threshold of the performance antipatterns detection.

RQ3: Is the approach able to keep the system reliability
satisfactorily high?

Figure 4 shows that, regardless of the fuzziness value, most
solutions improve reliability with respect to the initial model
(i.e., the black x marker in the figure). When looking at the
mean values of reliability in Table IV, it is clear that, even if in
few cases the reliability of solutions decreases, on average we
obtain an improvement from 8% to 18% (in absolute terms)
with respect to the value of the initial solution, i.e., 0.657925.
Moreover, a median higher than the mean also confirms that
solutions with improved reliability are more likely to be part
of a Pareto frontier. In the best cases, the proposed refactoring
actions are able to produce alternative models that achieve an
improvement in reliability by over 28% (in absolute terms).

Our experiments show that, in the majority of cases, the
approach is able to derive solutions with satisfactorily high
reliability.

Table IV reports a summary of the values of PERFQ,
RELIABILITY and ARCHDIST of solutions within different
Pareto frontiers, both when performance antipatterns have
been excluded and when a fuzzy detection is employed. In
particular, in order to achieve the highest performance and
reliability together, the algorithm has combined refactoring
actions that, in some cases, have produced quite poor solutions
in terms of architectural distance (i.e., 14.67), as also shown
by large triangles in the upper right corner of the figure. If,
instead, we move towards lower values of reliability objective
than the initial architecture one (i.e., towards the lower right
side of the figure), then the algorithm has generated closer
models in terms of architectural distance in the range of {1.85,
4.96}, as also shown by small triangles in the 0.5 to 0.7 range
on y-axis of Figure 4). Therefore, solutions that are able to
achieve high performance and reliability usually show larger
values of the distance metric, whereas the ones where either

performance or reliability is pursued exhibit lower distance
values.

D. Threats to validity

We follow the Wholin et al. [36] classification for the
following threats.

a) Conclusion validity: Our results might be affected
by Conclusion validity threats, since our considerations might
change with better-tuned parameters for the NSGA− II. Also,
problem parameter configurations might threat our conclusion.
We did not perform an extensive tuning phase for the latter
due to the long duration of each run, while we used common
parameters for the NSGA− II, which should mitigate these
threats.

b) Construct validity: The way we have designed our
problem and our experimentation might be affected by Con-
struct validity threats. In particular, the role played by the
architectural distance objective on the combination of refact-
oring actions might affect the refactoring actions selection.

c) External validity: Our approach might be affected
by external validity threats, because we have used a single
modelling notation. We cannot generalize our results to other
modelling notations, which could imply using a different
portfolio of refactoring actions. In fact, the syntax and se-
mantics of the modelling notation determine the amount and
nature of refactoring actions that can be performed. We could
mitigate these threats, for example, by using another modelling
notation.

V. RELATED WORK

In the last decade, software architecture multi-objective
optimization studies have been introduced to optimize various
quality attributes (e.g., reliability, and energy [9], [21], [37],
[38]) with different degrees of freedom to modify the architec-
ture (e.g., service selection [39], [40]). A systematic literature
review on architecture optimization can be found in [8]. We
consider here as related work those approaches that directly
involve multi-objective evolutionary algorithms and, on the
other hand, approaches that exploit LQN as performance-
oriented modelling notation [12], [41]–[43].

A. Software Architecture optimization

Menasce et al. have presented a whole framework for
architectural design and quality optimization [44], where ar-
chitectural patterns are used to support the searching process
(e.g., load balancing, fault tolerance). Two limitations affects
the approach: the architecture has to be designed in a tool-
related notation and not in a standard modelling language (as
we do in this paper), and it uses equation-based analytical
models for performance indices that could be too simple to
capture architectural details and resource contention.

Aleti et al. [10] have presented an approach for modeling
and analyzing ADDL architectures [45]. They have also intro-
duced a tool aimed at optimizing different quality attributes
while varying the architecture deployment and the component
redundancy. Instead, our work relies on UML models and



Table IV: Details of the values of PERFQ, RELIABILITY and ARCHDIST obtained when varying the fuzziness threshold of the
performance antipatterns detection.

PERFQ Reliability ARCHDIST
Fuzziness # sol min max median mean min max median mean min max median mean

.55 16 -0.038 0.116 0.052 0.041 0.302335 0.847111 0.787196 0.713601 1.85 10.41 6.06 5.82

.80 25 -0.058 0.116 0.053 0.040 0.309063 0.847808 0.788695 0.740425 1.97 9.18 4.83 4.96

.95 13 0.000 0.256 0.138 0.134 0.549760 0.847111 0.785697 0.717795 3.03 14.67 5.49 6.56
no PAs 29 -0.058 0.116 0.066 0.056 0.591957 0.872976 0.788695 0.778037 2.46 9.75 5.40 5.88

offers more complex refactoring actions as well as different
target attributes for the fitness function. Besides, we investigate
the role of performance antipatterns in the context of multi-
objective software architecture refactoring optimization.

In the context of software architecture optimization, Cor-
tellessa and Di Pompeo studied the sensitivity of multi-
objective software architecture refactoring to configuration
characteristics [22]. They compared two genetic algorithms
in terms of Pareto frontiers quality dealing with architectures
defined in AEmilia, which is a performance-oriented ADL. In
this paper, we change the modelling notation from AEmilia to
UML, and we add the reliability as a new objective. Both
approaches provide a refactoring engine, however, in this
paper, the refactoring engine offers more complex refactoring
actions since UML is more expressive than AEmilia.

B. Layered Queueing Network approaches

Koziolek et al. have presented PerOpteryx [9], [12], a
performance-oriented multi-objective optimization problem.
In PerOpteryx the optimization process is guided by tactics
referring to component reallocation, faster hardware, and more
hardware, which do not represent structured refactoring ac-
tions, as we intend to do in this paper. Moreover, PerOp-
teryx supports architectures specified in Palladio Component
Model [46] and produces, through model transformation, a
LQN for of performance analysis.

Rango et al. have presented SQuAT [47], an extensible
platform aimed at including flexibility in the definition of
an architecture optimization problem. SQuAT supports models
conforming to Palladio Component Model language, exploits
LQN for performance evaluation, and PerOpteryx tactics for
architecture.
We differ to PerOpteryx and SQuAt because we use UML as
modelling notation. Therefore, our approach could be applied
from a large audience of software designers since we rely on
a standard notation instead of a specific language.

Model-to-model (M2M) transformations from UML to LQN
notations have been presented in [34], [41]–[43]. In contrast
with these approaches, we present a novel M2M transforma-
tion mapping that employs UML Sequence Diagrams as the
behavioral view of software architectures instead of UML
Activity Diagrams. Considering UML Sequence Diagrams has
two benefits: they are adopted more frequently than UML
Activity Diagrams during the software design [48], and they
explicitly define method calls, while UML Activity Diagrams
usually focus on workflows and processes. Therefore, our

approach supports a more detailed behavioral representation
in terms of time intervals between method calls.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we used NSGA− II to optimize UML models
with respect to performance and reliability properties, as well
as the number of detected performance antipatterns and the
architectural distance. We focused our study on the impact
that performance antipatterns may have on the quality of
refactoring solutions resulting from such optimization setting.

From our experimentation, we gathered interesting insights
about the quality of the generated solutions and the role
of perfomance antipatterns as an objective of the algorithm.
In this regard, we showed that, by including the detection
of performance antipatterns in the optimization process, we
are able to obtain better solutions in terms of performance
and reliability. Moreover, we also showed that, the more we
increase the probability of detecting a performance antipattern
using the fuzziness threshold, the better the quality of the
refactoring solutions. Another important aspect of our study
was to ensure that the reliability of solutions remained within
satisfactory levels. In this respect, our experiments showed that
we were in fact able to increase the reliability of refactoring
solutions, with respect to the initial model, in the majority of
cases.

As future work, we intend to tackle the threats to validity
discussed before. In particular, we intend to investigate the
influence of the experimental settings on the quality of Pareto
frontiers. Furthermore, we are interested in the role played
by the architectural distance, and specifically in studying the
effect of the baseline refactoring factor on the combination
of refactoring actions. In the same context, alternative models
and additional parameters to evaluate the architectural distance
can also be considered. Similarly, for the reliability objective,
we intend to include fault tolerance refactoring actions [49] in
the refactoring portfolio, and to extend the reliability model
to also take into account error propagation [50].
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