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Abstract—Software model optimization is the task of automat-
ically generate design alternatives, usually to improve quality
aspects of software that are quantifiable, like performance and
reliability. In this context, multi-objective optimization techniques
have been applied to help the designer find suitable trade-
offs among several non-functional properties. In this process,
design alternatives can be generated through automated model
refactoring, and evaluated on non-functional models. Due to their
complexity, this type of optimization tasks require considerable
time and resources, often limiting their application in software
engineering processes.

In this paper, we investigate the effects of using a search
budget, specifically a time limit, to the search for new solutions.
We performed experiments to quantify the impact that a change
in the search budget may have on the quality of solutions.
Furthermore, we analyzed how different genetic algorithms (i.e.,
NSGA-II, SPEA2, and PESA2) perform when imposing different
budgets. We experimented on two case studies of different size,
complexity, and domain.

We observed that imposing a search budget considerably
deteriorates the quality of the generated solutions, but the specific
algorithm we choose seems to play a crucial role. From our
experiments, NSGA-II is the fastest algorithm, while PESA2
generates solutions with the highest quality. Differently, SPEA2 is
the slowest algorithm, and produces the solutions with the lowest
quality.

Index Terms—multi-objective, performance, non-functional
properties, model-driven engineering, refactoring

I. INTRODUCTION

In the last decades, multi-objective optimization techniques
have been successfully applied to many model-driven soft-
ware development problems [1]–[5]. These techniques are
especially effective on problems whose objectives can be
expressed through quantifiable metrics. Problems related to
non-functional aspects undoubtedly fit into this category, as
witnessed by the vast literature in this domain [6], [7]. Most
approaches are based on evolutionary algorithms [8] that allow
exploring the solution space by combining solutions.

One of the main drawbacks of applying optimization tech-
niques to improve non-functional attributes is that, more
often than not, the search for better alternatives requires a
considerable amount of resources, notably time. In fact, every
time a new solution is generated, the algorithms usually have
to quantify non-functional indices by solving non-functional
models, either analytically or by simulating them. Due to their

complexity, it is difficult to further improve the efficiency of
these activities. Therefore, they intrinsically extend the time
required for the search to obtain better solutions.

When performed on realistic models, this type of non-
functional optimization can even take days [9]. This clearly
poses an obstacle on the adoption of these techniques in
any practical design and development scenario. An alternative
approach to the problem could be the imposition of a time
limit on the search for better solutions. Usually, this time cap
is called the search budget, and it represents the maximum
budget that can be spent to explore the solution space. Hence,
on the one hand, a smaller budget might heavily limit the
exploration of the solution space, hampering the quality of the
resulting Pareto fronts (i.e., the set of non-dominated solutions
obtained at the end of the optimization). On the other hand, a
time cap that is too large might defeat the purpose of having
one in place [10].

In our recent work [5], [9], [11], we experienced that the
required time to investigate the solution space for model-
based multi-objective refactoring optimization represents one
of the main limitations. Therefore, in this paper, we present an
initial investigation on the influence of the search budget on
the quality of solutions in the modeling context. We show
how a designer can find and evaluate a possible trade-off
between the time spent on the search and the quality of
solutions. We also provide insights on the role of different
searching policies, represented by different genetic algorithms,
when imposing a time cap. Specifically, we run experiments
with three increasing time budgets and three different genetic
algorithms.

To estimate the differences in the quality of Pareto fronts
when varying the budget and the algorithm, we employ
the Hypervolume (HV) quality indicator for multi-objective
problems [12], [13], and hypothesis testing. The HV measures
the amount of volume in the solution space that is covered by
a computed Pareto front with respect to a reference Pareto
front. In our case, the reference Pareto front is one obtained
without a time budget, but terminated after 102 evolutions.

We experiment on two model-based benchmarks, namely
Train Ticket Booking Service [14], and CoCoME [15].
Furthermore, we compare three genetic algorithms, i.e.,
NSGA-II [16], SPEA2 [17], and PESA2 [18], in order to
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identify which algorithm performs better when the search is
limited in time.

This study answers the following research questions:
• RQ1: To what extent does the time budget penalize the

quality of Pareto fronts?
• RQ2: Which algorithm performs better when limited by

a time budget?
Our results show that the time budget heavily impacts the

quality of Pareto fronts. Furthermore, we notice that slightly
increasing the budget generates little improvements of Pareto
fronts quality. On the contrary, the choice of the algorithm
seems to be crucial. In most cases, NSGA-II is the fastest
among the analyzed ones, while PESA2 is the algorithm that
generates the solutions with the highest quality. Also, SPEA2
shows worse performance than NSGA-II and PESA2. Our
findings suggest that, when in need for a faster algorithm,
NSGA-II should be preferred, while PESA2 can deliver better
solutions in longer, but still reasonable, time.

The remaining of the paper is structured as follows: Sec-
tion II reports related work, Section III introduces background
concepts, Section IV presents the design of this study. Results
are presented and discussed in Section V. Section VI describes
our findings towards the search budget in model-based multi-
objective refactoring optimization. Section VII ends the paper
and reports future work.

II. RELATED WORK

In the last decade, software model multi-objective optimiza-
tion studies have been introduced to optimize various quality
attributes (e.g., reliability, and energy [5], [7], [19]–[21]) with
different degrees of freedom in the modification of models
(e.g., service selection [22]).

Recent work compares the ability of two different multi-
objective optimization approaches to improve non-functional
attributes [23], [24] within a specific modeling notation (i.e.,
Palladio Component Model [25]). To find optimal solutions,
the authors apply architectural tactics, which mainly change
system configurations (e.g., hardware settings, or operation de-
mands). Conversely, in this work, we apply refactoring actions
that change the structure of the initial model by preserving the
original behavior. Another difference is the modeling notation,
as we use UML with the goal of experimenting on a standard
notation instead of a custom Domain Specific Language.

Menasce et al. have presented a framework for architec-
tural design and quality optimization [26], where architectural
patterns are used to support the searching process (e.g.,
load balancing, fault tolerance). Two limitations affects the
approach: the architecture has to be designed in a tool-specific
notation and not in a standard modeling language (as we do
in this paper), and performance indices are computed through
equation-based analytical models that could be too simple to
capture architectural details and resource contention.

Aleti et al. [6] have presented an approach for modeling
and analyzing AADL architectures [27]. They have also intro-
duced a tool aimed at optimizing different quality attributes
while varying the architecture deployment and the component

Genetic Algorithm 

PerfQReliability#changes#pas

Model Alternatives

Refactoring

Initial UML Model Refactoring Actions

Pareto frontier

Fig. 1: The graphical representation of the approach. The
approach takes as input: the set of all the available refactoring
actions (Refactoring Actions), and the subject model (Initial
UML Model). The Genetic Algorithm (i.e., NSGA-II, SPEA2,
and PESA2) randomly selects and combines refactoring ac-
tions (Refactoring) in order to build a set of Model Alterna-
tives. #pas, #changes, reliability, and perfQ are
the four objectives that drive the optimization process.

redundancy. Our work relies on UML models and considers
more complex refactoring actions, as well as different target
attributes for the fitness function. Besides, we investigate
the role of performance antipatterns in the context of many-
objective software model refactoring optimization.

III. BACKGROUND

In this study we analyzed the impact of search budget
on three Genetic Algorithms: NSGA-II [16], SPEA2 [17],
and PESA2 [18]. We chose these algorithms for their dif-
ferent policies in searching the solution space. For example,
NSGA-II uses the knowledge of non-dominated sorting to
generate Pareto frontiers, SPEA2 uses two archives to store
computed Pareto frontiers, and PESA2 uses the hyper-grid
concept to compute Pareto frontiers. Our process, depicted
in Figure 1, optimizes four conflicting objectives: the perfor-
mance overall quality indicator (perfQ) [11], the reliability
(reliability) of model alternatives [28], the number of
performance antipatterns(#pas), and the architectural distance
(#changes) [9].

Performance Quality Indicator (perfQ): perfQ quan-
tifies the performance improvement/detriment between two
models. Furthermore, a single perfQ for each performance



index is computed as the normalized ratio between the index
value of a model alternative and the initial model. Finally, the
global perfQ is computed as the average across the number of
performance indices considered in the performance analysis.

Reliability model: The reliability model that we adopt
here to quantify the reliability objective is based on the
model introduced in [29].

The model takes into account failure probabilities of com-
ponents and communication links, as well as the probability of
a scenario to be executed. Such probabilities are combined to
obtain the overall reliability on demand of the system, which
represents how often the system is not expected to fail when
its scenarios are invoked.

Performance Antipatterns: A performance antipattern
describes bad design practices that might lead to performance
degradation in a system. These textual descriptions were later
translated into first-order logic (FOL) equations [30].

FOLs enable an automated comparison with thresholds in
order to reveal the occurrences of a performance antipattern.
The identification of such thresholds is a non-trivial task, and
using deterministic values may result in an excessively strict
detection, where the smallest change in the value of a literal
determines the occurrence of the antipattern. For these reasons,
we use the fuzzy threshold concept [30], instead of detecting
a performance antipattern in a deterministic way. By using
fuzzy thresholds, we assign probabilities to the occurrences of
antipatterns.

Architectural distance: The architectural distance
#changes quantifies the distance of the model obtained
by applying refactoring actions to the initial one. The effort
needed to perform a refactoring is quantified as the product
between the baseline refactoring factor, which is associated
to each refactoring action, and the architectural weight,
which is associated to each model element on the basis of the
number of connections to other elements in the model [9].
The overall #changes is obtained by summing the efforts
of all refactoring actions contained in a solution.

Hypervolume: Establishing the quality of a computed
Pareto front is arduous, and it is a NP-hard problem [31].
Different quality estimators have been introduced, such as
the Hypervolume (HV) [12], [13]. Each estimator measures a
different quality aspect of a Pareto front. In this study, we use
the HV as our quality estimator, since it has been proved to be
a valid estimator for Pareto fronts comparison [32]. Moreover,
the HV interpretation is straightforward in the context of our
problem.

The HV measures the amount of the volume of the solution
space that a Pareto front (PF c) covers with respect to a
reference Pareto front (PF ref ), and it can assume values
between 0 and 1. When the HV = 0, it means that the PF c

is fully dominated by the PF ref , while HV = 1 means that
each point within the PF c is non-dominated by any points
within the PF ref . Therefore, the closer to 1 the HV, the higher
the quality of the PF c. In our evaluation, we use the HV to
estimate the quality of the PF c obtained with a search budget

when compared to a PF ref computed without, but terminated
after 102 evolutions.

IV. STUDY DESIGN

The goal of the study is to establish how much the
imposition of a time-based search budget can hamper the
quality of the resulting Pareto fronts in a model-based multi-
objective refactoring optimization context. Additionally, we
are interested in how different algorithms cope with different
search budgets. To this extent, we selected two case studies,
and we run the optimization with search budgets of 15, 30,
and 60 minutes. Moreover, for each search budget, we also
run three genetic algorithms: NSGA-II, SPEA2, and PESA2.
We chose these three algorithms on the basis of their different
searching policies, as described in Section III.

As recommended in other studies [33], because of the
random nature of genetic algorithms, we run the same exper-
iment 31 times, and we compute the HV for each computed
Pareto front (PF c). The HV indicator measures the amount
of volume in the solution space that is covered by a PF c

with respect to an optimal reference Pareto front (PF ref ) for
the problem. Since PF ref is unknown in our case studies,
we computed the HV with respect to the best Pareto front we
obtained for the same case studies when we run the search
for 102 evolutions without a search budget. The entire study
consisted of 558 experiments1 that we performed on three
AMD EPYC 7282, each with 64 cores and 512GB of RAM.

We follow the guidelines by Arcuri et al. [34] to compare
the experiments against each other. Therefore, we apply the
Mann–Whitney U non-parametric statistical test (also referred
to as Wilcoxon rank-sum test) [35] with the null hypothesis
that the experiments do not show a statistically significant
difference. We consider two experiments to be significantly
different on the basis of their HV if the test computes a p-
values smaller than 0.05. To assess the magnitude of the dif-
ference, we use the Vargha–Delaney Â12 [36], a standardized
non-parametric effect size measure. Â12 takes values between
0 and 1, and a values of 0.5 indicates that the two experiments
are equivalent. The closer the value of Â12 gets to 0 or 1,
the larger the effect. The interpretation of the magnitude as
negligible, small, medium, and large is performed according
to the thresholds 0.147, 0.33, 0.474 [37].

V. EMPIRICAL EVALUATION

In this section, we present the results of our experiments,
and we answer the research questions formulated in Section I.

A. Case Study

We applied our optimization approach to two case stud-
ies from the literature: the Train Ticket Booking Service
(TTBS) [14], and the well-established modeling case study
CoCoME, whose UML model has been derived by the speci-
fication in [15].2

1The replication package: https://zenodo.org/record/6446516
2https://github.com/SEALABQualityGroup/uml2lqn-casestudies

https://zenodo.org/record/6446516
https://github.com/SEALABQualityGroup/uml2lqn-casestudies


Train Ticket Booking Service: Train Ticket Booking
Service (TTBS) is a web-based booking application, whose
architecture is based on the microservice paradigm. The sys-
tem is made up of 40 microservices, and it provides different
scenarios through users that can perform realistic operations,
e.g., book a ticket or watch trip information.

For our analysis we downsized the TTBS UML model [14]
by considering 11 UML Components, 11 UML Nodes, and
3 UML Use Cases. Furthermore, we considered Login, Up-
date user details and Rebook as selected scenarios because
they commonly represent performance-critical scenarios in a
ticketing booking service. Also, the model defines two user
categories: simple and admin users.

CoCoME: CoCoME describes a trading system containing
several stores. A store can have one or more cash desks for
processing goods. A cash desk is equipped with all the tools
needed to serve a customer (e.g., a Cash Box, Printer, Bar
Code Scanner). CoCoME covers possible scenarios performed
at a cash desk (e.g., scanning products, paying by credit
card, or ordering new goodies). CoCoME describes 8 scenarios
involving more than 20 components.

For our analysis, we downsized CoCoME by selecting 3
UML Use Cases, 13 UML Components, and 8 UML Nodes.
Beside this, we focused on three scenarios: Process Sale,
Receive Ordered Products, and Show stock reports because
they represent common activities in a trading system.

B. RQ1

RQ1: To what extent does the time budget penalize the quality
of Pareto fronts?

The first main concern on the imposition of a search budget
is the effect this can have on the optimization process. As
outlined in Section IV, we estimate the impact a search budget
has on the optimization by means of the HV quality indicator.
Table I reports, for each algorithm and for each search budget,
the average HV achieved in 31 runs, along with its standard
deviation. These value represent the percentage of volume of
the PF ref that is covered by a give PF c. Intuitively, this gives
an idea of how much of the solution space was covered with
the budget restriction, compared to a run without the search
budget. We can observe that, in fact, the time budget heavily
impacts the quality of the obtained Pareto fronts.

The search budget had a different impact on the two case
studies. In TTBS, the search was able to achieve better HV in
all cases, when compared to CoCoME. This is probably due
to the difference in size and complexity between the two case
studies. CoCoME not only has a larger number of possible
refactoring candidates, but its model defines a more complex
behavior. This inherently leads to a bigger solution space (Ω
in the table), but also to spending more time in computing the
objective functions. Therefore, on average, the longer it takes
to complete a single evolution, the fewer the evolutions will
be performed on a given time budget.

To assess whether doubling or quadrupling the time budget
makes a significant difference in the HV of the PF c, we

Algor. Budget HV avg HV stdev

TTBS (Ω = 1.2 × 1013)

NSGA-II 15 min 0.3060 0.0915
NSGA-II 30 min 0.3469 0.1071
NSGA-II 60 min 0.3437 0.0980
PESA2 15 min 0.3532 0.0794
PESA2 30 min 0.4084 0.0757
PESA2 60 min 0.4182 0.0819
SPEA2 15 min 0.3041 0.0794
SPEA2 30 min 0.2917 0.0920
SPEA2 60 min 0.2868 0.0769

CoCoME (Ω = 3.26 × 1016)

NSGA-II 15 min 0.0931 0.0335
NSGA-II 30 min 0.1199 0.0523
NSGA-II 60 min 0.1125 0.0604
PESA2 15 min 0.1363 0.0277
PESA2 30 min 0.1460 0.0300
PESA2 60 min 0.1514 0.0366
SPEA2 15 min 0.1189 0.0336
SPEA2 30 min 0.1098 0.0309
SPEA2 60 min 0.1023 0.0384

TABLE I: Average HV quality indicator and its standard
deviation over 31 runs, listed by algorithm and search budget.
Higher values are associated to a better quality of the Pareto
fronts. Ω is the size of the solution space computed as the
Cartesian product of the types of refactoring actions and all
the eligible refactoring targets in any possible refactoring
sequence.

compare the results obtained with different budgets but with
the same algorithm. Table II reports the results of the Mann–
Whitney U test, and the corresponding Â12 effect size. The
p-value is highlighted in bold when the detected difference is
statistically significant. The time budget is underlined when
(i) the test resulted in a significant difference, and (ii) the
experiment running on that time budget produced higher
values of HV. In very few cases (two per case study), we
obtained a significant difference, and in all the cases this was
detected for the PESA2 algorithm: with a medium magnitude
in TTBS, and with a large one in CoCoME. This suggests that,
except for PESA2, the main difference in the obtained HV
values might be imputed to a difference in the used algorithm,
more than to a difference in the budget. We are going to
investigate this in the next section.

C. RQ2

RQ2: Which algorithm performs better when limited by a
time budget?

When a time constraint is imposed on the process, a
designer may be interested in selecting the algorithm that
provides best quality solutions for the specific time budget. In
this section, we discuss some aspects on which such a decision
could be based.

At first, we compare the algorithms against each other on the
basis of the HV they achieved in the experiments, analogously
to how it has been done in Section V-B. Table III reports the
results of the Mann–Whitney U test, and the corresponding



Algor. Budget 1 Budget 2 MWU p Â12

TTBS

NSGA-II 15 min 30 min 0.1677 (S) 0.3975
NSGA-II 15 min 60 min 0.1677 (S) 0.3975
NSGA-II 30 min 60 min 0.9327 (N) 0.5068
PESA2 15 min 30 min 0.018 (M) 0.3247
PESA2 15 min 60 min 0.0031 (M) 0.281
PESA2 30 min 60 min 0.4223 (N) 0.4402
SPEA2 15 min 60 min 0.4992 (N) 0.5505
SPEA2 30 min 15 min 0.4556 (N) 0.4443
SPEA2 30 min 60 min 0.7999 (N) 0.4807

CoCoME

NSGA-II 15 min 30 min 0.0574 (S) 0.359
NSGA-II 60 min 15 min 0.1054 (S) 0.6202
NSGA-II 60 min 30 min 0.8769 (N) 0.488
PESA2 15 min 30 min <0.0001 (L) 0.2092
PESA2 60 min 15 min <0.0001 (L) 0.7992
PESA2 60 min 30 min 0.6024 (N) 0.539
SPEA2 30 min 15 min 0.2483 (S) 0.4142
SPEA2 60 min 15 min 0.1249 (S) 0.3861
SPEA2 60 min 30 min 0.6123 (N) 0.462

TABLE II: Mann–Whitney U test and Â12 effect sizes compar-
ing the HV achieved with different time budgets in 31 runs.
Magnitude interpretation: negligible (N), small (S), medium
(M), large (L). The magnitude of the effect size is also
represented by bars.

Â12 effect size. The name of the algorithm is underlined
when (i) the test resulted in a significant difference, and (ii)
that algorithm yielded higher values of HV. In this case,
most of the tests revealed a significant difference between the
algorithms in any given time budget (highlighted in bold).
PESA2 performed better in many cases and in both case
studies, NSGA-II scored better on only two cases in TTBS
and not by a large margin, and SPEA2 won only the 15
minutes budget test in CoCoME.

While the results vary in the two case studies we considered,
the PESA2 algorithm looks like a better choice in most cases.
To investigate the possible reasons behind such differences in
HV, we take a look at how the HV is achieved and when, by
comparing it to the time budget and the number of performed
evolutions. To this extent, Figure 2 depicts the timelines of how
the HV indicator varies with different search budgets, and how
many evolutions were performed during the search. From the
timelines, we can see that SPEA2 is the slowest algorithm
in our experiments, whereas NSGA-II is the fastest one.
Furthermore, for each search budget, NSGA-II performed the
highest number of evolutions, e.g., it performed on average 20
evolutions for TTBS with 60 minutes of search budget, and
almost 18 for CoCoME. Conversely, SPEA2 performed, on
average, only 8 evolutions for TTBS with a 60 minutes search
budget. Concerning the PESA2 algorithm, we can state that it
consistently generated the highest HV in each case study and
for every search budget. However, it is slower than NSGA-II,
but faster than SPEA2.

Analyzing the TTBS results, we observed that the HV values
of SPEA2 almost lie close to 0.3 fore every search budget,

Budget Algor. 1 Algor. 2 MWU p Â12

TTBS

15 min PESA2 NSGA-II 0.0487 (S) 0.6462
15 min SPEA2 NSGA-II 0.8548 (N) 0.486
15 min SPEA2 PESA2 0.0234 (M) 0.3319
30 min NSGA-II PESA2 0.0167 (M) 0.3226
30 min SPEA2 NSGA-II 0.0385 (S) 0.3465
30 min SPEA2 PESA2 <0.0001 (L) 0.1582
60 min NSGA-II PESA2 0.0037 (M) 0.2851
60 min SPEA2 NSGA-II 0.0202 (M) 0.3278
60 min SPEA2 PESA2 <0.0001 (L) 0.1301

CoCoME

15 min NSGA-II SPEA2 0.0085 (M) 0.3049
15 min PESA2 NSGA-II 0.0072 (M) 0.6993
15 min PESA2 SPEA2 0.7999 (N) 0.4807
30 min PESA2 NSGA-II 0.0066 (M) 0.7014
30 min SPEA2 NSGA-II 0.5543 (N) 0.4558
30 min SPEA2 PESA2 <0.0001 (L) 0.1738
60 min PESA2 NSGA-II 0.0127 (M) 0.6847
60 min SPEA2 NSGA-II 0.3789 (N) 0.4344
60 min SPEA2 PESA2 <0.0001 (L) 0.1686

TABLE III: Mann–Whitney U test and Â12 effect sizes com-
paring the HV achieved by different algorithms in 31 runs.
Magnitude interpretation: negligible (N), small (S), medium
(M), large (L). The magnitude of the effect size is also
represented by bars.

while the longer the search budget, the higher the HV values
of PESA2. The HV values of NSGA-II increase between
the 15 and 30 minutes budget, while they are almost flat
between 30 and 60 minutes. In addition, we can observe that
the timelines of the two case studies resemble each other. In
fact, also per CoCoME, NSGA-II is the fastest algorithm,
SPEA2 the slowest, and PESA2 generates the highest HV
values. Furthermore, the number of evolutions are consistent
with the number of evolutions of TTBS.

Another viewpoint on the difference among the algorithms
could be the actual quality of the computed solutions in
terms of the non-functional properties we are interested in.
To visually inspect this aspect, we produced scatter plots to
compare perfQ and reliability, because these objec-
tives are the non-functional properties we aim at improving
through the refactoring and optimization process. Therefore,
Figure 3a, Figure 3b, and Figure 3c depict the three PF c when
varying the time budget of all three genetic algorithms for
both case studies. At a glance, we can observe more densely
populated PF c for CoCoME than for TTBS, while TTBS
showed a more evident trend towards the top-right corner (the
optimization direction for these two objectives). Regarding
the CoCoME PF c, we can observe an horizontal clustering
for the three search budgets. The cluster that lies around 0.8
reliability is always more populated that the other two:
one between 0.4 and 0.6, and the other between 0.0 and 0.2,
approximately. We did not observe an evident motivation for
the horizontal clustering of CoCoME. We can only suppose that
the characteristics of the CoCoME model, which has a more
complex behavior than TTBS, prevent the algorithms from
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Fig. 2: Timelines of the number of evolutions performed by the algorithms in the different budget configurations, along with
the achieved HV. Vertical bars show the average HV over 31 runs, and ticks represent the standard deviation from the mean.

reaching higher reliability values in the search budgets
we considered. Also, the CoCoME solution space might be
less homogeneous, with feasible solutions that are inherently
clustered.

Summarizing, on the one hand we can establish a clear
difference among the algorithms when comparing them on the
basis of a quality indicator for multi-objective optimization,
like the HV, and when looking at their speed in completing
evolutions. But on the other hand, if we only look at the
non-functional properties we considered, there is not much
difference in the shape of the PF c and in the explored design
space.

D. Threats to validity

In this section we discuss threats that might affect our
results.

Construct validity: Our approach might be affected by
Construct validity threats. An aspect that might affect our
results is the estimation of the reference Pareto front (PF ref ).
PF ref is used to extract the quality indicators, as described
in Section IV. We mitigate this threat by building the PF ref

from a run without the search budget for each case study.

Therefore, PF ref should contain all the non-dominated solu-
tions across all configurations, and it should also represent a
good Pareto front for computing the HV indicator.

External validity: Our approach might be affected by ex-
ternal validity threats, because we have used a single modeling
notation. We cannot generalize our results to other modeling
notations, which could imply using a different portfolio of
refactoring actions. In fact, the syntax and semantics of
the modeling notation determine the amount and nature of
refactoring actions that can be performed. We could mitigate
these threats, for example, by using another modeling notation.

Internal Validity: Our results might be affected by Inter-
nal validity threats. One aspect that might affect our findings
is a misleading interpretation of the outcome due to the
random nature of genetic algorithms. In order to mitigate the
internal validity threats, we performed 31 executions for each
configuration [33].

Conclusion validity: Our results might be affected by
Conclusion validity threats, since our considerations might
change with better-tuned parameters for each algorithm. We
did not perform an extensive tuning phase for each algorithm.
However, we used common parameters to setup the algorithms,
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Fig. 3: TTBS, and CoCoME Pareto frontiers obtained by the three algorithms when varying the time budget between 15, 30,
and 60 minutes. The top-right corner is the optimal point, whereas the bottom-left corner is the worst one. Filled symbols are
the three algorithms: NSGA-II is the gray squares, PESA2 is the blue circles, and SPEA2 is the green triangles.

which should mitigate these threats [38]. Wherever possible,
we used appropriate statistical procedures with p-value and
effect size measures to test the significance of the differences
and their magnitude.

VI. LESSON LEARNED

We learned that it is not always possible to select a genetic
algorithm beforehand. The selection of the algorithm is strictly
related to the domain and the policy for searching the solution
space. Furthermore, the selection becomes even more complex
when a search budget limits the search.

Our initial investigation shed light on which algorithm is
faster among the studied ones and which algorithm has been
able to produce better quality Pareto fronts when the search has
a time limitation. Based on our investigation, we understand
that the NSGA-II policy of non-dominated knowledge helps
the algorithm to perform more evolutions. In contrast, the
hyper-grid searching policy exploited by PESA2 allows the
algorithm to generate the Pareto fronts with the highest quality.
Finally, SPEA2, in our experimentation, showed speed and
quality limitations due to the usage of two archives for storing
Pareto solutions.

We also learned that the application domain is the most
driving aspect of genetic algorithms. In fact, from our results,
in one case, we had horizontal clusters (see CoCoME on
Figure 3), which were likely due to the more complex nature
of the subject model. Our results showed a more precise
optimization direction for two objectives in the other case.

As a final takeaway, small time budgets could be used in
preliminary experiments designed to compare the algorithms
and to select the best one for the longer runs.

VII. CONCLUSION AND FUTURE WORK

In this study we presented an investigation on the impact of
the search budget for model-based multi-objective refactoring
optimization. The study was aimed at helping designers to
select the best algorithm with respect to the search budget. In
addition, we validated the study on two model benchmarks,
Train Ticket Booking Service, and CoCoME, and
on three genetic algorithms, NSGA-II, SPEA2, and PESA2.

We assessed the overall quality of each algorithm through
the Hypervolume indicator, which measures the amount of
the search space volume that a computed Pareto front covers
with respect to the reference Pareto front. From our results,
it emerges that NSGA-II is the fastest algorithm because
it generated the highest number of evolution genetic within
the search budget. PESA2 is the algorithm that generated the
highest quality results in terms of HV. Finally, SPEA2 is the
slowest algorithm, and it generated the worst quality results.
Thus, it generated the lowest number of genetic evolutions,
and showed the lowest HV values.

As future work, we intend to analyze the Pareto front at each
evolution in order to discover if the quality is not improving
enough, and we could just stop the algorithm.
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Springer Berlin Heidelberg, 2011, p. 33–47. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-23716-4 6

[11] D. Arcelli, V. Cortellessa, M. D’Emidio, and D. Di Pompeo, “EASIER:
an Evolutionary Approach for multi-objective Software archItecturE
Refactoring,” in ICSA, 2018, pp. 1–10.

[12] N. Beume, B. Naujoks, and M. Emmerich, “Sms-emoa: Multiobjective
selection based on dominated hypervolume,” European Journal of Op-
erational Research, vol. 181, no. 3, pp. 1653 – 1669, 2007.

[13] Y. Cao, B. J. Smucker, and T. J. Robinson, “On using the hypervolume
indicator to compare Pareto fronts: Applications to multi-criteria optimal
experimental design,” Journal of Statistical Planning and Inference, vol.
160, pp. 60–74, May 2015.

[14] D. Di Pompeo, M. Tucci, A. Celi, and R. Eramo, “A microservice
reference case study for design-runtime interaction in MDE,” in STAF
MDE@DeRun Workshop, vol. 2405, 2019, pp. 23–32.

[15] S. Herold, H. Klus, Y. Welsch, C. Deiters, A. Rausch,
R. Reussner, K. Krogmann, H. Koziolek, R. Mirandola,
B. Hummel, M. Meisinger, and C. Pfaller, CoCoME - The
Common Component Modeling Example, ser. lncs. Springer
Berlin Heidelberg, 2008, vol. 5153, p. 16–53. [Online]. Available:
http://link.springer.com/10.1007/978-3-540-85289-6 3

[16] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” TEVC, vol. 6, no. 2, pp.
182–197, Apr. 2002.

[17] E. Zitzler, M. Laumanns, and L. Thiele, “Spea2: Improving the strength
pareto evolutionary algorithm,” Swiss Federal Institute of Technology
(ETH) Zurich, TIK-report 103, 2001.

[18] D. W. Corne, N. R. Jerram, J. D. Knowles, and M. J. Oates, “Pesa-ii:
Region-based selection in evolutionary multiobjective optimization,” in
Proceedings of the 3rd Annual Conference on Genetic and Evolutionary
Computation, ser. GECCO’01. Morgan Kaufmann Publishers Inc.,
2001, p. 283–290, event-place: San Francisco, California.

[19] R. Li, R. Etemaadi, M. T. M. Emmerich, and M. R. V. Chaudron, “An
evolutionary multiobjective optimization approach to component-based
software architecture design,” in CEC. IEEE, 2011, pp. 432–439.

[20] I. Meedeniya, B. Buhnova, A. Aleti, and L. Grunske, “Architecture-
Driven Reliability and Energy Optimization for Complex Embedded
Systems,” in QoSA. Springer, 2010, pp. 52–67.

[21] A. Martens, D. Ardagna, H. Koziolek, R. Mirandola, and R. H. Reussner,
“A Hybrid Approach for Multi-attribute QoS Optimisation in Compo-
nent Based Software Systems,” in Research into Practice – Reality and
Gaps, 2010, pp. 84–101.

[22] V. Cardellini, E. Casalicchio, V. Grassi, F. Lo Presti, and R. Mirandola,
“QoS-driven Runtime Adaptation of Service Oriented Architectures,” in
ESEC/FSE, 2009, pp. 131–140.

[23] Y. Ni, X. Du, P. Ye, L. L. Minku, X. Yao, M. Harman, and R. Xiao,
“Multi-objective software performance optimisation at the architecture
level using randomised search rules,” JIST, vol. 135, p. 106565, 2021.

[24] A. Rago, S. A. Vidal, J. A. Diaz-Pace, S. Frank, and A. van Hoorn,
“Distributed quality-attribute optimization of software architectures,” in
SBCARS, 2017, pp. 7:1–7:10.

[25] S. Becker, H. Koziolek, and R. H. Reussner, “The Palladio component
model for model-driven performance prediction,” Systems and Software,
vol. 82, no. 1, pp. 3–22, Jan. 2009.
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