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Abstract

We present a framework for designing run-time fault-
tolerance using dynamic program updates triggered by
faults. This is an important problem in the design of au-
tonomous systems as it is often the case that a running
program needs to be upgraded to its fault-tolerant version
once faults occur. We formally state fault-triggered pro-
gram updates as a design problem. We then present a sound
and complete algorithm that automates the design of fault-
triggered updates for replacing a program that does not tol-
erate faults with a fault-tolerant version thereof at run-time.
We also define three classes of fault-triggered dynamic up-
dates that tolerate faults during the update. We demonstrate
our approach in the context of a fault-triggered update for
the gate controller of a parking lot.

1 Introduction
Tolerating unanticipated faults at run-time is an impor-

tant property of autonomous systems (e.g., Mars Explo-
ration Rover) as such systems should guarantee a minimum
level of behavioral correctness in the presence of unex-
pected environmental events. Since it is difficult (if not im-
possible) to anticipate all types of faults and to design sys-
tems that tolerate all fault-types, it is highly desirable to dy-
namically upgrade the controlling software of autonomous
systems after the first occurrence of an unanticipated type
of faults is detected so that subsequent occurrences of faults
are tolerated. Such a run-time update should take place
while satisfying (possibly a weaker version of) the program
specification during the update. In this paper, we report our
ongoing work on the development of a framework for the
design of run-time fault-tolerance based on fault-triggered
updates.

Several approaches formalize and present solutions for
dynamic replacement of an old running program with a new
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program [18, 14, 15, 26, 2] most of which focus on the ar-
chitectural and programming issues with less emphasis on
the effect of faults and fault-tolerance during updates. For
example, Kramer and Magee [18] present a framework for
specifying and implementing dynamic updates at the archi-
tectural (components/connectors) level, thereby separating
the functional updates from structural updates. Gupta and
Jalote [14] present a functional approach for transferring
the state of the old program to a state of the new program
where the transfer functions are developed offline. Gupta
et al. [15] propose a formal framework for designing and
reasoning about dynamic updates, where online change is
considered to be an instantaneous process using a transfer
function (defined by developers). Duggan [12] presents a
type-based hot swapping approach where programmers de-
fine two-way mappings that are reflected as type-sharing
constraints during update. Stoyle et al. [26] introduce a safe
transformer for dynamic update of imperative programs.
Ajmani et al. [1, 2] present a middleware to support dy-
namic updates in distributed systems. All aforementioned
approaches focus on updating programs and their compo-
nents with less emphasis on automated design and depend-
ability of such dynamic updates in the presence of faults.

We propose a formal framework for modeling and de-
signing run-time fault-tolerance, where a program that does
not provide any guarantees about its behavior when unan-
ticipated faults occur (called the fault-intolerant program)
is replaced with a fault-tolerant version thereof at run-time.
Our proposed approach extends the notion of dynamic pro-
gram updates in that updates are triggered by faults and tol-
erate faults. More specifically, we first formally define what
we mean by an upgrade program in the context of fault-
tolerance. We then define the problem of designing fault-
triggered updates and present a sound and complete algo-
rithm for automated design of such updates. Subsequently,
we define three classes of fault-tolerant dynamic updates.

Our proposed approach for the design of run-time fault-
tolerance comprises three main steps once a new type of
faults is detected: (i) designing the new (upgrade) pro-



gram (which is a fault-tolerant version of the running fault-
intolerant program), (ii) designing a fault-triggered update
program for dynamic (i.e., run-time) replacement of the
fault-intolerant program with its fault-tolerant version due
to the occurrence of faults, and (iii) adding fault-tolerance
to the update program. In our previous work [13, 24], we
have investigated the first step. The third step is currently
under investigation. The focus of this paper is on the sec-
ond step. Specifically, in the absence of faults, the run-
ning fault-intolerant program satisfies its safety and liveness
specifications [4], where a safety specification states that
nothing bad ever happens and a liveness specification stipu-
lates that something good will eventually occur. We present
a sound and complete algorithm that takes the design of
the running fault-intolerant program (represented as a finite
state machine) and the design of its fault-tolerant version
(which is designed in an offline fashion), and determines
whether there exists an update program that enables the dy-
namic update of the fault-intolerant program with its fault-
tolerant version when faults occur. This way, subsequent
occurrences of faults would be tolerated by the fault-tolerant
program. The update program should meet three prop-
erties: progress, safeness and interference-freedom. The
progress property ensures that the update eventually oc-
curs. The safeness property guarantees that during update
the safety specification of the fault-intolerant program will
be preserved. Moreover, in the absence of faults, the up-
date program must not interfere with the execution of the
fault-intolerant/tolerant program. The soundness of our al-
gorithm guarantees that the generated update program is
correct-by-construction (i.e., meets safeness, progress and
interference-freedom). The completeness of our algorithm
ensures that if our algorithm fails to find an update program,
then the fault-triggered update of the fault-intolerant pro-
gram to its fault-tolerant version is not possible (under safe-
ness, progress and non-interference constraints).

We demonstrate our proposed approach in the context
of a parking lot example, where we design a program
for updating the controlling software of a parking lot gate
controller with its fault-tolerant version. The rest of this
paper is organized as follows: In Section 2, we present
some preliminary concepts. Then in Section 3, we specify
the requirements of run-time fault-tolerance and define the
problem of designing run-time fault-tolerance using fault-
triggered updates. In Section 4, we present an algorithm for
automated design of fault-triggered updates. We demon-
strate our algorithm in the context of the parking lot exam-
ple in Section 5. In Section 6, we define three classes of
dynamic updates that tolerate faults during update. We dis-
cuss related work in Section 7. Finally, we make concluding
remarks in Section 8.

2 Preliminaries
In this section, we represent the formal definitions of

programs, specifications and faults from [5, 22, 24, 13].

Program. A program p is of the form 〈Vp, δp〉, where Vp is
a finite set of variables {v1, · · · , vn} (n ≥ 1) and δp denotes
the set of program transitions. Each variable vi has a finite
domain Di. A state of p is a valuation 〈d1, · · · , dn〉 of the
variables of p, where di is a value in the domain Di. The set
of all possible states of p comprises the state space of p, de-
noted Sp. The set of transitions of p, denoted δp , is a subset
of Sp×Sp. A state predicate of p is any subset of Sp. A state
predicate X is closed in a program p (respectively, δp) iff (if
and only if) ∀s0, s1 : (s0, s1)∈δp : (s0∈X ⇒ s1∈X).

A sequence of states, σ = 〈s0, s1, ...〉 is a computation
of p iff the following two conditions are satisfied: (1) if σ is
infinite, then ∀j : j > 0 : (sj−1, sj)∈ δp holds, and (2) if σ
is finite and terminates in state sf then there does not exist
state s, s �= sf , such that (sf , s)∈δp. A sequence of states,
〈s0, s1, ..., sn〉, is a computation prefix of p iff ∀j : 0 < j ≤
n : (sj−1, sj)∈δp .

The projection of a program p on a state predicate X ,
denoted as p|X , is the program 〈Vp, {(s0, s1) : (s0, s1) ∈
δp ∧ s0, s1∈X}〉. In other words, p|X consists of transi-
tions of p that start in X and end in X .

The union of two programs p1 = 〈X , δ1〉 and p2 =
〈Y, δ2〉 is a program pu = 〈X ∪ Y, δu〉, where X =
{x1, · · · , xn} and Y = {y1, · · · , ym} (m, n ≥ 1) and
X ∩ Y = ∅. Each state in the state space of pu, de-
noted Su, is a valuation of 〈x1, · · · , xn, y1, · · · , ym〉. We
denote by s ↑Su the image of a state s ∈ Sp1 (respec-
tively, s∈Sp2 ) in Su, where s = 〈d1, · · · , dn〉 (respectively,
s = 〈c1, · · · , cm〉). The image of s ∈ Sp1 (respectively, s ∈
Sp2 ) is a set of states 〈d1, · · · , dn, y1, · · · , ym〉 (respectively,
〈x1, · · · , xn, c1, · · · , cm〉) in Su such that for all possible
valuations of 〈y1, · · · , ym〉 (respectively, 〈x1, · · · , xn〉) the
valuation 〈d1, · · · , dn〉 (respectively, 〈c1, · · · , cm〉) remains
the same. In other words, the image of s is a state predicate
in Su. The image of a state predicate X ⊆ Sp1 (respec-
tively, X ⊆ Sp2 ) is also a state predicate in Su, denoted
X ↑Su , that is the union of the images of all states s in
X . The image of a transition (s0, s1) ∈ δ1 (respectively,
(s0, s1) ∈ δ2) is a set of transitions in Su × Su from s0 ↑Su

to s1 ↑Su such that no variable yj (1 ≤ j ≤ m) (respec-
tively, xi (1 ≤ i ≤ n)) is changed by transitions of that
set. We represent the image of a transition (s0, s1) ∈ δ1

(respectively, (s0, s1) ∈ δ2) by (s0, s1)↑Su×Su . The image
of a transition (s0, s1) ∈ δ1 (respectively, (s0, s1) ∈ δ2) is
a set of transitions in Su ×Su. Let δ1 ↑Su×Su denote the set
of transitions in Su ×Su that is the image of the set of tran-
sitions δ1. The set of transitions of the union program (i.e.,
δu) is equal to (δ1 ↑Su×Su) ∪ (δ2 ↑Su×Su). If X = Y (i.e.,
Sp1 = Sp2 ), then the union program is equal to 〈X , δ1∪δ2〉.
Properties and specifications. A property is a set of



infinite sequences of states that is suffix closed and fusion
closed. Suffix closure of the set means that if a state se-
quence σ is in that set, then so are all the suffixes of σ. Fu-
sion closure of the set means that if state sequences 〈α, s, γ〉
and 〈β, s, δ〉 are in that set then so are the state sequences
〈α, s, δ〉 and 〈β, s, γ〉, where α and β are finite prefixes of
state sequences, γ and δ are suffixes of state sequences, and
s is a program state. Following Alpern and Schneider [4],
we rewrite a property as the intersection of a safety property
and a liveness property. Intuitively, a safety property states
that nothing bad ever happens. A liveness property speci-
fies that something good will eventually occur. For a suffix
closed and fusion closed property, a safety property can be
specified as a set of bad transitions (see Page 26, Lemma
3.6 of [21]), that is, for program p, a safety property is a
subset of Sp × Sp. A safety specification of a program p
is a conjunction of all safety properties of p. Hence, for
simplicity, in this paper, we assume that a safety specifi-
cation is represented as a set of transitions B ⊆ Sp × Sp

that must not occur in any program computation. Also, we
say a transition (s0, s1) violates the safety specification iff
(s0, s1) ∈ B. A computation satisfies the safety specifica-
tion iff none of its transitions violates the safety specifica-
tion. A liveness property is represented by a set of infinite
sequences of states, denoted L. A computation σ satisfies
a liveness property L iff σ ∈ L. The liveness specification
of a program is the conjunction of all its liveness properties.
An example of a liveness property is a leads-to property,
denoted P �→ Q, where P and Q are state predicates. A
computation σ = 〈s0, s1, · · ·〉 satisfies P �→ Q iff for ev-
ery state si, if P holds in si, then there exists a state sj , for
j ≥ i, in which Q holds.

A computation σ = 〈s0, s1, ...〉 satisfies a specification
spec iff σ satisfies safety and liveness of spec. We say a
state predicate Ip is an invariant of a program p iff the fol-
lowing conditions are satisfied: (1) Ip is closed in δp, and
(2) starting from every state in Ip, every computation of p
satisfies spec.

Faults. We follow previous work [10, 5, 22, 24] in us-
ing the notion of state perturbation for modeling different
types of faults as state perturbation provides a sufficiently
expressive means to represent a variety of fault-types (e.g.,
Byzantine, failstop, message loss, etc.). Formally, a type of
faults f for a program p = 〈Vp, δp〉 is a subset of the set
{(s0, s1) : (s0, s1)∈ Sp × Sp}. We use p[]f to denote the
transitions obtained by taking the union of the transitions in
p and the transitions in f . We say that a state predicate FSp

is an f -span (read as fault-span) of p from the invariant Ip

iff the following two conditions are satisfied: (1) Ip ⊆ FSp,
and (2) FSp is closed in p[]f . Observe that for all compu-
tations of p that start in states where Ip is true, FSp is a
boundary in the state space of p to which (but not beyond
which) the state of p may be perturbed by the occurrence of

the transitions in p[]f . A subset of FSp−Ip that is reach-
able from Ip by a sequence of f transitions alone is called
the sub f -span of p from Ip, denoted SFSp.

We say that a sequence of states, σ = 〈s0, s1, ...〉, is
a computation of p in the presence of f iff the follow-
ing three conditions are satisfied: (1) if σ is infinite then
∀j : 0 < j : (sj−1, sj)∈ (δp ∪ f), (2) if σ is finite and ter-
minates in state sf then there does not exist state s, s �= sf ,
such that (sf , s) ∈ δp, and (3) ∃n : n ≥ 0 : (∀j : n <
j : (sj−1, sj) ∈ δp). The first requirement captures that in
each step, either a program transition or a fault transition is
executed. The second requirement captures that faults do
not have to execute. Finally, the third requirement captures
that the number of fault occurrences in a computation is fi-
nite. This requirement is the same as that made in previous
work (e.g., [10, 5, 27]) to ensure that eventually recovery
can occur.
Fault-tolerance. We represent three levels of fault-
tolerance (from [5, 21]) depending on the extent to which a
program satisfies its safety or liveness specifications in the
presence of faults. Intuitively, a failsafe fault-tolerant pro-
gram guarantees to satisfy its safety specification even when
faults occur. Formally, we say that p is failsafe f -tolerant
(read as fault-tolerant) from its invariant Ip for its specifi-
cation spec iff the following conditions hold: (1) in the ab-
sence of faults, p satisfies spec from Ip, and (2) there exists
FSp such that (a) FSp is an f -span of p from Ip, and (b)
every computation of p[]f satisfies the safety of spec from
FSp.

A nonmasking fault-tolerant program guarantees to re-
cover to its invariant after faults stop occurring, however,
its safety specification may be violated during recovery. We
say that a program p is nonmasking f -tolerant from Ip for
spec iff the following conditions hold: (1) in the absence
of faults, p satisfies spec from Ip, and (2) there exists FSp

such that (a) FSp is an f -span of p from Ip, and (b) every
computation of p[]f that starts from a state in FSp contains
a state of Ip.

A masking fault-tolerant program always satisfies its
safety specification (even in the presence of faults), and
eventually recovers to its invariant. More precisely, a pro-
gram p is masking f -tolerant from Ip for spec iff the fol-
lowing conditions hold: (1) in the absence of faults, p sat-
isfies spec from Ip, and (2) there exists FSp such that (a)
FSp is an f -span of p from Ip, (b) p[]f satisfies the safety
of spec from FSp, and (c) every computation of p[]f that
starts from a state in FSp contains a state of Ip.

3 Requirements of Run-Time Fault-
Tolerance

In this section, we formalize the requirements of design-
ing run-time fault-tolerance against unanticipated faults.
Consider a running program po = 〈Vo, δo〉, with an in-
variant Io and the specification spec, that is perturbed by



an unanticipated fault-type f . Let FSo be the f -span of
po from Io. To meet the requirements of failsafe/masking
fault-tolerance at run-time, computations of po[]f must sat-
isfy the safety of spec. However, in the presence of f , the
safety of spec may be violated in two ways. First, the com-
putations of po|Io may reach states inside Io from where
transitions of f may directly violate safety. Clearly, with
the lack of knowledge about the behavioral nature of f , it is
difficult to identify such states while designing po. Second,
even if transitions of f do not directly violate the safety of
spec, the safety of spec may be violated by the transitions
of po|(FSo−Io) once the state of po is perturbed outside
Io. This is because, in the design of po, no guarantees are
provided for computations of po that start outside Io.

In order to meet the requirements of nonmask-
ing/masking fault-tolerance at run-time, every computation
of po that starts in a state in (FSo−Io) must reach a state in
Io. In other words, after f stops occurring, recovery from
(FSo−Io) to Io should be provided. To ensure recovery,
we have to resolve two classes of problems: non-progress
cycles and deadlocks. More specifically, the computations
of po|(FSo − Io) may reach cycles that prevent recovery.
Likewise, if the computations of po|(FSo−Io) reach a state
with no outgoing transitions (i.e., a deadlocked state), then
the recovery to Io cannot be achieved. It is obvious that
without knowing the behavior of the fault-type f while de-
signing po, it is difficult to bring about provisions that guar-
antee recovery from (FSo−Io).

In order to deal with the complexity of designing run-
time fault-tolerance in the presence of unanticipated faults,
we propose a hybrid design method by combining two
existing approaches: dynamic program updates [18, 14,
15, 26, 2] and our previous work [13, 24] on offline syn-
thesis of fault-tolerant programs from their fault-intolerant
version. Specifically, since it is difficult (if not impossi-
ble) to guarantee that po meets the requirements of (fail-
safe/nonmasking/masking) fault-tolerance against unantic-
ipated faults f , we make the following design decision to
support run-time fault-tolerance:

After the fault-type f stops occurring, po

will eventually be replaced with its (fail-
safe/nonmasking/masking) fault-tolerant version
at run-time.

In order to realize the above design decision, we use
our offline synthesis algorithms to automatically generate a
(failsafe/nonmasking/masking) fault-tolerant version of po ,
denoted pn. A dynamic update of po with pn due to the oc-
currence of faults is called a fault-triggered update in the
state space Su of the union of po and pn.

In order to guarantee that a fault-triggered update even-
tually occurs, we first ensure that, once faults f stop occur-
ring, the execution of po does not stay in a non-progress

cycles in ((FSo − Io) ↑ Su). One way to meet this re-
quirement is to add monitors (detectors) to po that verify
whether or not Io has been violated at run-time. Such an
addition of monitors to po can be done while designing po

using existing approaches in the literature [9] that enable
such a run-time monitoring. This is feasible because Io is
known at design time. After the addition of such monitors,
the program po can stop executing once its state is perturbed
outside Io. As a result, only SFSo is reachable from Io by
fault transitions, where SFSo is the sub f -span of po from
Io.

Second, we design a fault-triggered update program
(briefly called the update program) to ensure that po will
eventually be replaced by pn after f stops occurring. A
fault-triggered update program p = 〈Vo ∪ Vn, δ〉 is de-
fined in Su. The set of transitions of an update program
should satisfy three properties, namely safeness, progress
and interference-freedom. The safeness requires that, dur-
ing update, the safety of spec is satisfied by an update pro-
gram. The progress requires that a state in the invariant
of the fault-tolerant program (i.e., (In ↑ Su)) is eventually
reached. Intuitively, the interference-freedom requires that,
in the absence of faults, the execution of the update program
does not violate either the specification or the invariant of
the fault-intolerant (respectively, fault-tolerant) program.

In order to meet the progress requirement, we must en-
sure that a state in (In ↑Su) is eventually reached from any
state in SFSo ↑ Su. This is in fact a leads-to requirement
that an update program must fulfill. Formally, we require
that any program designed for updating po with its fault-
tolerant version pn satisfies (SFSo ↑Su) �→ (In ↑Su). In-
tuitively, starting from any state that is an image of SFSo

in Su, the update program will eventually reach a state that
is an image of In in Su.

In order to ensure interference-freedom, the update pro-
gram must not include transitions that execute inside Io ↑Su

or In ↑Su (i.e., {(s0, s1)|(s0, s1 ∈ Su) ∧ (s0 ∈ (Io ↑Su) ∧
s1 ∈ (Io ↑Su))∨(s0 ∈ (In ↑Su)∧s1 ∈ (In ↑Su))}). More-
over, the update program must not violate the closure of
Io ↑Su or In ↑Su; i.e., the update program must not include
the set of transitions {(s0, s1)|(s0, s1 ∈ Su) ∧ (s0 ∈ (Io ↑
Su)∧ s1 �∈ (Io ↑Su))∨ (s0 ∈ (In ↑Su)∧ s1 �∈ (In ↑Su))}.
The conjunction of the above requirements results in ex-
cluding any transition that starts in either Io ↑Su or In ↑Su

(i.e., {(s0, s1)|(s0, s1 ∈ Su) ∧ (s0 ∈ (Io ↑ Su)) ∨ (s0 ∈
(In ↑ Su))}). While ensuring the reachability of In ↑ Su,
the update program must not reach the invariant of the old
program (i.e., Io ↑ Su) because the execution of the update
program would stay in Io ↑Su due to the closure of Io ↑Su

in po, thereby violating the reachability of In ↑ Su. There-
fore, we state the problem of designing fault-triggered up-
date programs as follows:



The Problem of Designing Fault-Triggered Updates.
Given are a fault-intolerant program po = 〈Vo, δo〉,
its invariant Io, its specification spec, a fault-type f ,
a program pn = 〈Vn, δn〉 with its invariant In that is
a failsafe/nonmasking/masking f -tolerant version of po,
and SFSo, which is the sub f -span of po from Io.

Identify an update program p = 〈Vo ∪ Vn, δ〉 in the state
space Su of the union of po and pn such that

(1) p satisfies the safety of spec,
(2) p satisfies (SFSo ↑Su) �→ (In ↑Su), and
(3) δ ∩ {(s0, s1)|(s0, s1 ∈ Su) ∧ ((s0 ∈ Io ↑Su)∨

(s1 ∈ Io ↑Su) ∨ (s0 ∈ In ↑Su))} = ∅.
�

Soundness and completeness. An algorithm for solv-
ing the update problem is sound iff for any given input, its
output meets the requirements of the update problem. An
algorithm for the update problem is complete iff for any
given input if there exists a fault-triggered update program
that meets the requirements of the update problem, then the
algorithm always finds a program with a non-empty set of
transitions δ.
Comment on the problem statement. We consider cases
where faults f perturb the state of po outside its invariant
Io; i.e., SFSo �= ∅. There are cases in which faults f may
directly violate the safety of spec inside Io without actually
perturbing the state of po outside Io. Detecting the occur-
rence of such faults is more difficult since the state of po

remains inside its invariant. We are currently investigating
the design of run-time fault-tolerance against such types of
faults.

4 Designing Fault-Triggered Updates
In this section, we present a sound and complete algo-

rithm to solve the update problem defined in the previous
section. Our goal is to design a program p in the state space
Su of the union of po and pn such that p meets the require-
ments of the update problem. We present the Update algo-
rithm (see Figure 1) for designing fault-triggered updates.

In the Update algorithm, the first three lines construct
the images of the sub f -span of po from Io, the invariant of
the fault-intolerant program and the invariant of the fault-
tolerant program in Su. Line 4 initializes a state predicate
R0, a set of transitions δ and an integer variable i. The
repeat-until loop in Lines 5-8 iteratively constructs the set
of transitions of the update program. Specifically, we first
identify the set of states R1 from where a single-step recov-
ery transition to the invariant of the fault-tolerant program
(i.e., R0 = In) is feasible. Such transitions should not vi-
olate the safety of spec and their source state s0 must be
outside Io and In. We include all these transitions in the
set of transitions δ. In the next iteration, we identify the
set of states R2 from where a single-step recovery to R1

can be added. Continuing thus, we reach a point where
no more single-step recovery to Ri is possible. The ter-
mination of the algorithm is guaranteed by the fact that, in
each iteration, a set of states is excluded. If the image of
the sub f -span of po in Su includes states that do not be-
long to the state predicate ∪i

k=0Rk, then it means there are
states reachable by fault transitions from where In cannot
be reached. Otherwise, the set of transitions in δ constructs
the set of transitions of the update program.
Theorem 4.1 The Update algorithm is sound.
Proof. The requirements (1) and (3) of the update problem
are satisfied by construction as the Update algorithm in-
cludes only transitions that meet those requirements. Con-
sider the following loop invariant for the Lines 5 to 8 (see
Figure 1): In is reachable from every state of Ri. The loop
invariant is clearly true before the first iteration. Steps 5 and
6 preserve the loop invariant as they do not modifyRi. Step
7 satisfies the loop invariant by the construction of the set of
states Ri+1. At termination, the loop invariant holds since
Ri = ∅. Thus, In is reachable from every state of ∪i

k=0Rk.
Therefore, the progress requirements is met since SFS is a
subset of the union of all Ri predicates. �

Theorem 4.2 The Update algorithm is complete.
Proof. Let p′ = 〈Vo ∪ Vn, δ′〉 be a program for updating a
fault-intolerant program po = 〈Vo, δo〉 with pn = 〈Vn, δn〉
and our algorithm fails to find p′. Since p′ is an f -triggered
update program that meets the requirements of the update
problem, all transitions of δ′ satisfy the safety of spec (Re-
quirement (1)). Also, no transition in δ′ starts in Io (respec-
tively, In) or terminates in Io (Requirement (3)). More-
over, from every state in SFS (see Figure 1), the program
p′ should meet the progress requirement. Thus, an arbitrary
computation prefix c = 〈s0, · · · , sk〉 (k ≥ 1) of p′ that starts
in a state in SFS must ensure reachability of a state in In;
c does not include any repeated and deadlock states (i.e., all
si states, for 0 ≤ i ≤ k, are distinct and have some outgo-
ing transition(s)). Let s0 ∈ SFS and sk ∈ In. Since p′ is a
correct update program, the transition (sk−1, sk) must meet
the requirements (1) and (3) of the update problem. Hence,
sk−1 ∈ R1 must hold, i.e., our algorithm would include
sk−1 in the state predicateR1 on Line 5. Likewise, the tran-
sition (sk−1, sk) would be included in δ on Line 6. A simi-
lar argument holds for sk−2 and the transition (sk−2, sk−1).
Inductively, s0 (respectively, (s0, s1)) would be included in
Rk (respectively, δ). Since our algorithm declares failure if
there exist states in SFS from where In is not reachable,
it follows that our algorithm would have found the prefix c.
Therefore, our algorithm is complete. �

Theorem 4.3 The complexity of the Update algorithm is
polynomial in the state space of the union program.
Proof. Clearly, each one of the first four steps (see Figure
1) can be done in polynomial time in the state space of the
union program, Su. Moreover, Steps 5 and 6 inside the loop



Update(Su, Io, In,SFSo: state predicates, B: safety of spec)
{
SFS := {s|(s ∈ Su) ∧ (∃s0 : (s0 ∈ SFSo) : (s ∈ s0 ↑Su))}; (1)
Io := {s|(s ∈ Su) ∧ (∃s0 : (s0 ∈ Io) : (s ∈ s0 ↑Su))}; (2)
In := {s|(s ∈ Su) ∧ (∃s0 : (s0 ∈ In) : (s ∈ s0 ↑Su))}; (3)
R0 := In; δ := ∅; i := 0; // Ri is a state predicate in Su (4)
repeat{

Ri+1 := {s0 | (s0 /∈ Io) ∧ (s0 /∈ (∪i
k=0 Rk)) ∧ (∃s1 : s1 ∈ Ri : (s0, s1) /∈ B)}; (5)

δ := δ ∪ {(s0, s1) : s0 ∈ Ri+1 ∧ s1 ∈ Ri ∧ s1 /∈ Io ∧ (s0, s1) /∈ B}; (6)
i := i + 1; (7)

} until (Ri = ∅); (8)
if (SFS ⊆ (∪i

k=0 Rk)) then return δ; (9)
else declare that a fault-triggered update program does not exist;

return ∅; (10)
}

Figure 1. Automatic design of fault-triggered updates.

can also be computed in polynomial time. The rest of the
algorithm consists of polynomial-time steps as well. There-
fore, the complexity of the Update algorithm is polynomial
in the state space of the union program. �

Comment on the scalability of our algorithm. While the
complexity of synthesizing fault-triggered dynamic updates
is polynomial in Su, the state space of the union program
has an exponential size with respect to the number of the
variables of po and pn. This may limit the applicability of
our algorithm for real-world programs. We argue that such
an algorithm has the potential to provide insight for devel-
opers in generating strategies that should be taken for the
implementation of fault-triggered dynamic updates (respec-
tively, adaptation). Moreover, our algorithm can be used for
model-driven development of fault-triggered dynamic up-
dates (respectively, adaptation) as the state space of the ab-
stract model of a program is significantly smaller than the
state space of the concrete program.

5 Parking Lot Example
In order to illustrate the Update algorithm, we use the

parking lot problem (see Figure 2) adapted from [20]. The
parking lot contains three spots for cars (marked a, b and c).
There are two gates to enter the parking lot. Immediately
after each gate, there is a space where the customer can drop
the car off (marked l and r). If the gate is open, the customer
may leave the car in this spot. The car will then be moved
to one of the spots (a, b or c). We assume that if the car is
being moved from l or r to a, b or c, no car can enter during
this move. At the exit, there is one door. A car parked in
spots a, b or c can leave through this door. However, only
one car can leave the parking lot at a time. All doors are
one-way, i.e., cars in spots l and r cannot leave and a car
cannot enter in spots a, b or c.

Thus, in the parking lot problem, there are three possible
events: (1) a car could be dropped off at the left gate and
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Figure 2. Parking Lot example.

(possibly) moved to the spots a, b or c, (2) a car could be
dropped off at the right gate and (possibly) moved to the
spots a, b or c, or (3) a car could exit. For simplicity, we
assume that each event is atomic. Also, we assume that in
each spot there can be at most one car. Now, we describe
the state space of the fault-intolerant program, its invariant,
its safety specification, and its transitions.

Variables and the state space of the fault-intolerant
program (po). To model the parking lot, we maintain three
variables; x, y and z. The variable x denotes the number
of cars that can be let in through the left gate, y denotes
the number of cars that can be let in through the right gate,
and z denotes the number of cars in the lot. Hence, the
left (respectively, right) gate is open when x (respectively,
y) is positive. The domain of x and y is {0, 1, 2, 3}. The
domain of z is {0, 1, 2, 3, 4, 5}. A state of po is obtained by
assigning each variable a value from its domain. Thus, the
state space of po contains 4x4x6 (=96) states.

Transitions (δo). For brevity, we write program tran-
sitions in terms of Dijkstra’s guarded commands [11]. A
guarded command (also called an action) is of the form
grd −→ st, where grd is a state predicate and st is a state-
ment that updates a subset of the program variables. The
guarded command grd −→ st corresponds to the set of
transitions {(s0, s1) : grd is true in state s0 and s1 is ob-
tained by atomic execution of st in state s0}. The fault-
intolerant program po contains the following four actions
representing the set of transitions δo:



A1 :: x>0 ∧ z<5 −→ x, z := x−1, z+1
A2 :: y>0 ∧ z<5 −→ y, z := y−1, z+1
A3 :: y<3 ∧ z>0 −→ y, z := y+1, z−1
A4 :: x<3 ∧ z>0 −→ x, z := x+1, z−1

The first two actions let a car enter, and the last two ac-
tions let a car exit. Upon exit, the value x (or y) is non-
deterministically increased so that a new car can enter. For
simplicity, we do not model the actions corresponding to
the movement of the car inside the parking lot.

Invariant (Io). We let the invariant of the fault-
intolerant program, Io, be x+y+z ≤ 3.

Safety specification. The safety specification Bo re-
quires that any car in the parking lot should be able to leave.
Clearly, a car in spots a, b or c can leave. However, if spots
a, b and c are occupied and there is a car in spot l (respec-
tively, r) then that car cannot leave. Hence, it is required
that if there exist three or more cars in the lot, then the pro-
gram po must not increase the number of cars. Also, to
model the assumption that only one event (entry/exit) can
occur at a time, it is required that the value of x, y and z can
change at most by 1. Thus, the safety specification rules out
the following transitions:

Bo = {(s0, s1) : ((s0, s1) ∈ δo) ∧
((z(s0) > 3 ∧ z(s1) ≥ z(s0)) ∨
|x(s1) − x(s0)|>1 ∨ |y(s1) − y(s0)|>1 ∨

|z(s1) − z(s0)|>1)}
Notation. v(s) represents the value of a variable v in

state s.
Faults. The fault-intolerant program is subject to a

fault-type F that allows a car to sneak in. Intuitively, by
increasing the value of z, the occurrence of F may prevent
the entrance of the cars while there is some room in the
parking lot. We model the fault-type F by the following
action:

F :: z<5 −→ z := z+1

When F occurs, the program po may reach states in its
F -span where any increase of z by program actions would
violate the safety specification. In this example, we use
automated techniques [13, 24] to design a failsafe fault-
tolerant version of po in an offline fashion and then use the
Update algorithm presented in Section 4 in order to de-
sign an update program for dynamically updating po with
its fault-tolerant version pn once F occurs. The failsafe F -
tolerant version of po is as follows:

A′
1 :: (x′>0) ∧ (z′<4) ∧ (In) −→ x′, z′ := x′−1, z′+1

A′
2 :: (y′>0) ∧ (z′<4) ∧ (In) −→ y′, z′ := y′−1, z′+1

A′
3 :: (y′<3) ∧ (z′>0) −→ y′, z′ := y′+1, z′−1

A′
4 :: (x′<3) ∧ (z′>0) −→ x′, z′ := x′+1, z′−1

The set of variables of the fault-tolerant program pn is
disjoint from the set of variables of the fault-intolerant pro-
gram po. The safety specification and the invariant of pn

have the same semantics as Bo and Io except that each vari-
able is replaced with its primed version. Once po is dynam-
ically updated with pn faults may perturb the value of z′

as both z and z′ represent the value of an input sensor to
the gate controller. However, since pn does not increase the
value of z′ if there are more than three cars in the lot, pn

does not violate the safety specification if faults perturb the
state of pn outside its invariant or z′ > 3.
Designing the F -triggered update program. We
use the Update algorithm to design an update program
p in Su. Each state of the union program pu =
〈{x, y, z, x′, y′, z′}, δu〉 has the form 〈x, y, z, x′, y′, z′〉.
The state space of the union program, Su, has 9216 states
and the set of transitions δu is represented by all actions
A1−A4 and A′

1−A′
4. The set of variables of the update pro-

gram p is the same as the variables of the union program,
however, its set of transitions is automatically generated by
the Update algorithm. The transitions of the synthesized
update program are as follows:
U1 :: ¬Io ∧ ¬In ∧ ((4 ≤ x′ + y′ + z′ < 6)∨

((x′ + y′ + z′ = 6) ∧ (x′ �= 0 ∧ y′ �= 0 ∧ z′ �= 0)))
−→ if (x′ > 1) then x′ := x′ − 1;

if (y′ > 1) then y′ := y′ − 1;
if (z′ �= 0) then z′ := z′ − 1;

U2 :: ¬Io ∧ ¬In ∧ ((6 < x′ + y′ + z′ ≤ 9)∨
((x′ + y′ + z′ = 6) ∧ (x′ = 0 ∨ y′ = 0 ∨ z′ = 0)))

−→ if (x′ > 1) then x′ := x′ − 1;
if (y′ > 1) then y′ := y′ − 1;
if (z′ �= 0) then z′ := z′ − 1;

The action U1 represents the set of transitions that
recover to In while changing x, y and z at most one unit
(i.e., preserving the safety of spec). The guard of the
action U1 specifies the set of states R1 from where a
single-step recovery to In exist without violating the safety
specification. Likewise, the guard of the action U2 defines
the set of states R2 from where a single-step recovery to
R1 exist. To gain more assurance, we have verified the
parking lot example using the Spin model checker [17].
The model comprises all actions A1 −A4, A′

1 −A′
4, and

U1 and U2 for which safeness, progress and interference-
freedom have been verified. The Promela model is avail-
able at http://www.cs.mtu.edu/˜aebnenas/
research/examples/pklt-rtft.txt.

6 Defining Fault-Tolerant Updates
The problem of designing fault-triggered updates (see

Section 3) does not stipulate any requirements on the com-
putations of the update program in the presence of faults.
Specifically, an update program generated by the Update
algorithm guarantees progress (i.e., update completes) af-
ter faults stop perturbing po and provides no guarantees



if faults occur during the update. It is often the case that
the same type of faults that triggers the update may also
occur during the update, thereby requiring the update pro-
gram to tolerate the faults. Next, we define three levels of
fault-tolerant updates based on the extent to which safety
and progress are satisfied. For the following definitions, let
p = 〈Vo ∪ Vn, δ〉 be an f -triggered update program (for
faults f ) with the state space Su. The program p enables
the run-time replacement of a program po = 〈Vo, δo〉 with
a program pn = 〈Vn, δn〉 if f occurs while po is executing.

Failsafe Fault-Tolerant Update. Intuitively, a failsafe
fault-tolerant update guarantees to preserve safeness even
if progress is violated due to the occurrence of faults dur-
ing the update. Formally, p is a failsafe f -tolerant update
(i.e., failsafe fault-tolerant update against f ) iff the follow-
ing conditions hold: (1) in the absence of f , any computa-
tion of p starting in the image of the sub f -span of po (i.e.,
SFSo ↑ Su) satisfies both its progress and safeness prop-
erties, and (2) in the presence of faults, any computation of
p[]f satisfies its safeness.

Nonmasking Fault-Tolerant Update. A nonmasking
fault-tolerant update guarantees progress even if faults oc-
cur during the update, however, safeness may be violated.
In formal terms, an update program p is a nonmasking
f -tolerant update (i.e., nonmasking fault-tolerant update
against f ) iff the following conditions hold: (1) in the ab-
sence of f , any computation of p starting in the image of
the sub f -span of po (i.e., SFSo ↑ Su) satisfies both its
progress and safeness properties, and (2) in the presence of
faults, any computation of p[]f satisfies its progress; i.e.,
any computation of p[]f has a state in In ↑Su.

Masking Fault-Tolerant Update. A masking fault-
tolerant update guarantees progress even if faults occur dur-
ing the update, and satisfies safeness at all times (even if
faults occur). More precisely, a program p is a masking f -
tolerant update (i.e., masking fault-tolerant update against
f ) iff the following conditions hold: (1) in the absence of f ,
any computation of p starting in the image of the sub f -span
of po (i.e., SFSo ↑Su) satisfies both its progress and safe-
ness properties, and (2) in the presence of f , any computa-
tion of p[]f satisfies both progress and safeness properties.

7 Related Work
Several approaches on dynamic program updates, adap-

tation and run-time verification have inspired the proposed
work in this paper. For example, Gupta et al. [15] propose
a formal framework in which developers define a trans-
fer function that specifies how a state of the new program
is reached instantaneously. Kramer and Magee [18] en-
able run-time replacement of a program (or a component
thereof) with its new version where the update may be trig-
gered once the running program reaches a set of quiescent
states; i.e., states in which the program is in a passive status
where no external entity is using or communicating with

the running program. In the context of our work, since
faults may trigger the update from arbitrary states, we are
not faced with the problem of identifying the set of quies-
cent states. However, the occurrence of faults introduces
new problems such as reachability of states from where a
safe dynamic update is not possible. Moreover, faults may
occur even during the update, which poses a new challenge
for designing dynamic updates that are fault-tolerant them-
selves. While we have defined three classes of fault-tolerant
updates (see Section 6), the design of such updates is cur-
rently under investigation.

The proposed approach in this paper also intersects with
techniques for developing adaptive systems [19, 3, 6, 8, 23]
most of which put less emphasis on tolerating faults dur-
ing adaptation. For instance, Kramer and Magee [19] use
process algebra to specify and verify (behavioral and ar-
chitectural) adaptation. Allen et al. [3] separate functional
concerns from adaptation by encapsulating dynamic up-
dates in connectors used to arbitrate communication be-
tween system components. Chen et al. [8] present a graceful
adaptation protocol (transparent to application layer) that is
used to construct adaptive distributed software. Zhang and
Cheng [28] present a systematic model-based approach for
specifying adaptation based on the notion of transferring
the state of a program before adaptation to the state of a
program after adaptation. They use model checking to ver-
ify invariant properties that should hold during adaptation.
While all aforementioned approaches play an important role
in specification, modeling and design of adaptive systems,
the proposed approach in this paper focuses on automated
design of (fault-tolerant) adaptations triggered by the occur-
rence of faults.

Run-time monitoring and verification approaches [25, 7,
16] present techniques and programming artifacts for com-
posing monitors with programs to verify program behaviors
at run-time without emphasis on run-time updates. Such
techniques enable us to detect behavioral deviations at run-
time without emphasizing on how to remedy the errors due
to the occurrence of faults while maintaining some level of
service availability. By contrast, our work focuses on how
to design mechanisms that enable the replacement of a run-
ning program with its fault-tolerant version (that is designed
in an offline fashion) while guaranteeing that safety require-
ments are satisfied during such dynamic updates. As a re-
sult, if the same type of faults occurs after the update is
complete, then the updated program possesses the neces-
sary means to tolerate the faults.

8 Conclusions and Future Work
We presented a systematic approach for the design of

run-time fault-tolerance. The proposed approach extends
(1) our previous results [13, 24] in offline synthesis of fault-
tolerance, and (2) existing techniques for dynamic program
updates [18, 14, 15, 26, 2]. Specifically, we presented a



sound and complete algorithm that takes a fault-intolerant
program and its fault-tolerant version, and automatically
generates a fault-triggered update program. The update
program ensures that, once faults occur, the fault-intolerant
program is upgraded to its fault-tolerant version at run-time.
The completeness of our algorithm is especially useful in
that it provides an existence test for the design of fault-
triggered dynamic updates and programs that adapt in the
presence of faults. We also defined three classes of fault-
tolerant dynamic updates (respectively, fault-tolerant adap-
tations) depending on the extent to which system specifica-
tion is satisfied during update.

As we pursue our ongoing work on the design of fault-
triggered and fault-tolerant updates, we plan to implement
a software tool for automated design of fault-triggered dy-
namic updates that tolerate faults. Such a software tool will
be integrated in a UML-based framework for model-driven
development of correct adaptation in the presence of faults.
Specifically, given the state diagram of an old program and
the state diagram of a new program, we automatically gen-
erate the state diagram of a program that would enable the
adaptation of the old to the new program in the presence of
faults. We are also interested in designing techniques that
refine the update programs generated by the Update algo-
rithm (presented in this paper) to support fault-triggered up-
dates under distribution constraints.
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