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Abstract—Due to the risks associated with vulnerabilities in
smart contracts, their security has gained significant attention
in recent years. However, there is a lack of open datasets on
smart contract vulnerabilities and their fixes that allows for data-
driven research. Towards this end, we propose an automated
method for mining and classifying Ethereum’s smart contract
vulnerabilities and their corresponding fixes from GitHub and
from the Common Vulnerabilities and Exposures (CVE) records
in the National Vulnerability Database. We implemented the
proposed method in a fully automated framework, which we
call AutoMESC. AutoMESC uses seven of the most well-known
smart contract security tools to classify and label the collected
vulnerabilities based on vulnerability types. Furthermore, it
collects metadata that can be used in data-intensive smart con-
tract security research (e.g., vulnerability detection, vulnerability
classification, severity prediction, and automated repair). We
used AutoMESC to construct a sample dataset and made it
publicly available. Currently, the dataset contains 6.7K smart
contracts’ vulnerability-fix pairs written in Solidity. We assess
the quality of the constructed dataset in terms of accuracy,
provenance, and relevance, and compare it with existing datasets.
AutoMESC is designed to collect data continuously and keep the
corresponding dataset up-to-date with newly discovered smart
contract vulnerabilities and their fixes from GitHub and CVE
records.

Index Terms—Ethereum, Smart contracts, Blockchain, Au-
tomation, Software security, Vulnerability, Dataset

I. INTRODUCTION

Smart contracts are computerized self-executing contracts
that contain clauses that are enforced once certain conditions
are met [1]. The concept of smart contract was first introduced
in 1996 by Szabo [2]. However, due to technology limitations
at that time, the first real-world implementation of a smart
contract was developed by the Ethereum blockchain platform
in 2014 [3].

The evolution of smart contracts has enabled blockchain
technology to grow rapidly and has led to the adoption of
decentralized applications in various fields such as the Internet
of Things (IoT), supply chain management, and identity man-
agement [4]. While smart contracts have the potential to re-
shape how businesses are carried out, several challenges need
to be addressed [4] that are not commonly found in traditional
software development [5], [6]. For instance, immutability of
smart contracts [7] can lead to financial losses, such as the

infamous DAO attack that led to a theft of approximately 50
million US dollars [8].

To improve the security of smart contracts, several methods
and tools have been suggested to detect and fix security vulner-
abilities in smart contract source code [9]. For evaluation, these
contributions rely on existing datasets [10], [11]. However,
existing datasets, e.g., [7], [12]–[14], are limited in one of the
following ways: (i) collecting and labeling the data is time and
resource-intensive, e.g., [12], (ii) they are limited in terms of
the amount of metadata they contain, e.g., [13], (iii) they are
incompletely labeled or classified, e.g., [15], (iv) fixes of the
labeled vulnerabilities are not considered, e.g, [14], and (v)
they are not updated regularly, over time resulting in invalid
or outdated data, e.g. [7].

To address these limitations, we propose a method to auto-
matically mine, classify and label smart contract vulnerabilities
and corresponding fixes from GitHub1 and CVE2 records. We
implement the proposed method in a fully automated frame-
work, AutoMESC, that curates and classifies the collected
vulnerabilities based on their CWE and vulnerability types
using 7 of the most well-known smart contract security tools
in the literature. We target Ethereum smart contracts written
in Solidity3 and Vyper4, the two most common languages
for Ethereum smart contracts. AutoMESC places an emphasis
on extracting a large number of attributes and labels, so that
the resulting datasets can be used for use cases that rely on
large number of labeled data, e.g., machine learning (ML)
applications.

Contributions. To summarize the most salient contributions
of our research, we:

1) provide a comprehensive survey and comparison of
the available datasets for smart contract vulnerabilities
written in the two most popular Ethereum languages,
Solidity and Vyper. To the best of our knowledge, this
is the first comprehensive study of existing Ethereum
smart contract vulnerability datasets.

2) present a method for mining and classifying smart
contract vulnerabilities and corresponding fixes from

1https://github.com/
2https://cve.mitre.org/
3https://docs.soliditylang.org/en/v0.8.13/
4https://vyper.readthedocs.io/en/stable/
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GitHub5 and CVE6 records. We implement the proposed
method in an automated framework (i.e., AutoMESC).

3) present a sample dataset7 extracted using AutoMESC.
We evaluate the quality of this dataset in terms of
accuracy, relevance, and provenance.

The rest of this paper is organized as follows: Section II
presents the related work. Section III discusses the method of
AutoMESC. Section III presents and explores the AutoMESC
dataset. Section V describes the applications of AutoMESC
and the extracted dataset. In Section VI, we evaluate the
AutoMESC dataset and compare it to existing datasets. Sec-
tion VII discusses the potential threats to validity. The paper
is concluded in Section VIII..

II. RELATED WORK

In this section, we survey existing smart contracts vul-
nerability datasets. Moreover, we present related automated
tools for mining repositories and identifying smart contract
vulnerabilities. Finally, we discuss the research gaps in the
related work.

A. Smart Contracts Vulnerability Datasets

Numerous smart contract vulnerability related datasets have
been developed over the last few years. Each of the proposed
datasets are unique and have different strengths and weak-
nesses. In the following, we analysed the proposed datasets.

Using Google’s dataset search engine8 and the keywords
“smart contract vulnerabilities”, “smart contract fixes”, and
“smart contracts”, we were able to identify 95 relevant
datasets containing smart contract vulnerabilities and fixes9.
Then, we applied exclusion criteria in two phases: In Phase
#1, we considered recent datasets (up to three years) as
smart contract languages are evolving quickly. In addition to
limited years, we considered public datasets and excluded non-
free and closed datasets. Finally, in Phase #1, we excluded
commercial and competition datasets and included academia-
related datasets. After applying the Phase #1 exclusion criteria,
we were left with 45 datasets.

In Phase #2, we excluded any dataset that is not related
to Ethereum smart contract vulnerabilities. Moreover, we
only considered datasets with published papers/preprints or
a public GitHub repository. Finally, we excluded datasets
that only contained sample contracts, e.g., one contract for
each vulnerability type, as they are not relevant to the scope
of this paper. After applying the criteria in Phase #2, 5
datasets remained. Detailed information about the included and
excluded datasets (i.e., the name and URL for each dataset), as
well as the reasons for exclusion, has been published publicly
10. Following are the five studies with the datasets that were
included.

5https://github.com/
6https://cve.mitre.org/
7https://figshare.com/s/ea43905535cc1302267b
8https://datasetsearch.research.google.com/
9At the end of March 2022.
10https://doi.org/10.5281/zenodo.6762730

Yashavant et al. [12] constructed a dataset called ScrawlD
of real world Ethereum smart contracts labeled with vulner-
abilities. It was created to support unbiased evaluation of
existing tools that were proposed in the literature for analyzing
smart contracts. By majority vote, the data set was labeled
by 5 tools that identify various vulnerabilities. The dataset
has 6.7k labeled Ethereum smart contracts extracted from
Etherscan [16]. The authors acknowledge that the proposed
approaches for labeling the contracts (i.e., integrating the
available tools or manually labeling the rest of contracts) are
time and resource-intensive, therefore the authors plan to do
so incrementally and update the dataset regularly in the future.
The dataset is available in ScrawlDset [17].

Durieux et al. [13] presented two novel datasets with the
goal of evaluating the precision of state-of-the-art smart con-
tract analysis tools. The first dataset consists of 69 annotated
vulnerable smart contracts and the second consists of 47,518
contracts extracted from Etherscan [16]. The first dataset is
curated and labeled with the location and category of the
vulnerabilities, while the second dataset consists only of smart
contracts written in Solidity, and the vulnerabilities of those
contracts is unknown. In our paper, we consider datasets with
vulnerabilities and/or fixes, so we only include the first dataset.
The first dataset was labeled using the DASP1011 taxonomy
of Ethereum smart contracts vulnerabilities. The labeling of
the first dataset is on two code levels: the vulnerability type
and the line numbers where the vulnerability occurs in the
contract. Labeling the 69 vulnerable contracts resulted in 115
labeled vulnerabilities, divided into 10 vulnerability types. The
dataset is available on [18].

Ren et al. [14] constructed a dataset with 46,186 diversified
contracts crawled from Etherscan, SolidiFI repository, CVE
and Smart Contract Weakness Classification and Test Cases
library. The collected contracts can be classified into three
categories: 1) unlabeled real-world contracts; 2) contracts with
manually injected bugs; 3) confirmed vulnerable contracts. The
dataset is available on GitHub12. The labeled dataset has a
total number of 350 artificially constructed contracts and 214
confirmed vulnerable contracts.

Zhang et al. [7] constructed a dataset called Jiuzhou. It
consists of 176 smart contracts with vulnerabilities. It provides
two contracts for every type of the studied vulnerabilities: one
with the vulnerability and one without it. The authors suggest
three applications for the Jiuzhou dataset: (1) developers can
learn about smart contract vulnerabilities when reading the
labeled contracts, (2) it can guide developers to implement
smart contract tools, and (3) it can be used to evaluate the
existing tools.

Gigahorse benchmarks13 consists of a collection of
Ethereum smart contracts in source and binary format, labeled
with respective vulnerabilities. Some contracts in this dataset
have been derived from Smartbugs [13]. Gigahorse has three

11https://dasp.co/
12https://github.com/renardbebe/Smart-Contract-Benchmark-Suites
13https://github.com/nevillegrech/gigahorse-benchmarks

https://github.com/
https://cve.mitre.org/
https://figshare.com/s/ea43905535cc1302267b
https://datasetsearch.research.google.com/
https://doi.org/10.5281/zenodo.6762730
https://dasp.co/
https://github.com/renardbebe/Smart-Contract-Benchmark-Suites
https://github.com/nevillegrech/gigahorse-benchmarks


TABLE I: Comparison between related automated tools and
AutoMESC

SmartBugs CVEfixes AutoMESC
Data collection No Automatic Automatic

Supported smart contract
programming languages Solidity N/A Solidity and Vyper

# of used tools 10 N/A 7
Volunaribilities fixes No Yes Yes

main data types: Invulnerable bytecode 14, vulnerable bytecode
and vulnerable source. This dataset is still under construction.
The dataset also only covers the 10 vulnerabilities defined in
the DASP taxonomy.

B. Automated Tools

This section presents an overview of the related automated
tools to AutoMESC including general purpose tools for mining
vulnerabilities.

Ferreira et al. [19] introduced SmartBugs, an automated
framework to analyze smart contracts written in Solidity based
on ten security analysis tools for smart contracts. Neverthe-
less, the tool only analyses smart contract vulnerabilities and
doesn’t collect or construct datasets.

CVEfixes [10] is a dataset and an automated collection tool
that collects vulnerable code and corresponding fixes from
open-source software repositories. CVEfixes supports data
collection from multiple programming language repositories.
However, the CVEfixes dataset does not contain any vulner-
able smart contract codes. In addition, CVEfixes relies solely
on CVE to classify code vulnerabilities. This is not enough
in the case of smart contracts, as there are very few CVE
records for smart contracts. Furthermore, smart contracts have
unique vulnerabilities such as re-enteracy, integer arithmetic
errors, extra gas consumption, etc. These vulnerabilities can
not be detected by traditional general-purpose security tools,
and require specialized tools in smart contracts to label and
classify them.

In addition to CVEfixes, there are many frameworks to
mine software repositories such as [20], [21]. However, these
frameworks target specific programming languages such as
Python, Java, etc. These frameworks do not support smart
contract programming languages such as Solidity and Vyper.

Table I compares related automated tools and AutoMESC in
terms of data collection, supported smart contract languages,
number of used tools, and whether vulnerability fixes are
supported or not. AutoMESC and Smart Bugs support smart
contract programming languages and apply several security
analysis tools to detect vulnerabilities. However, SmartBugs
does not automatically collect data; it’s only for analyzing
smart contract code and detecting vulnerabilities. On the other
hand, CVEfixes and AutoMESC support data collection au-
tomatically, including vulnerability fixes. However, CVEfixes
does not support labeling smart contracts’ vulnerabilities.

14compiled contract

C. Research Gaps

Based on the related datasets and frameworks, we identified
the following research gaps:

Datasets that support data-driven approaches are scarce.
Most of the available datasets were never created for the
purpose of supporting data-driven research in the field of
smart contracts vulnerabilities or fixes. Existing datasets are
constructed with the purpose of evaluating state-of-the-art
tools. For instance, [12] and [14] aim to eliminate bias in
assessing smart contracts security analysis tools. Also, [13]
and [7] support the evaluation of smart contract security
analysis tools.
Moreover, most available datasets are not labeled or contain
a few labeled vulnerable contracts. These are very general
datasets, where researchers still need to conduct labeling,
analysis, and pre-processing to utilize the data with data-
driven models. Therefore, there is a need for datasets with
diverse samples of smart contracts vulnerabilities and their
fixes for reliable training and evaluation of ML, or deep
learning approaches [22]–[24].
Existing datasets are not updated regularly. Several vul-
nerability types become deprecated over time, and there is a
need to collect vulnerabilities that developers encounter on
a day-to-day basis. Regularly updating the dataset on newly
disclosed vulnerabilities may be a possible solution.
In the labeled datasets, fixes to the labeled vulnerabilities
are not addressed. There is a lack of databases covering smart
contract vulnerability fixes or the relationships among them.
This limits the data-driven repairing methods and research. In
addition, it limits automation and empirical software research
on vulnerability-fixes and fixes patterns.
There is no variation in the level of granularity of labeled
datasets, since most of them are at the contract level. Ac-
cording to [25], levels of granularity and the precise location
of a vulnerability in the dataset are finer than the widely used
granularity of programs and files. Also, [26] conclude that file-
level granularity decreases precision and recall performance of
analysis tools. Thus, multiple granularity levels are needed in
the current available datasets to support data-driven research
on smart contracts.
There is a lack of datasets that supports Vyper Ethereum
smart contract language research. In our review, we only
found one dataset written in Vyper and published by vyperhub-
io [27]. However, by the time of writing this paper there is
no publicly available labeled dataset of Vyper smart contract
vulnerabilities. This is an important shortcoming, since there
are many recently disclosed Vyper related vulnerabilities with
high severity at the NVD database e.g. CVE-2022-2484515,
CVE-2022-24788 16, and CVE-2021-4112117.

The AutoMESC framework and dataset presented in this
paper address these research gaps in the following ways: (1) It
utilizes 7 of the most well-known smart contracts security tools

15https://nvd.nist.gov/vuln/detail/CVE-2022-24845
16https://nvd.nist.gov/vuln/detail/CVE-2022-24788
17https://nvd.nist.gov/vuln/detail/CVE-2021-41121

https://nvd.nist.gov/vuln/detail/CVE-2022-24845
https://nvd.nist.gov/vuln/detail/CVE-2022-24788
https://nvd.nist.gov/vuln/detail/CVE-2021-41121


to classify and label smart contracts vulnerabilities written in
Solidity or Vyper. These tools support detecting a wider range
of smart contract vulnerabilities (36 vulnerability types). (2) It
includes vulnerable smart contract codes and the correspond-
ing fixes (6.7K) at different levels of granularity. The dataset
includes the vulnerable code lines, the corresponding fixes,
and the line changes in the fixed code. (3) It updates regularly
every two hours, where newly disclosed vulnerabilities are
added. This enables AutoMESC dataset to support data-driven
research in the field of smart contract vulnerabilities or fixes.

III. DETAILS OF AUTOMESC

In this section, we describe the proposed method to mine,
classify and label smart contract vulnerabilities and fixes as
a fully automated framework, AutoMESC. We discuss data
collection, data curation, automatic execution of candidate
tools, and output.

Figure 1 illustrates the high-level architecture of Au-
toMESC, which is composed of three main components: Data
Collector, Data Preprocessor, and Tool Executor. The Data
Collector (DC) mines existing repositories to collect data from
GitHub and CVE records (i.e., steps 1, 2, and 3) and stores the
extracted data in a relational database (i.e., step 4). The Data
Preprocessor (DP) pre-processes stored data (i.e., step 5). The
Tool Executor (TE) runs seven vulnerability detection tools on
the data to label the vulnerabilities in step 6 and finally stores
the final data in step 7. Results are stored in the Database, and
the Automator component automates the process of collecting
and analyzing data.

A. Data Collector Methodology

The data flow process of AutoMESC starts with automatic
mining and collection of data from open-source software
(OSS) projects on GitHub and the National Vulnerability
Database (NVD). Using the GitHub API, it automatically col-
lects vulnerability-fix pairs that developers have contributed,
written in Solidity or Vyper. It also automatically collects
vulnerability records (CVEs) using the JSON vulnerability
feed published by the NVD database, organized by the year of
origin. In order to keep up to date with newly discovered and
patched smart contract vulnerabilities, the automatic collection
is continuously repeated from both OSS projects hosted on
GitHub and the NVD database.

1) Mining OSS projects: The main source of smart con-
tract vulnerabilities and corresponding fixes in AutoMESC
is GitHub. AutoMESC first starts mining all the projects
hosted on GitHub that have either Solidity or Vyper as their
main language. After that, AutoMESC retrieves all the related
metadata for these projects and stores them in the database.
AutoMESC collects all commits related to vulnerabilities and
fixes, using regular expressions based on selected keywords
and related to “smart contract”, “Solidity”, “Vyper” and
“Ethereum”. The selected keywords, illustrated in Table II, are
based on the common keywords associated with vulnerabilities
presented by Bosu et al. [28]. Furthermore, all commit fixes
are collected and then filtered automatically, as described next

TABLE II: Selected keywords for mining OSS projects

keywords security, vulnerability, vulnerable, exploit,
threat, expose, bug, defect, insecure

in the preprocessing methodology. Fixes not related to code
are automatically cleaned so that the data can be used for
ML models. Vulnerable code is automatically mapped to a
corresponding fix code via a hash, resulting in smart contract
vulnerability-fix pairs that contain both the code before and
after correction. In Figure 2, we show examples of smart
contract vulnerability-fix pairs in the dataset.

AutoMESC also collects the file in which the vulnerability
and the corresponding fix occurred, and maps the two files
together. The same mapping is done for methods. Ultimately,
the dataset has multiple levels of granularity, i.e., on file,
method, and line level.

2) Mining CVE Records: AutoMESC automatically col-
lects all published CVEs related to Ethereum smart contracts
up until the last published CVE on the date of collection by
retrieving the published JSON feeds from the NVD server
(i.e., Step 1 in Figure 1). It then aggregates and processes the
JSON files to remove duplicate CVEs. Afterwards, it collects
and stores several details about each vulnerability CVE such as
CWE, published date, last modified date, and CVSS severity
score (i.e., Step 2 in Figure 1). More details about the collected
information are listed in Section IV.

3) Automation: The framework runs in the background and
automatically collects newly posted vulnerabilities from OSS
projects on GitHub and newly disclosed CVEs on the NVD
database every two hours. The first time AutoMESC is run, it
collects all data from 201618 onwards.

B. Data Preprocessor Methodology

AutoMESC preprocesses the collected data from GitHub
automatically on commit and on code level. On commit
level, it excludes any commits that have no code and only
considers commits that affect Solidity (.sol) and Vyper (.vy)
files. AutoMESC further analyzes these files (.sol and .vy) and
removes comments and white spaces automatically from the
files, before storing them in the database.

C. Tool Executor Methodology

AutoMESC executes vulnerability detection tools on the
collected data and labels the data based on the output of the
tools.

1) Selected Tools: In order to label the collected vulner-
abilities in AutoMESC, we employ available smart contract
state-of-the-art analysis tools for both Solidity and Vyper (as
discussed in Section II). We only considered tools that:

• detect vulnerabilities or code weaknesses in smart con-
tracts and identify their types.

18The first attack on smart contracts was the DAO attack in 2016 [29].



Fig. 1: AutoMESC Framework high-level architecture

Fig. 2: Smart contract vulnerability-fix pair example

• take as input either a Solidity (.sol) or Vyper (.vy) source
code file.

• are publicly available and based on Docker. Docker facil-
itates the portability of our framework and the scalability
of our contract analysis.

We selected 7 tools, which we describe in the following.
Osiris [30] was developed with the goal of detecting integer

vulnerabilities in Solidity. It is based on a symbolic execution
combined with taint analysis. It consists of three core com-
ponents: symbolic analysis, taint analysis, and integer error
detection.

Slither [31] was designed to statically analyze smart con-
tracts and provide users with information about the analyzed
smart contract. Slither can automatically detect vulnerabilities
via security issue detectors.

SmartCheck was developed by the SmartDec team [32]. It
takes Solidity code and detects security vulnerabilities and bad
coding patterns. The tool also provide users with the severity
levels of the detected vulnerabilities. It also provides warnings
for low severity vulnerabilities such as redundant functions.

Solhint [33] is a tool for detecting syntax-related vulnera-

bilities in smart contracts. It statically analyzes the code and
checks a wide range of rules. It also provides developers with
the ability to add new rules based on Solidity style guides and
manage the configuration rules at the code level.

Honeybadger [34] was designed to detect possible honey-
pots in smart contracts. A honeypot is a new type of fraud in
Ethereum, in which the attacker attracts the victim into traps
by deploying vulnerable contracts that contain hidden traps.

Mythril [35] allows users to check their smart contracts
written in Solidity using solc, a command-line compiler. It can
detect several vulnerabilities such as overflow/underflow, and
tx.origin. While some severe vulnerabilities were presented as
transaction-ordering dependence and information exposure.

Maian [36] labels vulnerable smart contracts into three
main categories: suicidal contracts, prodigal contracts, and
greedy contracts. The tool analyzes Solidity contracts by
running a dynamic analysis in a private blockchain, in order
to reduce the number of false positives.

2) Vulnerability Labeling: AutoMESC can detect up to 36
unique vulnerabilities based on the selected tools. However,
some tools detect the same vulnerability using different names.
We mapped the tools’ vulnerabilities to the proposed vulnera-
bility type classification in [37] to unify vulnerability labeling.
Table III demonstrates a sample of supported vulnerabilities
and the unified label used by AutoMESC. The symbol “ - ”
indicates that the tool does not detect the vulnerability.

Each tool selected for vulnerability detection in AutoMESC
is neither sound nor complete. In some cases, a tool may
generate a high number of false positives or false negatives.
Therefore we can not use one tool output to label the data.
Hence, in AutoMESC, we consider the majority rule to label
if a vulnerability exists in the data or not. Based on Table IV,
at least 50% of the tools that detect a vulnerability (threshold)
must report the same output at the same position.

The process of labeling data as a vulnerability includes the
following steps:



TABLE III: Sample of supported vulnerabilities and the different labels used by each supporting tool

Vulnerability / Tools Osiris Slither Smart Check Solhint Honeybadger Mythril Maian
Suicidal Contracts - suicidal - avoid-suicide - Suicide suicidal contract
Integer Overflow
and Underflow Arithmetic Bugs - Unchecked math - - Integer -

Frozen Ether - locked-ether Locked money - - - Greedy contracts

Reentrancy -

reentrancy-eth
reentrancy-no-eth
reentrancy-events

reentrancy-unlimited-gas

Reentrancy reentrancy - State Change External Calls
External Calls -

Denial of Service - incorrect-equality DoS by
external contract multiple-sends - Multiple Sends -

Unchecked Call
Return Value - unchecked-transfer

unchecked-lowlevel Unchecked external call reason-string - Unchecked Retval -

Authorization
through tx.origin - tx-origin Using tx.origin avoid-tx-origin - - -

Insecure Contract
Upgrading - unprotected-upgrade - - - Delegate Call To

Untrusted Contract -

Gas Costly Loops - costly-loop Costly loop - - - -
Balance Disorder - - - - Balance Disorder - -

TABLE IV: Sample of supported vulnerabilities and their
threshold

Vulnerability # of Tools that can
detect the vulnerability Threshold

Suicidal Contracts 4 2
Integer Overflow
and Underflow 3 2

Frozen Ether 3 2
Reentrancy 4 2

Denial of Service 4 2
Unchecked Call

Return Value 4 2

Authorization
through tx.origin 3 2

Insecure Contract
Upgrading 2 1

Gas Costly Loops 2 1
Balance Disorder 1 1

1) Collect the output of all selected tools for each collected
data.

2) For each output, identify the detected vulnerability name
and the location of the vulnerability (line number).

3) Based on the mapping in Table III, unify the vulnera-
bility name.

4) Apply the majority rule to label the collected data.
AutoMESC will label a vulnerability if at least 50% of
the tools that detect this vulnerability (based on Table
IV) report the same vulnerability at the same position.

AutoMESC uses keyword matching to detect commits fixing
vulnerabilities. In practice, this method could generate consid-
erable noise, such as commits not fixing any vulnerabilities
but with the selected keywords. To handle these noises,
AutoMESC analyses the fixed versions using the selected tools
and checks whether the same vulnerability is detected or not.
Utilizing the majority rule, if the same vulnerability is found
in the fixed code, AutoMESC considers this commit as noise
and does not include it in the dataset as a vulnerability-fix
pair.

IV. AUTOMESC DATASET

This section describes the collected data and metadata from
each data source. Furthermore, we explore the constructed

dataset19. AutoMESC primarily collects data and meta-data
from the JSON vulnerability files from both NVD and projects
on GitHub. Figure 3 captures the overall data structure of
our database, including the meta-data collected from NVD
and GitHub (i.e., CVE vulnerabilities, OSS GitHub projects,
CWE classification, commits, fixes, changed files, and changed
lines).

A. Data Collected from CVE Records
Each vulnerability has a CVE-ID that is a unique identi-

fier. It also has a published date, description, user privilege,
user interaction and last modified date. In addition, it has a
severity ranking based on the Common Vulnerability Scor-
ing System (CVSS) [38]. The NVD database provides two
versions of the CVSS (i.e., CVSSv2 and CVSSv3). Figure 3
shows all the related data and meta-data attributes that are
extracted from the CVE’s JSON for each vulnerability in
our dataset under the class “CVE”. Each vulnerability is also
linked with a unique hash that is linked with other classes
in the dataset. It is directly linked with the commit class, as
each CVE vulnerability has relevant source code repositories
on GitHub and relevant commits that contain vulnerability
source code and the corresponding fixes. In addition to labeling
the vulnerabilities based on their CVSS, AutoMESC also
classifies each vulnerability in the collected CVE according
to CWE weakness types [39]. Therefore, AutoMESC collects
the details of each CWE type associated with each collected
CVE record. The collected meta-data of each CWE includes
its name, description, and URL. Finally, each vulnerability in
the CVE is associated with reference links to OSS repositories
with commits that have the vulnerability and corresponding
fixes. AutoMESC visits these links and provisionally clones
the repositories to collect the related commits, vulnerability
and corresponding fixes, and store them all in the database
based on the unique hash of the commit listed in the CVE
record.

B. Data Collected from GitHub Repositories
Each repository on GitHub with vulnerabilities in Solidity

or Vyper has a unique ID (i.e., repo ID) in our database.

19https://figshare.com/s/ea43905535cc1302267b

https://figshare.com/s/ea43905535cc1302267b


Fig. 3: AutoMESC dataset architecture

AutoMESC extracts the name, description, homepage, date of
creations (i.e., date created), owner, the date of the last push
(i.e, date last push) and other meta-data for each relevant OSS
repository. Such meta-data can be used to focus on specific
characteristics of relevant OSS repositories, such as the total
number of vulnerabilities and corresponding fixes since the
creation date of the repository, or the total number of vulnera-
bilities and corresponding fixes related to the popularity of the
repository based on a minimum threshold on the number of
forks. In order to avoid confusing Solidity repositories and
Vyper repositories, AutoMESC also extracts the repository
language (i.e, repo langugage). Finally, if the repository is
associated with a CVE record then the CVE ID will contain
the corresponding CVE identifier, otherwise it has a null value
indicating that there is no CVE associated with the repository.

C. Commit Meta-data

Commits in AutoMESC are the core of the database. Au-
toMESC collects commits from the collected OSS repositories
for both Solidity and Vyper. Each commit has a unique hash
and one commit is associated with a repository (repo id) and
may be associated with a CVE record. For each commit,
AutoMESC extracts the author, author date, author timezone,
committer, committer date, committer timezone, and Delta
Maintainability Model metrics (dmm unit size) for code
changes [40] meta-data. This meta-data can help, e.g., to
analyze the time and date for each fix and other characteristics
related to the author. AutoMESC also extracts the message
(msg) for further details of the commit and the fix action (i.e.,
adding or deleting lines of the vulnerability code).

D. Extracting Multiple Levels of Vulnerability-Fix Pairs

AutoMESC extracts vulnerability-fix pairs at two differ-
ent levels of granularity - one based on files and one on
lines. AutoMESC associates each commit with one or more
file changes, and each file change contains code diffs and
the code of the file before (i.e., code before) and after the
change (code after). Code diffs are presented in the same
format delivered by Git. Figure 4 shows an example of the
code before, code after and diffs. Any line starting with \n-
reflects the old code (code before) and lines starting with \n+
indicate the new code (code after). Finally, diffs are listed in
lines starting with @@ and ending with @@.

Fig. 4: Patch File Example: Code before, Code after and Code
Diffs Strings

E. Classification and Labeling of Extracted Vulnerabilities

AutoMESC classifies and labels vulnerable code using
various classifications to assist with ML feature extraction
models and other ML models. First, as mentioned earlier, it



extracts the relevant CWE type from the corresponding CVE
record and annotates the vulnerability accordingly with the
extracted CWE type. Then it extracts the description of each
CWE from MITRE’s20 list of CWEs. Due to NVD’s lack
of distinction between CWE categories and CWE individual
types, AutoMESC marks the field “is category” with true. Fur-
thermore, AutoMESC classifies the extracted vulnerabilities
based on the CVSS, as discussed before. Finally, AutoMESC
analyzes the contract’s code using 7 well-known tools, then
classifies the file’s vulnerability based on the results. It then
labels the line numbers that contain the vulnerability with the
vulnerability type name based on all the used tools, the severity
of the vulnerability, and other meta-data.

F. Dataset Exploration
Table V provides a statistical overview of the first release

of the AutoMESC dataset. The initial dataset contains 4.4K
GitHub repositories, from which a total of 2.3K unique
vulnerability-fix pair commits were extracted.

TABLE V: Statistics overview of the AutoMESC dataset

# GitHub Repo. # Commits # Files # Contracts
4.4K 2.3K 6.7K 10K

# Methods # Lines CVEs # of Vulnerabilities
6.8K 5.241K 0 97111

TABLE VI: Severity levels distribution in AutoMESC data

Severity 1: (Low) 2: (Medium) 3: (High)
Percentage 85.3% 9.4% 5.2%

The total number of files in which there was a code change
(that is, a vulnerability or a fix) is 6.7K. Moreover, a total of
10K contracts had vulnerability-fix changes.

We also found out that CVEs have yet to be recorded for
either Solidity or Vyper. According to this finding, it appears
that the reported vulnerabilities on Ethereum smart contracts
in the CVE records and NVD database exist in files other than
(.vy) or (.sol) files. After manually analyzing the CVE records
for Ethereum smart contracts, we found that most of the
recorded vulnerabilities are interface-related. If future CVEs
are recorded in Solidity or Vyper, AutoMESC will collect and
store them in the database along with the related CWEs.

There are around 97111 vulnerabilities in the first release
of AutoMESC data. Among the most frequent vulnerabilities
in AutoMESC data are hard-coded addresses, and implicit
visibility levels, with more than 10K occurrences each. Ta-
ble VII shows the most frequently occurring labeled smart
contract vulnerabilities in AutoMESC data. Finally, Table VI
shows that most of the vulnerabilities in AutoMESC have low
severity levels, with 5.2% of the vulnerabilities having high
severity.

V. APPLICATION SCENARIOS

In the following, we highlight a number of sample scenar-
ios that illustrate how researchers and practitioners can use
AutoMESC.

20https://cwe.mitre.org/data/index.html

A. Training Material

The AutoMESC dataset provides good examples of
vulnerabilities and fixes that can be used as a learning
resource for Ethereum smart contract developers. Using
the provided vulnerability-fix pairs and classifications, they
can learn how to resolve the vulnerabilities they face while
implementing their smart contracts, and how to avoid the
vulnerabilities in the future.

B. Vulnerability Localization and Prediction

Due to the automated approach, AutoMESC can assist
future research in vulnerability detection as it continually
collects newly posted vulnerabilities on OSS projects hosted
on GitHub and disclosed Vulnerabilities on NVD. Addition-
ally, the AutoMESC dataset is constructed using multiple
levels of abstractions and meta-data about vulnerabilities.
The dataset contains the actual vulnerability code that is
pre-processed and labeled based on multiple tools published
in the literature, which allows researchers to apply models
directly to the vulnerable code. The provided meta-data can
be used to improve the quality of models that use feature
extraction, and can be used to train and test existing models.
Several studies have already addressed automated vulnerability
prediction and detection in Ethereum smart contracts, e.g.,
[41], [42], and using ML models. It is our belief that our
dataset and framework will be a valuable asset to this line of
research, and that our framework will provide the opportunity
to evaluate the existing detection and prediction methods in a
more comprehensive manner.

C. Tool and Dataset Benchmark

With the constant updates of Solidity and Vyper, there will
be a need for continuous data mining and constructing new
datasets with the latest versions of both languages. Moreover,
over time new vulnerabilities can occur, and some vulner-
abilities will be deprecated, hence new analysis tools will
be published. Therefore, AutoMESC and datasets constructed
by it can be used for evaluating the correctness and other
parameters of newly designed analysis tools for Ethereum
smart contracts. Datasets with recent vulnerabilities can be
collected and consolidated using AutoMESC. As a result, the
constructed datasets can be used to evaluate the developed
tools at a given point in time, and compare tools to each other
in the form of a benchmark.

D. Assist Empirical Studies on Smart Contract Vulnerabilities
and Fixes

In addition to providing several classifications, AutoMESC
also provides meta-data per vulnerability, fix, repository, com-
mit, owners, developers, CVE, CWE, and more to support
large empirical studies. By examining such meta-data, empir-
ical investigations can provide insight into how vulnerabilities
are introduced to a smart contract, the characteristics of de-
velopers who implemented it, the patterns of vulnerabilities in
Solidity and Vyper, the characteristics of vulnerability-related

https://cwe.mitre.org/data/index.html


TABLE VII: Top labeled smart contract vulnerability types using AutoMESC

Vulnerability Type Total Vulnerability Type Total Vulnerability Type Total
Hardcoded address 11633 Implicit visibility level 12536 Unchecked low-level call 3113

Compiler version not fixed 7409 Pure-functions should not read 993 Frozen Ether 411
Extra gas consumption 3746 Upgrade code to Solidity 8431 Pure-functions should not change state 993

Costly loop 4275 Multiplication after division 627 Deprecated constructions 519
Private modifier 4694 Overpowered role 1566 Revert inside the if-operator 936
Use of SafeMath 1577 Comparison with block.timestamp 5116 View-function should not change state 488

Revert inside the if-operator 936 Replace multiple return values/struct 4785 Use of assembly 2303

commits, common weaknesses in smart contracts, among other
important metrics. Additionally, studying and analyzing some
security patches can provide insight into some vulnerabilities
and assist in detecting them early on.

E. Program Repair for Vyper and Solidity Contracts

AutoMESC constructs pairs of vulnerable code and its
corresponding fixed code. The constructed pairs can be used
in data-driven learning models for program repair. Automated
smart contracts repair is still in its early stages [43]. As
mentioned previously, the AutoMESC database has two levels
of granularity. Therefore, it supports extracting particular fixes
such as fixes with only one line, fixes with a specific number of
lines, and fixes for the file. The findings of many studies such
as [26] show that using line based granularity may improve
the precision and recall of the ML model. Also, the training
process can be focused on fewer code changes that are within
the capacity of the used model or technology, which improves
the predicted fix code.

VI. EVALUATION

In this section, we evaluate the quality of the dataset and
compare it against the related datasets discussed in Section II.

To evaluate the dataset, we adopt the data quality taxonomy
introduced by Bosu and Macdonell [44], which rates data qual-
ity issues according to three dimensions: accuracy, relevance,
and provenance. Accuracy refers to the correctness of the data
and is measured based on the following metrics.

• Incompleteness: missing data (md) (assigned as null,
missing, or empty value). Incompleteness is measured by
the percentage of missing data.

• Redundancy: duplicate data (dd) that are exactly the
same. This is calculated by the percentage of the du-
plicated data.

• Inconsistency: contradicting or non-matching data (cd).
We measure Inconsistency by the percentage of contra-
dicting data.

To calculate the Accuracy metrics (Acc), we use the equation
1, where n is the size of data, and D can be md, dd, or cd:

Acc =
1

n

n∑
i=1

Di (1)

The relevance class assesses the suitability of the data based
on the following factors.

• Heterogeneity: diversity of the data source.
• Amount of data: the size of the dataset, including the

number of attributes.

• Timeliness: the age of the dataset, and how regularly it
is updated.

Provenance refers to the origin of the dataset. It is evaluated
based on two metrics.

• Accessibility: data available to the public.
• Trustworthiness: the collection of data is documented and

can be replicated.
Table VIII summarizes the general characteristics of the

datasets and the quality evaluation results.

A. Accuracy

For this class, we consider the datasets with an acceptable
format such as CSV, JSON, etc. The datasets [7], [13], [14] are
not evaluated for this class, as they are folder-based datasets,
where the smart contracts are grouped in folders based on
their vulnerabilities. These type of datasets cannot be used
in data-driven approaches as the majority of them has only
two attributes. Hence, in this class, we will only consider the
Gigahorse benchmarks21 and the Sujeet Yashavant et al. [12]
dataset.

In terms of incompleteness, the Gigahorse benchmarks
showed 0.92% missing data, while our dataset and Sujeet
Yashavant et al. did not have any missing data. No redun-
dancy was found in any of the datasets, even in the folder-
based datasets. In all datasets, there was no evidence of any
inconsistency issues. However, it was challenging to determine
inconsistency in the datasets, as most of the datasets used
different tools to detect vulnerabilities, and some of these tools
might not have the same conclusion.

B. Relevance

In terms of heterogeneity, we have analyzed the source of
data, the number of tools used to label the data, supported
vulnerability types, supported languages, and if CWE classifi-
cation is supported. All datasets are heterogeneous, where (i)
the data were collected from at least two data sources, or (ii)
they support multiple vulnerabilities. However, all the existing
datasets only support the Solidity programming language, and
not all of them support CWE classification.

The amount of data is determined based on the size of the
dataset, the size of labeled data, and the number of attributes
for each dataset. Some of these datasets are in the format of
folders, where the attributes are the vulnerability type and the
code file.

21https://github.com/nevillegrech/gigahorse-benchmarks

https://github.com/nevillegrech/gigahorse-benchmarks


TABLE VIII: Characteristics of the datasets and data quality evaluation results
Benchmark [12] [13] [14] [7] Gigahorse benchmarks Our dataset

General characteristics Purpose Construct unbiased dataset Evaluate SC tools Construct unbiased dataset Evaluate SC tools Construct unbiased dataset Construct unbiased dataset
for data-driven approaches

Vulnerabilities fixes No No No No No Yes

Amount of data
Data size 6.7K 143 46K 266 109 6.7K

Size of labeled data 6.7K 143 564 266 109 6.7K
# of attributes 6 2 2 2 7 84

Heterogeneity

Source of data Etherscan Etherscan Etherscan, SolidiFI, CVE,
SWC and TCl

Litrature papers and
existing datasets Etherscan Github and CVE

# of SVT 8 10 42 49 9 36
Supported languages Solidity Solidity Solidity Solidity Solidity Solidity and Vyper

# of used tools 5 11 9 Manual 11 7
CWE classification No No Yes No No Yes

Accuracy
Incompleteness No No evidence No evidence No evidence 0.92% No

Redundancy No No evidence No evidence No evidence No No
Inconsistency No evidence No evidence No evidence No evidence No evidence No evidence

Timeliness No updates No updates No updates No updates No updates Updates every 2 hour
Accessibility Yes Yes Yes Yes Yes Yes

Trustworthiness Yes Yes Yes Yes Yes Yes

In terms of timeliness, the existing datasets are not updated
after the data are made public. In our case, AutoMESC is
designed so that the dataset can be updated every two hours.

C. Provenance

All the analyzed datasets are available publicly, and the
collection of data is documented in detail as research papers
or in GitHub instructions.

D. Evaluation Summary

Based on the above comparison, the AutoMESC dataset pro-
vides heterogeneous data with a variety of attributes that can be
adapted for different data-driven research projects in the area
of smart contract vulnerabilities. The dataset overcomes the
current limitations in dataset timeliness where it updates the
dataset every two hours based on newly disclosed vulnerabili-
ties. This improves the quality of the AutoMESC dataset since
smart contracts evolve rapidly, where new vulnerabilities are
discovered and several vulnerability types become deprecated
over time.

VII. THREATS TO VALIDITY

A. Internal Validity

A possible internal validity threat may result from an im-
plementation bug in the codebase due to the complexity of the
AutoMESC framework. We thoroughly tested the framework
to address this concern. Moreover, we made the framework and
the dataset publicly available so researchers and developers can
verify the framework.

Each tool selected for vulnerability detection is neither
sound nor complete. In some cases, a tool may generate a
high number of false positives or false negatives. To mitigate
this, we assessed whether a vulnerability exists or not based
on the majority approach. However, such an approach could
fail if the majority of the tools result in false positives
or false negatives. These issues can be addressed either by
integrating more tools or by manually verifying vulnerabilities
through crowdsourcing or other methods. Nevertheless, these
approaches require considerable time and resources, and we
can apply them incrementally.

B. External Validity

A threat to external validity is the generalizability of
AutoMESC. We built our dataset using publicly disclosed
vulnerabilities and their fixes. These pairs may not reflect
all vulnerabilities and fixes in smart contracts, particularly
those not reported. To reduce this threat, we also collected
vulnerability information from CVE and checked if these
vulnerabilities are linked with Github repositories. If there
is no match between collected vulnerabilities from CVE and
Github repositories, we include these vulnerabilities in our
dataset.

VIII. CONCLUSION

Several traditional and data-driven methods and tools were
proposed in literature for improving the security of smart con-
tracts, detecting their vulnerabilities, and perhaps fixing them.
Nevertheless, data-driven research on smart contracts vulner-
abilities and fixes is still in its infancy, and a comprehensive
dataset with smart contract’s vulnerabilities and corresponding
fixes is missing to support such research. This paper proposes
a method of automatically mining and classifying smart con-
tract vulnerabilities and their fixes under a fully automated
framework called AutoMESC. AutoMESC constructs a dataset
of vulnerabilities and fixes for smart contracts written in the
most popular smart contract languages (Solidity and Vyper)
mined from OSS projects hosted on GitHub and CVE records.
The constructed dataset is enriched with meta-data that can
support machine learning models for feature extraction. The
initial dataset consists of approximately 6.7k smart contract
vulnerability-fix code pairs with various levels of granularity
and meta-data. In addition to opening up new opportunities
for researchers in the smart contract research and empirical
software engineering research, our framework and dataset can
also be employed to identify smart contracts vulnerabilities,
classify them, predict severity levels, automate their repair and
many more. In the future, we intend to empirically investigate
the relationship between smart contract’s vulnerabilities and
their fixes, and the patterns they show at different abstraction
levels. Additionally, we plan to use deep learning models
for AutoMESC’s classification process to predict the type of
newly discovered vulnerabilities.
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