
Dynamic Decision Networks for
Decision-Making in Self-Adaptive Systems:

A Case Study
Nelly Bencomo

Inria Paris - Rocquencourt,
78153 Le Chesnay, France

nelly@acm.org

Amel Belaggoun
Inria Paris - Rocquencourt,
78153 Le Chesnay, France
amel.belaggoun@inria.fr

Valerie Issarny
Inria Paris - Rocquencourt,
78153 Le Chesnay, France

valerie.issarny@inria.fr

Abstract—Bayesian decision theory is increasingly applied to
support decision-making processes under environmental vari-
ability and uncertainty. Researchers from application areas
like psychology and biomedicine have applied these techniques
successfully. However, in the area of software engineering and
specifically in the area of self-adaptive systems (SASs), little
progress has been made in the application of Bayesian decision
theory. We believe that techniques based on Bayesian Networks
(BNs) are useful for systems that dynamically adapt themselves
at runtime to a changing environment, which is usually uncer-
tain. In this paper, we discuss the case for the use of BNs,
specifically Dynamic Decision Networks (DDNs), to support the
decision-making of self-adaptive systems. We present how such
a probabilistic model can be used to support the decision-
making in SASs and justify its applicability. We have applied
our DDN-based approach to the case of an adaptive remote data
mirroring system. We discuss results, implications and potential
benefits of the DDN to enhance the development and operation
of self-adaptive systems, by providing mechanisms to cope with
uncertainty and automatically make the best decision.

Index Terms—self-adaptive systems, dynamic decision net-
works, bayesian networks, uncertainty modeling.

I. INTRODUCTION

Due to the dynamism required by modern software systems,
there has been strong interest in dealing with uncertainty as a
first-class concept in Software Engineering [1], [2] and more
recently in the design and operations of self-adaptive systems
(SASs) [3], [4], [5], [6].

As with any software system, a SAS must satisfy its func-
tional requirements – i.e., what the system does – and exhibit
quality attributes or non-functional requirements (NFRs) such
as performance or reliability [7]. Several studies [8], [9] have
shown how these NFRs play a key role in driving run-time
adaptation between alternative configurations. The functional-
ity is satisfied on a per-context basis [3], and the configuration
of the running system is dynamically chosen according to what
is the optimal trade-off among the NFRs in each context. The
decision is made by using utility functions to evaluate trade-
offs between the NFRs [8]. As a simple example, consider a
sensor network with the functional requirement “collect data
about a volcano", and the NFRs “conserve battery power” and
“collect data frequently”. The NFR “conserve battery power”

might be prioritized during a quiescent context, but the NFR
“collect data frequently” might be the priority in the context
associated with an eruption that appears to be imminent.

Measurement of satisfaction of NFRs is difficult due to their
vague or fuzzy nature. NFRs may not be absolutely fulfilled,
yet they can be labelled as sufficiently satisficed [7]. Satisfisce-
ment1 is used frequently instead of satisfaction in the literature.
Furthermore, NFRs usually interfere between them which,
makes it difficult to reason about their fulfillment. Probabilistic
approaches to model and solve uncertainty in SASs have
been seen as a promising new research direction [3], [5], [6].
However, the use of probability in this area has been of limited
study. Probability theory can be used to describe the lack
of crispness about the satisfiability nature of NFRs. Given a
decision that requires a certain configuration, the satisficement
of a NFR can be modeled using probability distributions. Some
researchers have started to study probability-based approaches
to tackle the impact of the changes in the environment on the
compositions of services and therefore the quality properties
or QoS of the the service-based applications [10]. Different
from [10] whose authors use Discrete Time Markov Chains
(DTMC), we use another probability-based technique called
dynamic decision networks (DDNs) what allows us to support
the decision-making process of a SAS.

In this paper, we identify compelling reasons for DDNs [11],
a form of Bayesian networks, in supporting decision-making
of self-adaptive systems. DDNs provide mathematically sound
techniques to explicitly model uncertainties that are intrinsic
in SASs. The graph-based structure of a DDN matches that
of a SAS. It is possible to cast the decision-making of a
SAS as a DDN by associating (1) decisions in the DDN
with design alternatives and (2) conditional probabilities tables
with the effects of those decisions over levels of satisficement
of NFRs. The required utility functions to support decision-
making using (1) and (2) are based on the expected utility
function of a DDN, which also allows analysts to fit their

1Satisficement and satisficing are portmanteau words of satisfy and suffice,
and refer to a decision-making strategy that attempts to meet an acceptability
threshold, like in the case of NFRs, which contrasts with optimal decision-
making.

preferences and priorities with respect to the quality attributes.
Furthermore, we also argue that DDNs can be used to reflect
dynamic changes in the running system due to changes in
the environment by means of probabilistic inference based on
observed evidence variables [12].

The paper is organized as follows. In the next section, we
give a short background on DDNs and their role in tackling
uncertainty in SASs. Section III provides a preliminary eval-
uation of the approach applied on the self-adaptive Remote
Data Mirroring application taken as our case study. Section
IV provides an overview of the related work in the area.
Finally, the paper concludes and offer a discussion of the future
perspectives.

II. BACKGROUND

In this section, we first offer some background about dy-
namic decision networks and continue with a discussion about
needed assumptions for modelling and reasoning about self-
adaptive systems under uncertainty and using DDNs.

A. Dynamic Decision Networks

A Bayesian network (BN) [13] is a probabilistic model that
represents a set of random variables or chance nodes and their
conditional dependencies (i.e., probabilities of the status of
one node given the status of others). An important property
of BNs is Bayesian inference, which refers to the fact that
probabilistic beliefs about random variables can be updated
automatically as additional evidence e is learned [11].

Formally, the structure of a Bayesian network is represented
as a triplet (N, E, P), where N is a set of nodes, E ⊆ N×N is
a set of arcs, and P is a set of probabilities [1]. Each node in
N is labeled by a random variable Xi with i = 1...|N |. Each
random variable Xi takes values from a discrete domain2 and
is assigned a vector of probabilities (also called Beliefs). Each
probability PX(xi) represents a “grade of belief” that X will
take the value xi. D = (N,E) is a Directed Acyclic Graph
(DAG) such that a directed arc e =< ai, bi >∈ E represents
causal influence from the source node ai to the target node
bi. For each node bi, the strength of causal influence from
its parent nodes ai are quantified by a conditional probability
distribution P (bi|ai) specified in an m×n edge matrix, where
m and n are the number of discrete values possible for ai and
bi respectively.

Decision networks (DNs) [14] extend Bayesian networks
to provide a mechanism for making rational decisions by
combining probability and utility theory. In addition to chance
nodes of the BN, a DN also includes utility and decision nodes.
Decision nodes represent the set of choices of the decision
maker while utility nodes are used to express preferences
among possible states of the world represented by the chance
nodes, and the decision nodes. A utility function U(X, dj)
defines the usefulness or desirability of the result of making
the decision dj for each value xi of the random variable

2In this paper we focus on discrete random variables.

X [14]. To decide among alternative decisions, the probability-
weighted expected utility EUj of each decision dj given
evidence e is calculated using the following equation [14]:

EU(dj|e) =
∑
xi∈X

U(xi,dj)×P(xi | e,dj) (1)

Where P (xi | e, dj) is the conditional probability of X =
xi given the evidence collected e and the decision dj . The
decision with the highest EU associated is chosen.

The probabilistic models BNs and DNs do not offer mecha-
nisms for representing temporal relations between and within
the random variables. Instead, DDNs can be used to represent
variables that change over time.

DDNs allow us to model decision-making for situations
in which decisions, variables that describe the world and
preferences can change over time. DDNs provide a principled
approach to make rational decisions in the face of uncer-
tainty within changing environments over time. To cope with
time varying nodes, DDNs maintain a series of time slices
to represent nodes at successive moments in time. An arc
connecting a node from a previous time slice to a node in
the next time slice encodes an influence on the node’s value
from the previous node and is called the transition model (i.e.,
the probability P (Xt+1|Xt, dt)). The arc connecting Et and
Xt refers to the conditional distribution P (Et|Xt) which is
called the observation model (sometimes known as the sensor
model). Et denotes the set of observable evidence variables.
The observation at time t is denoted by Et = et for some set of
values et [11]. The observation model describes how sensors
(i.e. the evidence variables) are affected by the actual state of
the world [11].

DDNs provide a useful framework for modeling beliefs
about the world, associating preferences with states of the
world, and making decisions. Fig. 1 shows a DDN with its
components (decision, chance and utility nodes) and several
time slices.

B. Modeling Uncertainty in SASs using DDNs

Different sources of uncertainty in self-adaptive systems
have been identified and studied [6], [15], [16]. In this paper,
we are concerned with the uncertainty associated with the
satisficement of NFRs given a set of design decisions reflected
in a system configuration. The approach can be applied during
runtime when new evidence about certain events are collected
which may require a reconfiguration of the system.

Different design alternatives have different impacts (posi-
tive and negative) on the satisficement of NFRs. Thus, the
configuration of a system can be determined according to an
optimal trade-off of NFRs using utility functions in a given
context of operation. Furthermore, using the utility function,
different priorities or weights can be associated with the
NFRs [9].Given the above, NFRs have been identified as key
drivers for runtime adaptation between pre-established design
alternatives (i.e., configurations). For example, authors of [9]
have shown how Claims (i.e., assumptions made at design
time) can support decision-making. The rationale behind is that

Fig. 1. The General structure of DDN.

the validity of a Claim can be monitored at runtime. The result
of the change of the validity of a Claim can provoke or trigger
an adaptation to reach more suitable system configurations for
the new operating context of the system.

In this paper, we propose a new alternative approach to
underpin the decision-making for self-adaptation under uncer-
tainty and driven by NFRs, which is based on the mathematical
model provided by DDNs. In our approach, decisions in the
DDN correspond with alternative design decisions dj that
define the different configurations a SAS can undertake. The
random variables associated with the chance nodes in the
DDN represent the levels of satisficement of NFRs given
the different design decisions (i.e., configurations). Thus, the
conditional probabilities in the DDN correspond with the
effects of the different design alternatives over the NFRs which
are expressed as P(NFRi|dj). For each NFRi, a utility function
w(NFRi,dj) over every design alternative dj considered is
identified.

The global expected utility of a DDN provides the utility
function that takes the values of the conditional probabilities
and the preferences and priorities over the NFRs (according to
contexts) as the weights. Given P(NFRi|dj) and w(NFRi,dj),
we can compute the probability-weighted average utility for
each design alternative dj - otherwise known as the expected
utility of dj .

The initial conditional probabilities are either estimated by
experts or compiled from previously gathered statistics [1].
These conditional probabilities will be updated by the DDN
using probabilistic inference (i.e., Bayesian updating). Prob-
abilistic inference occurs whenever new evidence arrives. As
a result, DDNs can provide a quantitative technique to make
informed decisions due to the arrival of new evidence during
either runtime or during a process to explore the operating
environment to elicit requirements.

Changes on the conditional probability functions and its
values (i.e., beliefs) due to learned information can cause
the need to reevaluate the DDN. Therefore, an important

step when modeling a DDN to support decision-making for
self-adaptation is the definition of the observation model.
Environmental properties (i.e., properties of the operational
context) that can cause changes on the probability distributions
and therefore on the conditional probabilities of the chance
nodes need to be identified accordingly. We call those envi-
ronmental properties, uncertainty factors. These environmental
properties are monitored by monitorables to produce the
evidences needed to trigger the decision-making process given
the changes in the systems beliefs. Monitorables are supported
by sensors in the monitoring infrastructure that can observe
and provide information to determine the values of the envi-
ronmental properties that correspond to the uncertainty factors.
These uncertainty factors are associated with evidence nodes
linked to NFRs (i.e., they constitute part of the observation
models of the DDN). Note that not every NFR will have an
evidence node. In earlier work [17], we explained the initial
ideas the gave place of the DDN approach. The work presented
in [17] explain the mapping from a goal model that supports
decision-making to a dynamic decision networks.

The scope of uncertainty we deal with in this paper is
twofold. The first source of uncertainty has to do with not
knowing the exact impact of design alternatives on NFRs, i.e.,
lack of ability to precisely specify the impact as a crisp value.
The second source of uncertainty that can be tackled with our
approach is that associated with the accuracy offered by the
monitoring infrastructure (i.e., monitorables).

III. EXPERIMENTS

This section describes a partial evaluation for demonstrating
the value of our DDN-based approach to support decision-
making for self-adaptation. First, we describe the case study
used. Then, we show and discuss the application of DDNs on
the case study. Finally, we discuss the experimental results.

A. Remote Data Mirroring

Remote Data Mirroring (RDM) [18], [19] is a classic
technique to protect data against inaccessibility, and to pro-

vide resistance to data loss. Using RDM techniques, copies
of important data are kept at physically isolated locations.
An RDM application can be configured according to (i)
alternative network topologies such as “Minimum Spanning
Tree” (MST) and “Redundant Topology”; and (ii) the way how
data distribution is achieved, e.g., “synchronous” and “asyn-
chronous”. Each configuration provides different levels of data
availability, performance and costs. For example, on the one
hand, the “synchronous data distribution" provides better data
availability than the “asynchronous mode", but it also incurs
a potentially high network performance cost as every change
must be distributed across the network. On the other hand,
the “asynchronous mode" provides higher levels of network
performance; however, it provides weaker data availability
than the “synchronous mode". Similarly, different network
topologies pose different costs and benefits and therefore
different trade-offs need to be done when choosing one. A
“redundant topology” offers a higher level of reliability than a
“MST topology”. However, the costs of maintaing a non-stop
“redundant topology" may be prohibitive. Given the above,
the NFRs identified for the RDM application are respectively:
“Minimize Operational Expense”, “Maximize Data Reliability”
and “Maximize Network Performance” [19].

The adaptation capabilities of an RDM application may be
implemented using static rules that correspond to decisions
made at design time. However, that means the application
would present the behavior of a conventional reconfigurable
system. Furthermore, an effective pre-defined solution would
be dependent on the requirements analyst anticipating and
enumerating all possible environmental states and the corre-
sponding behaviour required of the RDM application, which
may not be feasible due, in part, to uncertainty in the process.
Instead, in this paper, we consider that the RDM application
itself is able to make the adaptation decisions during its
execution and according to changes in monitored properties
of the environment that may pose specific counteracting be-
haviour. For example, the system may be required to self-adapt
dynamically in response to adverse environmental conditions
that can be known only during execution, such as network link
failures rate, repeatedly dropped network messages, or periods
of unreliable monitoring data.

B. DDNs for RDM System

We now propose the decision-making model for the RDM
system explained above using DDNs. Fig. 2 shows the DDN’s
structure for the remote data mirroring system (unrolled with
three time-slices). This structure is explained in detail in the
following.

At each time slice t of the DDN, there are six nodes:
(a) the Decision node Dt, the chance nodes related to the

NFRs modelled: (b) “Maximize Reliability” MRt, (c) “Maximize
Performance” MP and (d) “Minimize Operational Costs” MO,
(e) the Utility node ut, and (f) the Evidence node Et. The
random variables associated with the chance nodes MP , MO
and MRt are discrete and they take values either true or false.

Fig. 2. DDN for the case of the RDM application (unrolled with three time-
slices).

The observation model for the case study of the RDM, i.e.,
the way how evidences are obtained, is partially supported
by the mechanism presented in [9], [19]. In [9], Claims are
used to record the rationale for a design decision made with
incomplete information. The hypothesis is that part of the
incomplete information can be learned at runtime and thus
other design decisions may be found to be more suitable for the
new situation discovered. When a Claim is not valid anymore
the system may consider re-evaluating the current situation and
check the impacts of several design decisions on the NFRs to
decide if an adaptation should be performed. Specifically, the
process of learning new evidences to evaluate the DDN is
supported by monitorable Claims. Let us focus on the design
assumption C1= “Redundancy prevents networks partitions”
whose validity can be monitored at runtime. This assumption C1
is falsified if two or more network links fail simultaneously [19].

The assumption C1 affects positively the NFR “Maximize
Reliability” MRt, which is the reason why the chance node
MRt is influenced by evidences related to C1, and therefore
parameterized with the variable t. This is represented by the
Evidence node Et connected to MRt (see Fig. 2). Specifically,
changes of the validity state of the assumption (from true to
false or vice versa) provoke changes in the Bayesian beliefs
of the DDN. As such, it provides evidence of needed re-
evaluation of the DDN during the execution. After the re-
evaluation of the DDN, the Bayesian beliefs of the DDN (i.e.,
the probabilities associated with the nodes) in the network (i.e,
DDN) are updated. In contrast to MRt, the other two chance
nodes MO, MP were not considered affected by any evidence
in the model described.

Given the above, each type of node in the DDN is described
in detail as follows:
(a) The decision node Dt represents the decision taken when

specifying the topology to be used in time slice t. The
possible decisions in this case study are : Use MST
Topology and Use Redundant Topology.

(b) The node MRt represents the NFR “Maximize Data Reli-
ability”. In contrast to (c) and (d), we have modeled this
node as a dynamic node, which means that its probability
distribution can be affected by the temporal dimension due

to the uncertainty factors identified above. The transition
model P (MRt+1|MRt, Dt) needs to be represented by
the conditional probability values, usually presented in a
conditional probability table (CPT). Domain experts are
required to fill in the initial values of that table. The DDN
will update the CPT in the subsequent slice times.

(c) The chance node MP represents the NFR “Maximize
Network Performance” of the RDM application. We have
assumed here that the node MP is a static node, which
means that its probability distribution does not change over
time.

(d) The chance node MO represents the NFR “Minimize
Operational Costs”. We have also modeled this node as
a static node.

(e) The utility node ut in a DDN represents the utility function
to be used to compute the expected utilities. The utility
node has as parents all nodes describing the outcome that
directly affect utility. Each utility node has an associated
utility table with one entry for each possible instantiation
of its parents

(f) The evidence node Et represents the information observed
by monitorables. In our case study, this monitorible
verifies the validity of the design assumption C1. The
observation model for the case study is represented by
P (Et|MRt).

Evaluating the DDN to make decisions. Having set up
the structure of the DDN model, we formulate the inference
computation that must be solved in order to make a decision
with the DDN. Let us denote the set of decisions and the
observations from time 1 to time t as D1:t and E1:t, respec-
tively. The DDN is evaluated using formula (2) to support the
decision-making process (see Fig. 3).

C. Evaluation

We have performed three kinds of experiments to test the
feasibility of the DDN-based approach for the case of the
RDM application.

Specifically, we have simulated the decision-making process
of the RDM application based on the experience presented
in [19]. The decisions made by our tests have not been
executed on a real RDM application. Instead, the experiments
have been carried out using the Netica development environ-
ment (http://www.norsys.com) [20]. Netica is a software to
model and run Decision and Bayesian Networks. Next, the
results of the experiments are presented and discussed.

The generic scenario that has been used two perform the
experiments is as follows: Let us assume that there are two
possible architectural options, “Use MST Topology” or “Use
Redundant topology”. The state of the design assumption “C1
= Redundancy prevents the networks partitions” is monitored.
The value of C1 can be either true or false. At design time,
C1 has been considered valid (true). However, during runtime
a change on this value is monitored, specifically at time slice
t = 3, the value false is observed, which means that the design
assumption has been falsified. Later, specifically at time slice

t = 7, according to the monitoring infrastructure the design
assumption C1 is true again.

Given the above scenario we have performed three ex-
periments to see how the DDN makes decisions when new
evidences that require the re-evaluation of the DDN are
observed and therefore how the application switches from one
configuration to another. New evidences that require the re-
evaluation of the current decision of the DDN correspond with
changes in the environment such as network link failures and
unreliable monitoring data.

1) Experiment 1- Decision-Making: In the first experiment,
we have examined the role of DDNs to trigger adaptations
needed by a SAS. In order to evaluate the DDN shown in
Fig. 2, we have considered the following initial conditional
probabilities P(NFRi|dj), which were explained in section II.B
and which are based on the experience from study shown in
[19]:
P (MP =true |MST Topology)= 0.5,
P (MP =true|Redundant topology)= 0.5,
P (MO =true |MST Topology)= 0.75,
P (MO =true|Redundant topology)= 0.25.
P (MRt=true|MST Topology)= 0.25,
P (MRt=true|Redundant Topology)= 0.95.

The utility values to be used in the computation of the
expected utilities EUs are shown in Table I. Specifically, each
row in the Table represents the utility value associated with a
decision (topology chosen) and its effects on the chance nodes
(i.e., NFRs). Given a row and its decision, a value T (true) for
a chance node states that the decision has a positive effect on
the NFR represented by the chance node. Otherwise a value
F (false) states that the decision has a negative effect on the
NFR. As an example, see the second row of Table I, which
states that the decision “Use MST Topology” has a negative
effect on “Maximize Reliability” and “Maximize Performance”
and a positive effect on “Minimize Operational Costs” expressed
as the triple (F, F, T).

The last two columns, Utility 1 and Utility 2, represent
different weights associated with the sets of effects offered
by the decisions that we use in the following experiments.
Using those utility values, analysts express their preferences
and priorities over the satisficement levels required for the
NFRs. The range for the utility values in Table I is [0 . . . 100].
To show how analysts state their preferences, let us consider
the preferred combinations of effects characterized with the
highest values 90 and 100 for the rows 14 and 16 in the
column of Utility 1. As a contrast, the less favorite combination
of effects correspond with rows 1, 3, 9, 10 and 11 with the
utility values 0, 5, 0, 5, and 1 respectively.

Note the favorite combinations of rows 14 with values (T, F,
T) and 16 with values (T,T,T) describing the effects on MRt,
MP, MO, respectively. See that with those values, the analyst
is favoring the NFRs MRt and MO but s/he is rather neutral
about the performance property MP.

===

EU(Dt|E1:t) =
∑

mrt+1

u(MRt+1).P (MRt+1|E1:t, D1:t) +
∑
mp

u(MP).P (MP |E1:t, D1:t) +
∑
mo

u(MO).P (MO|E1:t, D1:t) (2)

where EU(Dt|E1:t) is the expected utility of the decision Dt given the evidence E1:t, P (MRt+1|E1:t, D1:t) can be computed
using equation (3), P (MP |E1:t, D1:t) corresponds to the conditional probability of the node “Maximize Performance”
(MP) and P (MO|E1:t, D1:t) corresponds to the conditional probability of the node “Minimize Operational Costs” (MO),
u(MRt+1),u(MP) and u(MO) correspond to the utility functions on the nodes “Maximize Reliability” at time t+1 (MRt),
“Maximize Performance” (MP), and “Minimize Operational Costs” (MO) respectively.

It is shown in [11] that P (MRt+1|E1:t, D1:t) can be computed as follows using Markov property:

P (MRt+1|E1:t, D1:t) =
∑
mrt

P (MRt+1|MRt, Dt).P (MRt|E1:t, D1:t−1) (3)

Where P (MRt+1|MRt, Dt) is the transition model and the value of P (MRt|E1:t, D1:t−1) in (3) can be computed as follows:

P (MRt|E1:t, D1:t−1) = αP (Et|MRt)
∑

mrt−1

P (MRt|MRt−1, Dt−1).P (MRt−1|E1:t−1, D1:t−2) (4)

In the equation(4), P (Et|MRt) is the observation model, P (MRt|MRt−1, Dt−1) is the transition model,
and α is a normalization constant that ensures the probabilities sum up to one.

The optimal decision suggested by the DDN at time slice t is the decision that maximizes the expected utility [11] and is
expressed as follows:

argmaxj [EUdj (Dt |E1 :t)] (5)

===

Fig. 3. Evaluation of the DDN.

TABLE I
UTILITY TABLE (PREFERENCES).

Utility node
Decision MR MP MO Utility1 Utility2
1 Use MST F F F 0 0
2 Use MST F F T 20 20
3 Use MST F T F 5 5
4 Use MST F T T 35 55
5 Use MST T F F 8 8
6 Use MST T F T 70 90
7 Use MST T T F 10 10
8 Use MST T T T 80 100
9 Use Redundant F F F 0 0
10 Use Redundant F F T 5 5
11 Use Redundant F T F 1 1
12 Use Redundant F T T 10 10
13 Use Redundant T F F 15 15
14 Use Redundant T F T 90 90
15 Use Redundant T T F 20 20
16 Use Redundant T T T 100 100

Fig. 4 shows the results of the computation of the expected
utility (EU) for each configurations chosen during time slices
t=0 to t=8.

This experiment evaluates how evidences about the validity
(or falsification) of the recorded assumption C1 = “Redundancy
prevents network partitions” can trigger the need of runtime
adaptations for the RDM system. Given the initial conditional
probabilities and the utilities provided by experts before run-
time (i.e., at time slice 0), as expected, the DDN suggests

Fig. 4. Expected utilities during eight time slices.

that the best decision is to “Use Redundant Topology” with
synchronous propagation as the initial configuration to be
chosen. This configuration is based on the validity of the
assumption C1 = “Redundancy Prevents Network Partitions‘”
that states that a redundant network topology prevents network
link failures from partitioning the network [16].

In terms of a DDN, this means that with no evidence
to contradict the assumption C1 =“Redundancy Prevent Net-
works Partitions”, the apparent suitable decision is to use
“Redundant Topology” as the expected utility EU(Redundant
Topology)>EU(MST Topology).

During runtime, specifically at time slice 3, according to
the scenario describe above, new information is collected that
concludes the assumption C1 is not longer true and therefore
EU(MST Topology)>EU(Redundant Topology). Certainly, the
decision “Use MST Topology” is considered by the DDN as
the best decision this time. It is the most suitable as the use
of “Redundant Topology” decision does not necessarily prevent
network partitions anymore.

Following the scenario, later on, specifically at time slice
7, the monitoring infrastructure finds the design assumption
C1 is valid again (i.e., its value is true), and the DDN
correctly suggests to adapt to the original design decision “Use
Redundant Topology”.

2) Experiment 2- Effects of Weights on Decision-Making:
In the second experiment, we examine the effects of weights
described in the Utility Table while deriving the best topol-
ogy(sensitivity analysis). Specifically, we have evaluated the
DDN’s sensitivity to these weights on the RDM application.
We have used the same scenario presented earlier to compute
the best decision during time slice 1 until time slice 8.
However, different from the previous experiment where we
kept the values of the utility weights constant (using just the
column Utility 1), in this second experiment we have assumed
that the weights assigned to NFRs can be changed on-the-fly
during runtime (using values from both columns Utility 1 and
2). The different set of weights were used at time slice 7 using
the values dictated by the column Utility 2 in Table I. In both
experiments 1 and 2, the DDN started running with the same
initial configuration. The results of the experiment 2 are shown
in Fig. 5. The DDN adapts accordingly when new information
become available at time t = 3, and again and as expected,
the DDN selects the “MST Topology” (as this configuration has
greater value of EU than the “Redundant Topology”). However,
the value true of the design assumption is monitored at time
slice 7, it can be observed that the two configurations “MST”
and “Redundant Topology” have very similar EU values and
therefore the DDN decides that no adaptation is required. This
effect is due to the newly higher weight associated with the
configuration “Use MST Topology” at time slice 7.

As observed, the values of the weights to calculate the
expected utilities of decisions can have an important impact
on the evaluation of alternative decisions. In this experiment,
we have discussed the sensitivity analysis as an important
step to check how sentient the decison-maker is to changes
on the values of utilities by systematically varying those
values when running the DDN. Sensitivity analysis is one of
the main criticisms of DDN-based approaches is that of the
effort needed during the assessment of the numerical weights
required [13]. However, often those values can be successfully
specified by expert knowledge elicitation.

Fig. 5. Impact of the utilities on the selected configuration.

3) Experiment 3- Levels of Confidence on the Monitoring
Infrastructure: In our third experiment, we examine how noise
from the monitoring infrastructure affects the decisions of a
DDN.

A decision made due to an evidence learned using a monitor
that is not reliable may not be appropriate. Crucially, the level
of confidence over the monitoring infrastructure can be taken
into account when using DDNs. In this experiment, we have
computed the expected utility of design alternatives (configu-
rations) selected by the DDN during the 8 time slices of the
experiment using the same values of the probabilities and the
utility table presented in experiment 1. However, different from
experiment 1 and 2, here we consider uncertainties about the
quality of the observations associated to the evidence node. In
other words, we have considered in this experiment errors or
noise introduced by the monitoring infrastructure.

To study the effects of such an uncertainty in the DDN,
we have considered three levels of confidences associated to
each evidence node, and specifically the following three values
were considered C = 0.90, 0.80 and 0.4. In the context of the
DDN, such values represent the following probabilities:

P (e|C1=true) = 0.9
P (e|C1=true) = 0.8
P (e|C1=true) = 0.4

Fig. 6 (a, b, c) shows the computation of the decisions
made by a DDN for the RDM example until time slice
t = 8 when there is uncertainty about the recorded assumption
“Redundancy prevent network partitions” .

Fig. 6a and 6b illustrate the expected utility results for
C = 0.90 and C = 0.80 respectively, it can be seen that the
DDN follows the same pattern as in the experiment 1 even if
there is uncertainty about the falsification or the validity of the
design assumption. Again, at time slice t =3, the DDN suggests
“Use MST topology” rather than “Use Redundant Topology”
when the assumption is false (even with the slightly lower

Fig. 6. Impact of uncertainty in the monitoring infrastructure on DDN’s decision

levels of confidence 90% and 80%). The DDN suggests to go
back to use “Redundant Topology” after time slice 7 when the
assumption was recorded as true.

Fig. 6c illustrates the expected utility results for C = 0.40.
In this case, the level of trust is rather low (just 40%). The
DDN decides to use the “Redundant Topology” even if the
assumption recorded at runtime was falsified or validated.

As we see, Fig. 6a and Fig. 6b show a similar behavior
of adaptation of the DDN that was observed in experiment 1.
Fig. 6c shows that for low level of trust toward the monitoring
infrastructure, the decisions suggested by the DDN may not
be meaningful.

We see that, as expected, the introduction of noise in the
evidence node does degrade the decision made by a DDN.
However, the amount of this degradation is rather small when
we consider a high degree of confidence level about quality
of observations.

The results of the evaluation of the DDN to RDM system
and other case studies like GridStix are reported in [21].
While the result are somehow preliminary, they are also
positive as the DDNs allowed applications to adapt to a
new situations. Furthermore, the new situations appear to be
consistent with the observations that provoked the adaptations
to new situations at runtime.

IV. RELATED WORK

There is an increasing need for software systems that are
able to adapt dynamically to changes in their environment.
However, there is still a dearth of applicable techniques
for handling uncertainty [3], [22] in this setting. Several
research initiatives have recently aimed to tackle uncertainty in
different ways. The related work described here is divided in
two categories : (i) tackled uncertainty in the research area
of SASs, and (ii) decision-making under uncertainty using
Bayesian theory.

A. Uncertainty for Self-Adaptation

Esfahani et al. [23] have proposed GuideArch, a quantitative
framework that allows engineers to make decisions using

imperfect information. As in our case, GuideArch helps the
requirements engineers to make decisions during the RE pro-
cess. Both approaches deal with the same scope of uncertainty
and has to do with not being able to precisely specify the
impact of architectural alternatives as a crisp value. However,
different from the work presented in [23], our DDN-based
approach can also be used to make adaptation decisions at
runtime. Furthermore, they represent the anticipated impact
of an architectural alternative on the system’s properties as
a range of values. Specifically, given the partly unknown
impact of architectural alternatives on properties, they quantify
the overall value of a given architecture using fuzzy logic
methods. In our case, we use probabilistic methods to quantify
the anticipated impact of an architectural alternative on the
system’s properties (i.e. NFRs). Besides, the overall value of
a given architecture is calculated using the expected utility
function provided by the DDN.

Uncertainty in adaptive systems has also been tackled by
RELAX [24], a formal requirements language that explicitly
addresses uncertainty inherent in adaptive systems. While
RELAX uses fuzzy logic to specify more flexible requirements
to handle uncertainty, we use probability theory to quantify
uncertainty. Another approach is POISED [25] by Esfahani
et al., which is based on possibility theory [26] and fuzzy
mathematics to assess the consequences of uncertainty. Fur-
thermore, similar to our approach, POISED tackle uncertainty
associated with adaptation decisions aimed at satisfying the
system’s NFRs. As in the case of RELAX, POISED is based
on fuzzy mathematics. While RELAX targets the specification
of requirements, our approach and POISED aim at supporting
decision-making at runtime as well. Our model also differs
from these two approaches in the use of Bayesian theory to
perform reasoning and decision making under uncertainty at
runtime.

Welsh et al. [9] introduce REAssuRE to use goal models and
Claims (i.e., design assumptions) to support decision-making
and drive self-adaptation. In the same context, Ramirez et
al. [19] adopt the use of Claims and introduced an approach for
RELAXing Claims that focuses on how uncertainty can affect
the validity of assumptions at runtime to avoid unnecessary

reconfiguration due to transient conditions. In [27], we explain
how our approach can also offer an implementation of RELAX
for RELAXing Claims.

Letier et al. [28], as in our case, specify partial degrees of
goal satisfaction and quantify the impact of different system al-
ternatives on high-level goals that can be used to guide require-
ments elaboration and design decision-making. The degree of
satisfaction of such goals is modeled by objective functions
on quality variables. The non-functional goals are specified
formally using a probabilistic models and interpreted in terms
of application specific measures. Their approach is different
from ours in some relevant aspects. They tackle decision about
alternative system designs during requirements and design
engineering. In our case, we are concerned about decision-
making between alternative decisions to meet a functional
goal due to environmental changes what crucially includes also
decision-making at runtime.

Liaskos et al. [29] proposed an extension of goal modeling
techniques to support the representation of preferences. Both
approaches, the one described in [29] and ours, focus on mod-
eling and reasoning about priorities and alternative solutions
and working on preference-based exploration of alternatives
requirements. However, they do not use probability theory.

Dynamic configuration of service based systems (SBSs)
was studied by Filieri et al. [10]. They conceived KAMI, a
framework for runtime modeling of SBSs. Similar to our case,
their approach focus on non-functional properties that can be
specified quantitatively in a probabilistic way and target the
challenge of making adaptation decisions under uncertainty.
However, while they use Markov models, we use DDNs. Their
focus is on verification and dependability.

Unlike our case, and with the exception of the work
presented in [10], none of the approaches described above
employ machine learning techniques. In [10], Discrete-Time
Markov Chains can be automatically updated by observations
of run-time data collected from the environment. Our approach
learns and updates the probabilities (i.e., beliefs) over time
when new evidence becomes available at runtime.

B. Decision-Making under Bayesian Theory

Bayesian networks have been used to enable reasoning over
probabilistic causal model and to make predictions about par-
tial satisfaction of non-functional requirements [30]. However,
the Bayesian paradigm does not provide any direct means for
modelling dynamic systems [11]. In contrast to our model in
which we combine Bayesian networks and decision networks
to provide a tool to support decision-making for solving
complex or real-time decision problems and to model a system
that is dynamically changing or evolving over time (such as
SASs).

A related research approach using DDNs can be found in
the area of AI, Portinale and Raiteri [31] have proposed a
formal model that also uses DDNs for FDIR (Fault Detection,
Identification and Recovery) analysis in autonomous systems
based on a formal Fault Tree modeling language able to
express stochastic dependencies and multi-state components

which is called Extended Dynamic Fault Tree (EDFT). In their
approach, a compilation process that produces an equivalent
DDN from the EDFT on which to exploit standard DDN algo-
rithms to perform the required FDIR analysis. Their approach
is relevant to our case because we are using a similar model
to trigger adaptations. However, we have a different focus;
we are tackling the challenge of making adaptation decisions
under uncertainty in SASs.

V. CONCLUSION AND FUTURE WORK

In this paper we have presented a novel approach that uses
the mathematical model of DDNs to support decision-making
under uncertainty for self-adaptation. Unlike other related
work, DDN-based approaches adopt probabilistic methods
(i.e., Bayesian methods) and decision theory to assess the
consequences of uncertainty. Our approach provides a holistic
view to tackle self-adaptation under uncertainty that covers de-
sign time and runtime and also different sources of uncertainty.
Using our approach, suitable choices to satisfice functional
requirements of the system are identified from a range of
alternative decisions and their expected utilities. Satisficement
of NFRs is modeled using conditional probabilities given
the design decisions. Preferences over decisions are modeled
using weights associated with pairs of design alternatives and
NFRs and used when computing the expected utilities of the
architectural design alternatives. The decision taken by the
DDN is that with the highest expected utility. The approach
offers the benefits of machine learning. Furthermore, the
approach also tackles uncertainty due to unreliable monitoring
information. The results achieved so far are rather promising.
Different research avenues have been identified and are part
of our research agenda.

First, we envisage using our approach to derive quantitative
requirements. Quantitative requirements [28] are estimations
on quality variables of goals assigned to the software-to-be like
cost or response time. These quantitative requirements may be
needed to achieve given targets (for example, a maximum cost
or a minimum response time). We also envisage an extension
of our approach to manage uncertainties while estimating
parameters based on confidence intervals for given targets.

Further work is required towards systematic techniques for
studying the value of the probabilities that change over time
(due to the machine learning process) an their impact on the
evaluation of the alternative decisions. We are also interested in
the complementary use of the goal models with our approach.
The Bayesian learning provided by the DDN-based approach
can complement the benefits of goal-based models like self-
explanation support [32] and visual analysis for example.

Currently, we are working on a formal Bayesian definition
of surprise as the basis for quantitative analysis to measure
degrees of uncertainty and deviation of self-adaptive systems
from normal behaviour and partial results have been presented
in [27]. Specifically, a Bayesian surprise quantifies how new
evidence affects assumptions of the world (properties in the
models). A “surprising" event may provoke a large divergence
between the beliefs distributions prior and posterior to that

event. As such and depending on how big or small this
divergence is, the running system may decide to either (i)
dynamically adapt accordingly or (ii) temporarily avoid any
action of adaptation and flag up the fact that a potential
abnormal situation has been found. Early partial but promising
results are shown in [27].

Further study on how the quality of the infrastructure
monitoring, using the level of confidence of sensors, affects
the decisions made by the DDN.

We are studying how probability values can also be con-
sidered as the basis to implement RELAX-based requirements
specifications. We are working on how to relax Claims and
compare results with those obtained in the [19]. Finally,
development of tools to help the requirement engineer to
design a DDN would be certainly very helpful as the current
tool support imposes limitations; there are not many tools that
support DDNs.

ACKNOWLEDGMENT

We thank Pete Sawyer for his useful feedback. Also thanks
to Andres Ramirez for the support on the use of the RDM
case study. This research is partially supported by the EU
Marie Curie Fellowship Requirements@run-time and the EU
FP7 project CHOReOS (257178).

REFERENCES

[1] H. Ziv, D. J. Richardson, and R. KlŽsch, “The uncertainty principle
in software engineering,” 19th International Conference on Software
Engineering,ICSE’97, boston, Massachusetts, USA.

[2] N. Fenton, W. Marsh, M. Neil, P. Cates, S. Forey, and M. Tailor,
“Making resource decisions for software projects,” in Proceedings of the
26th International Conference on Software Engineering, ser. ICSE ’04.
Washington, DC, USA: IEEE Computer Society, 2004, pp. 397–406.
[Online]. Available: http://dl.acm.org/citation.cfm?id=998675.999444

[3] B. H. Cheng, R. de Lemos, H. Giese, P. Inverardi, and J. Magee,
“Software engineering for self-adaptive systems: A research roadmap,”
in Software Engineering for Self-Adaptive Systems, B. H. Cheng,
R. de Lemos, H. Giese, P. Inverardi, and J. Magee, Eds. Springer-
Verlag, 2009, vol. 5525, pp. 1–26.

[4] J. Whittle, P. Sawyer, N. Bencomo, B. Cheng, and J.-M. Bruel, “Relax:
a language to address uncertainty in self-adaptive systems requirement,”
Requirements Engineering, vol. 15, pp. 177–196, 2010.

[5] D. Garlan, “Software engineering in an uncertain world,” in Proceedings
of the FSE/SDP workshop on Future of software engineering research,
ser. FoSER ’10. New York, NY, USA: ACM, 2010, pp. 125–128.
[Online]. Available: http://doi.acm.org/10.1145/1882362.1882389

[6] N. Esfahani and S. Malek, “Uncertainty in self-adaptive software sys-
tems,” in Software Engineering for Self-Adaptive Systems 2 (SEfSAS 2).
Springer-Verlag, 2012.

[7] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-Functional
Requirements in Software Engineering. Springer, 1999, vol. 5.

[8] H. J. Goldsby, P. Sawyer, N. Bencomo, D. Hughes, and B. H. Cheng,
“Goal-based modeling of dynamically adaptive system requirements,” in
IEEE Int. Conference on the Engineering of Computer Based Systems
(ECBS), 2008.

[9] K. Welsh, P. Sawyer, and N. Bencomo, “Towards requirements aware
systems: Run-time resolution of design-time assumptions,” in ASE, 2011,
pp. 560–563.

[10] A. Filieri, C. Ghezzi, and G. Tamburrelli, “A formal approach to adaptive
software: continuous assurance of non-functional requirements,” Formal
Asp. Comput., vol. 24, no. 2, pp. 163–186, 2012.

[11] S. J. Russell and P. Norvig, Artificial intelligence: A modern approach,
2nd ed., ser. Prentice Hall series in artificial intelligence. Prentice Hall,
2003.

[12] J. Bilmes and J. Bilmes, “On virtual evidence and soft evidence in
bayesian networks,” 2004.

[13] J. Pearl, Probabilistic reasoning in intelligent systems: networks of
plausible inference. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1988.

[14] R. Howard and J. Matheson., “Influence diagrams,” in Readings on the
Principles and Readings on the Principles and Applications of Decision
Analysis II. Menlo Park CA:: Strategic Decisions Group, 1984.

[15] K. Welsh and P. Sawyer, “Understanding the scope of uncertainty in
dynamically adaptive systems,” in REFSQ, 2010.

[16] A. Ramirez, A. Jensen, and B. Cheng, “A taxonomy of uncertainty for
dynamically adaptive systems,” in Software Engineering for Adaptive
and Self-Managing Systems (SEAMS), 2012 ICSE Workshop on, june
2012, pp. 99 –108.

[17] N. Bencomo and A. Belaggoun, “Supporting decision-making for self-
adaptive systems: From goal models to dynamic decision networks,”
in 9th International Working Conference on Requirements Engineering:
Foundation for Software Quality (REFSQ), 2013.

[18] M. Ji, A. Veitch, and J. Wilkes, “Seneca: Remote mirroring done write,”
USENIX 2003 Annual Technical Conference., pp. 253–268, 2003.

[19] A. Ramirez, B. Cheng, N. Bencomo, and P. Sawyer, “Relaxing claims:
Coping with uncertainty while evaluating assumptions at run time,”
ACM/IEEE Int. Conference on Model Driven Engineering Languages
& Systems MODELS, 2012.

[20] Norsys Software Corporation. Netica - User guide, 1997.
[21] A. Belaggoun, “Exploring the use of dynamic decision networks for self-

adaptive systems,” Master’s thesis, Univ. de Versailles Saint-Quentin-En-
Yvelines, 2012.

[22] R. de Lemos, H. Giese, H. Müller, and M. Shaw, “Software Engineering
for Self-Adpaptive Systems: A second Research Roadmap,” in Software
Engineering for Self-Adaptive Systems, ser. Dagstuhl Seminar Proceed-
ings, no. 10431. Germany: Schloss Dagstuhl, 2011.

[23] N. Esfahani, K. Razavi, and S. Malek, “Dealing with uncertainty in
early software architecture,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
ser. FSE ’12. New York, NY, USA: ACM, 2012, pp. 21:1–21:4.
[Online]. Available: http://doi.acm.org/10.1145/2393596.2393621

[24] P. Sawyer, N. Bencomo, E. Letier, and A. Finkelstein, “Requirements-
aware systems: A research agenda for re self-adaptive systems,” in Proc.
of the 18th IEEE International Requirements Engineering Conference,
2010, pp. 95–103.

[25] N. Esfahani, E. Kouroshfar, and S. Malek, “Taming uncertainty in self-
adaptive software,” in Proc.of the 19th ACM SIGSOFT Symp FSE,
no. 11, 2011.

[26] L. Zadeh, “Fuzzy sets as a basis for theory of possibility,” Fuzzy Sets
and Systems, vol. 1, pp. 3–28, 1978.

[27] N. Bencomo, A. Belaggoun, and V. Issarny, “Bayesian artificial in-
telligence for tackling uncertainty in self-adaptive systems: the case
of dynamic decision networks,” in 2nd International NSF sponsored
Workshop on Realizing Artificial Intelligence Synergies in Software
Engineering RAISE, 2013.

[28] E. Letier and A. van Lamsweerde, “Reasoning about partial goal
satisfaction for requirements and design engineering,” SIGSOFT Softw.
Eng. Notes, vol. 26, 2004.

[29] S. Liaskos, S. A. McIlraith, S. Sohrabi, and J. Mylopoulos, “Repre-
senting and reasoning about preferences in requirements engineering,”
Requir. Eng., vol. 16, no. 3, pp. 227–249, 2011.

[30] N. E. Fenton and M. Neil, “Making decisions: using bayesian nets and
mcda,” Knowl.-Based Syst., vol. 14, no. 7, pp. 307–325, 2001.

[31] L. Portinale and D. C. Raiteri, “Using dynamic decision networks and
extended fault trees for autonomous fdir,” in ICTAI, 2011, pp. 480–484.

[32] N. Bencomo, K. Welsh, P. Sawyer, and J. Whittle, “Self-explanation in
adaptive systems,” in ICECCS, 2012, pp. 157–166.

