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Abstract—The software engineering community has proposed
numerous approaches for making software self-adaptive. These
approaches take inspiration from machine learning and control
theory, constructing software that monitors and modifies its
own behavior to meet goals. Control theory, in particular,
has received considerable attention as it represents a general
methodology for creating adaptive systems. Control-theoretical
software implementations, however, tend to be ad hoc. While
such solutions often work in practice, it is difficult to understand
and reason about the desired properties and behavior of the
resulting adaptive software and its controller.

This paper discusses a control design process for software
systems which enables automatic analysis and synthesis of a
controller that is guaranteed to have the desired properties and
behavior. The paper documents the process and illustrates its
use in an example that walks through all necessary steps for
self-adaptive controller synthesis.

I. INTRODUCTION

Software’s pervasiveness in every context of life places
new challenges on Software Engineering. Highly dynamic
environments, rapidly changing requirements, unpredictable
and uncertain operating conditions demand new paradigms for
software design. Runtime adaptation mechanisms are required
to deploy robust software that operates correctly despite a lack
of design-time knowledge.

In the last decade, the Software Engineering community
developed a multitude of approaches for developing self-
adaptive software systems [1, 9, 15, 24, 31, 49, 53, 60,
73]. While these approaches describe general techniques, their
implementations focus on specific problems and do not extend
to broadly implementable methodologies [26]. Furthermore,
many proposed adaptation mechanisms lack the theoretical
grounding to ensure their dependability beyond the few spe-
cific cases for which they are implemented [35, 52, 68, 69].
In the last century, Control Theory has established a broad
family of mathematically grounded techniques for adaptation.
Controllers provide formal guarantees about their effectiveness
and behavior under precise assumptions on the operating
conditions.

Although the similarities between industrial plant control
and software adaptation are self-evident, most attempts to ap-
ply off-the-shelf control-theoretical results to software systems
have achieved limited scope, mostly tailored to specific appli-
cations and lacking rigorous formal assessment of the applied
control strategies. The two main difficulties in applying control

theory to software systems are:(i) developing mathematical
models of software behavior suitable for controller design, and
(ii) a lack of Software Engineering methodologies for pursuing
controllability as a first class concern [17, 21, 38, 75].

A theoretically sound controller requires mathematical mod-
els of the software system’s dynamics. Software engineers
often lack the background needed to develop these models.
Analytical abstractions of software established for quality
assurance can help fill the gap between software models and
dynamical models [20, 28, 72], but they are not sufficient for
full control synthesis. In addition, goal formalization and knob
identification have to be taken into account to achieve software
controllability [58].

Several approaches have extended control-theoretical results
into more general methodologies for designing adaptive soft-
ware systems. Pioneering works in system engineering [,
18, 36] spotlighted how control theoretical results improve
computing system design. These contributions have been es-
pecially influential for performance management and resource
allocation; however, new trends in self-adaptive software in-
troduce new software models and a variety of quantitative
and functional requirements beyond the scope of those works.
More recently, methodological approaches for performance
control [3, 59] and the design of self-adaptive operating
systems [49] have been proposed. Software Engineering and
Autonomic Computing has also highlighted the centrality of
feedback loops for adaptive systems [9, 42].

Control theory has developed during the years for physical
systems, where what to measure and what to control is very
clear, as well as how to define physical models of the actors.
For these systems, many of the problems have been solved and
the resulting solutions have been mathematically grounded.
However, the software engineering domain poses different
challenges, with respect to the physical world. On one hand,
quantities that are difficult to measure in the physical world
could be extremely easy to measure instrumenting code. On
the other hand, there is no basic physic that one could rely
upon and it could be extremely complex to come up with
equations that properly describe the running system. This
paper casts the control-theoretical framework of time-based
controllers into the problem of applying control theory to
software systems and provides a comprehensive analysis of
one of the paradigms in the control theoretical design for



self-adaptive software systems, matching the various phases
of software development with the relevant background and
techniques from Control Theory. For space limitations we
restrict this paper to time-based controllers. Other paradigms,
e.g. event-based controllers [19, 20], allow achieving similar
or complementary results for specific control problems. The
goal is to bootstrap the design of mathematically grounded
controllers, sensors, and actuators for self-adaptive software
systems, providing formally provable effectiveness, efficiency,
and robustness.

II. ADAPTATION IN SOFTWARE AND CONTROL
ENGINEERING

The word ““adaptation” means two different things to soft-
ware and control engineers. For a software engineer, adaptive
software reacts to changing environmental and contextual
conditions by changing its behavior or structure. Adaptation,
however, is only one of the software designer’s concerns. For
a control engineer, controlling a system is the only concern
— adaptive control just adds another degree of flexibility,
where the controller may change its own control policies as
well. Even the simplest controller (e.g., one that maintains
room temperature by turning a heater on and off) makes the
system adaptive according to the definition understood by a
software engineer. To avoid misunderstandings, this section
discusses more precisely the meaning of adaptation in the
two communities and subsequently analyzes how the two
viewpoints can be reconciled.

From a software engineering perspective, a system is
adaptive when it allows for modifying its structure or behavior
at runtime; i.e. without interrupting its service. An adaptive
system can be coupled with an adaptation manager to make it
continuously satisfy its requirements. A requirement violation
may occur during runtime due to changes in execution envi-
ronment including user interaction, the behavior of third-party
components, or because the requirements themselves change.
Coupling the system with its adaptation manager creates what
is called a self-adaptive system.

Self-adaptive systems have been an aim of Software Engi-
neering for about two decades. However, general frameworks
have been proposed only since the late 90s, both in the
Software Engineering community and on the new field of
Autonomic Computing [41, 42, 56, 63]. While each framework
is unique, all of them share a closed-loop structure where the
software monitors requirements violations, plans counterac-
tions, and enforces them.

To ground the concepts, we take as reference the most
popular self-adaptive design framework: the Monitor-Analyze-
Plan-Execute (MAPE) feedback loop (Figure 1) [42]. The
adaptive system operates in a changing environment, affecting
its ability to satisfy the requirements. The adaptation manager
detects the changes, analyzes their impact, and, if needed,
plans and executes actions in response to the changes. All
phases can be supported by additional knowledge about the
system; e.g., suitable models kept updated at runtime.

Adaptation Manager

Analyze

Knowledge

Adaptive System

Environment

Fig. 1: Adaptive system: the software engineering perspective.
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Fig. 2: Adaptive system: the control perspective.

From the control engineering perspective, an adaptive
system consists of a control loop (Figure 2 shows an exam-
ple) [4, 36]. A closed loop system consists of a controller
and a plant denoted as C' and P, respectively. The time is
assumed to be discretized and y(k) represents the value of
the signal y at time instant k. The controller’s input is the
error e(k) between the goals §(k) and the measured value
of the outputs y(k) — where input and output are measurable
quantities'. The controller’s output u(k) is a vector of values
for the configurable parameters of the plant, often called knobs
or actuators. All inputs and outputs can be vectors, meaning
that the measured output of the closed loop system can be,
for example, a two-dimensional vector whose elements are
reliability and response times. The number of goals 7(k)
should be equal to the number of measured outputs, while
the number of knobs for which the controller should compute
a value can differ from the dimensionality of the output.
When control is applied to software systems, the plant is
usually identified with the adaptive software system under
control, but it can also contain additional information about the
execution environment and platform. A plant receives as input
the knob configurations and produces as output some measures
of quantities y(k) upon which the user sets the control goals.
There are other entities that act on the behavior of the plant,
other than the control variables u(k). For example, if y(k) is
the execution speed of a loop in the software, the sudden start
of the garbage collector can slow down the computation or
a sudden lack of memory can stall instructions. Equivalently,
if Turbo Boost is turned on by the hardware, computation

IThe output signals of the plant are usually the values of measurable goals,
while the input signals of the plant can be the configuration of the plant itself
— e.g., a vector composed of elements like the algorithm used to solve a

specific problem, the amount of resource allocated to a running application,
the length of a queue, and much more.



might be accelerated. These quantities that act on the measured
output but are not under the direct control of the controller,
are called disturbances in control terms, and denoted by d(k)
in Figure 2. It is not necessary to identify them at design time,
but it is important to acknowledge their existence. One of the
purposes of control theory is to provably minimize the effect
of the disturbances on the controlled output variables.

The similarities between self-adaptive systems and con-
trolled systems, i.e. the coupling of a plant with its controller,
are self-evident, with g(k) representing the system’s goals and
u(k) the adaptation actions that will achieve these goals.

Merging the design of self-adaptive systems with the theory
of controlling industrial plants can enhance the software en-
gineering process with a variety of mathematically grounded
adaptation laws. This has an impact on every stage of software
development process, from requirements analysis to design,
implementation and testing. At the requirement analysis phase,
the needs of stakeholders should be matched to control goals.
At the design phase, controllers should become a first-class
element together with the introduction of analytical views cap-
turing the intended dynamic behavior of the software system.
During implementation and quality assurance, the presence
of controllers introduces new challenges for verification and
testing. In the following, we sketch a development process that
takes into account control theory as a powerful framework for
developing self-adaptive systems.

III. CONTROL DESIGN PROCESS

This section discusses the design of a feedback control
strategy for an existing software system. We provide details
on the steps of the process that one should follow to develop a
self-adaptive system with control-theoretical guarantees. The
overall process is depicted in Figure 3.

The process starts by defining the system’s goals, which
are inputs of the control system. Values corresponding to the
current state of the satisfaction of these goals need to be
quantifiable and measurable so that they can serve as feedback
to the controller. The goals are denoted by (k) (which in
general depends on the time step k), while the measurements
of their satisfaction is denoted as y(k) in Figure 2. The next
step is identification of the software adaptation features (i.e.
knobs or actuators) that can be changed at runtime, as denoted
by u(k) in Figure 2. The next step is to define a mathematical
model that describes how changes in knob settings affect the
measurable feedback. This model is denoted by P in Figure 2.

Given the system model, the next step is to synthesize a
controller (C' in Figure 2) with the most appropriate method
among the many different ones that control theory offers.

The next step is to analyze the closed loop system and
to prove that it behaves as desired. Informally, the closed
loop system should reach and stabilize at its goal(s), and be
robust to external variations and changes. These properties
should be also verified in the presence of disturbances (d(k)
in Figure 2). If the desired properties are not exhibited, the
process backtracks to one of the previous steps and a new
iteration is started. Once the desired properties of the closed
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Fig. 3: Steps in the design and development of a control-based
mechanism for self-adaptive systems. The different levels group steps
into activities with tighter coupling.

loop system are met, the controller should be implemented and
tested, both in isolation and integrated with the system under
control.

Running Example: To illustrate the end-to-end control de-
sign process we will focus on the self-adaptation of a specific
software system: (real-time) video encoding.

A video encoder processes a stream of video frames. Each
frame is analyzed and the encoder chooses some frames as the
encoding basis (I frames) and some frames to be encoded with
respect to their differences with previous frames (P frames)
or with both backward and forward frames (B frames). The
encoding of I frames is very quick, since the data have to
be copied directly into the resulting chunk of video, while
encoding of P and B frames requires more operations. There
are different encoding algorithms (e.g., single pass, two passes,
or three passes), and several parameters that can be tuned for
each algorithm. For example, the resolution of the resulting
frames can be tuned, along with the scene cut (a parameter
that controls the insertion of I frames).

The video encoding example allows us to discuss different
goals and different types of knobs. The encoding algorithm
belongs to a non-ordered set of possible values. In contrast,
the frame resolution belongs to a set of values ordered with
respect to goal satisfaction. If the goal is accuracy, the higher
the resolution, the more accurate the encoding. If the goal is
frame latency, the lower the resolution, the lower the latency.
The amount of computing capacity given to the application
belongs to a continuous bounded set, between zero and the
number of cores on the machine?.

The video encoding example has already been studied in
control literature [26, 39, 54, 55, 64]. It presents some in-
teresting challenges, like the tradeoff between encoding com-
pression and quality, energy minimization, and the dependence
on input data (the video stream can be almost static; e.g., a
conference talk, where little effort has to be done to encode

2The set is continuous if we assume to use a scheduler such as

SCHED_DEADLINE, now in mainline linux kernel, that allows to distribute
fractions of the CPUs [48].



B and P frames, or very dynamic; e.g., a sporting event). In
the following sections, this example demonstrates the steps
required to design a control strategy for a software system.

A. Identify the goals

The first step is to define the quantifiable and measurable
goals the controller is to achieve.

We distinguish between functional and non-functional
goals [32]. A functional goal concerns what functionalities the
system exhibits, under a certain condition. A non-functional
goal concerns how good the system has to perform, i.e. the
quality it is expected to exhibit. A quality may target a specific
functional requirement — e.g., reliability of specific message
passing — or may describe a global concern over the entire
system — e.g., only authorized users can access the database.
Performance, reliability, and energy consumption are typical
non-functional requirements that can be quantitatively ex-
pressed. For example, one may specify a system’s performance
requirements by introducing response time and throughput
metrics. However, not all non-functional requirements are
easily quantifiable. Security and usability are instances of
this category®, although in special situations they may be
measured.

Control strategies can be defined for the satisfaction of
both functional and non-functional requirements. Though it
is not a general rule, the former are usually managed by
discrete-event controllers, capable, for example, of planning
the composition of available components to introduce new
functionality (e.g., [19, 20]). The latter are often handled by
means of equation-based controllers, tuning relevant knobs to
change quantitative properties of the software system, like its
timing properties or its energy consumption (e.g., [26, 39]).

(1) The simplest type of goal for an equation-based con-
troller is a reference value to track. In this case, the control
objective is to keep a measurable quantity (response time,
energy consumption, occupied disk space) as close as possible
to the given reference value, called a setpoint*. For example,
the frame rate of a video streamer should be kept constantly
at a standard frame rate of 24, 25 or 30 frames per second,
depending on the country and the broadcasting infrastructure.

(2) A second category of goals is a variation of the classic
setpoint-based goal, where the goal resides in a specific range
of interest; e.g., the average frame rate should be between 23
and 32 frames per second. Usually it is easy to transform these
goals into equivalent setpoint-goals with confidence intervals.

Requirements elicitation plays an important role in defining
the setpoints; it is in fact a systematic way to identify the
critical requirements from the viewpoint of the stakeholders.
Toward this end a new class of requirements, called Awareness
Requirements (AwReqs) have been proposed. AwReqs con-
strain the success/failure of the system’s critical requirements
[66]. For example, for a web video streaming system a goal
“Serve High Definition Video” could have as an AwReq

3 An extended discussion on functional and non-functional requirements can

be found in [32].
4Setpoint tracking is a very well studied problem in control theory [50].

“SuccessRate(80%)”. This means that 80% of the time, high
definition video should be delivered to the clients.

(3) A third broad category of goals concern the mini-
mization (or maximization) of a measurable quantity of the
system. For example, we may want to deliver our service with
the lowest possible energy consumption. Depending on the
specific quantity under control, certain optimization problems
can be reduced to setpoint tracking. In particular, if the range
of the measured property to optimize is convex and bounded,
a setpoint tracker required to keep the measured property at
its minimum possible value will drive the process as close as
possible to the target, that is, toward the minimum possible
value. Optimization problems, however, usually require more
complex control strategies, especially when the optimization
of one or more properties is subject to constraints on the values
of others; e.g., minimize the response time while keeping the
availability above a certain threshold’.

In our running example, a potential goal of this type is
minimizing the video encoder’s energy consumption. This goal
can also be coupled with the timing properties of the software,
which becomes an extra constraint. The precise formulation
would be the minimization of the energy under the constraint
that the frame rate is kept equal to a specific value. This
formulation can generate conflicting goals. Speeding up the
encoding process requires exploiting the hardware more and
consuming in general more power. Reaching the timing goal
can have a negative effect on energy consumption.

Special attention has to be paid when there are conflict-
ing goals. Two simple types of conflict resolution strategies
are prioritization and cost function definition. In the former,
multiple goals are ranked according to their importance so
that, whenever it is not be feasible to satisfy all of them at
once, the controller will give precedence to the satisfaction
of higher priority goals first®. Cost functions are another
common means to specify the resolution of conflicting goals.
In this case the utility function specifies all the suitable
tradeoffs between conflicting goals as the Pareto front of an
optimization problem. Optimal controllers can handle this type
of specification guaranteeing an optimal resolution of conflicts.

A problem that is closely related to goal setting is the
specification of graceful degradation strategies. Assuming a
goal becomes temporarily infeasible, different reactions are
possible. The simplest strategy may be to keep the system
as close as possible to the target value. Setpoint tracking
intrinsically provides this feature. However, the stability of the
closed loop system for infeasible goals should be evaluated
carefully. Another classic strategy for graceful degradation
consists of disabling secondary functionality to free resources
for achieving the primary goals, as done, e.g., in [43] for cloud
applications and in [2] for a socio-technical system.

B. Identify the knobs
The second step is to find the knobs that change software
behavior. In control theory, the knobs are generally determined
SIn this case, optimal control, discussed in [74] is more appropriate.

6Several control strategies support the achievement of prioritized goals, for
example daisy chain control [50].



by the fundamental dynamics of the physical system under
control. For example, an inverted pendulum has a single knob:
the torque applied at the pivot point. If the pendulum is on a
cart, the position of the pivot point can also be changed by
moving the cart. In both cases there is a single knob, either
the torque, or the position of the cart.

In some cases, software systems exhibit the same property
and there are clear knobs that one can use to change the
behavior of the system. In the case of the video encoder there
are many potential knobs: the amount of computing resources
given to the encoding applications, the encoding algorithm, the
sensitivity of the encoding algorithm to changes in the frame’
and many more. In contrast to physical systems, software
systems are relatively easy to modify. As a consequence, there
are cases in which knobs can be relatively easily added or
removed. Both when using existing knobs and when devising
new ones, the main issue is how to identify the best knobs
to control the software system. In [65], an elicitation method-
ology is proposed, and the impact of each knob is evaluated
with reference to the design goals.

Another important point when identifying the knobs is
quantifying each knob’s timescale. Some knobs, like powering
up a new virtual machine, require time to bring about an effect.
The control strategy should be aware of this time requirement
and incorporate it into its model of the system’s behavior.

In the video encoder case, the computing capacity given
to the application can be considered a knob. In this case, the
timescale of the visible changes is almost immediate and one
expects the control action to have a measurable effect after the
first second (when the average frame rate is updated).

C. Devise the model

The next step in the control design process is developing a
model for the software system under control. In general, this
model captures the relationship between the knobs identified
in Section III-B and the goals identified in Section II-A,
representing how a change in knob setting affects the goals.

In control theory, the model is analytical, so the interaction
is formally described by mathematical relationships. This
could mean that logical formulas are used (especially for
discrete event control strategies) or that dynamical models are
written (generally for continuous- or discrete-time-based con-
trollers). Dynamical models are used to synthesize continuous-
time or discrete-time-based strategies. A dynamical model can
be either in state space form or expressed as an input-output
relationship.

In the first case, one must choose the state variables that
track the system’s history and its evolution in time. Examples
include the length of a queue, the percentage of frames
already encoded, or the current encoding speed. Given the
state variables’ current values and the system’s input values,
one can formally determine the output variables’ values [58].
The choice of the state variables is not unique since an infinite
number of equivalent representations can be found [4].

"This parameter specifies the amount of change in the frame before a new

I frame is produced and affects at least the encoding speed, accuracy, and
energy consumption.

Once the state variables are identified, the relationship
between the input and the state variables should be written,
together with the relationship between the state and the output
variables. For example, if the input variable of a queue is
the number of incoming requests and the output variable is
the average service time, the state variable is the number
of enqueued requests. In principle, one could have many
equations describing different inputs’ effect on different state
variables and the state variables’ effect on the measurable
outputs. These equations form the dynamical model used for
the controller design. Depending on the equations’ structure,
there are different types of models: linear and nonlinear,
switching, or parameter varying. Some examples follow (z(k)
representing the state of the system at time k).

z(k+1)=3-z(k) k+u(k) (D
z(k+1)=-0.5 z(k) + u(k) (2)
z(k+1)=3-z(k)* + z(k) - u(k) (3)
w(k+1)=—-05-z(k)+3 (4)

To be more precise about the properties of the system, if the
equations in the system do not have an explicit dependence
on time, the system is time-invariant. If the equations directly
depend on functions of time, the system is time-varying.
Among the equations above, (1) is time-varying, while (2),
(3) and (4) are time-invariant. When the equation is linear
with respect to the state x and the input u, the system model
is linear. If the function is nonlinear with respect to = and
u, the corresponding model is nonlinear. (1), (3) and (4) are
nonlinear, while (2) is linear. Notice that (4) is affine and does
not correspond to a linear system. Affine systems can always
be expressed as linear systems, using a change of variables.

Equations can also contain parameters that will vary over
time. If the equations are linear, the corresponding systems can
be analyzed as Linear Parameter Varying (LPV), for example
as done in [68].

In the second case, the system is expressed as a direct
input-output relationship. Contrary to the state variables-based
representation, this representation of the system is unique.
State-of-the-art techniques in system identification often cap-
ture a system’s input-output relationship directly from data,
without using state variables. In the linear case, the input-
output relationship can be expressed as a transfer function [4].
Transfer functions are very useful for control design, because
they encode the input-output relationship with an algebraic
relationship, that can be used to assess the system’s satisfaction
of desired properties. The same properties can be verified using
state-space model, but that requires solving linear systems,
which is harder than finding the roots of a polynomial (the
standard way to assess the stability of a system specified with
a transfer function).

In writing the model one should also consider potential
disturbances acting on the system. In the video encoding
example, there are inherently uncontrollable factors, such
as operating system context switching and platform garbage
collection.



Disturbances can be either modeled together with the system
or their existence can be acknowledged. In the former case,
a better control strategy can be designed; e.g., by coupling a
feedback controller with a feedforward control strategy that
measures the disturbance and cancels it. In the latter case, the
feedback control strategy should reject the disturbances. For
example, by increasing the number of cores given to a video
encoder while a garbage collector is running, the controller
can meet the desired frame rate without modeling the effect
of the garbage collector or knowing when it starts and ends.
The feedback mechanism would take care of that.

For the given video encoding example, we can use the
resources assigned to the application as an actuator [40, 54].
We denote this value as speedup s(k). As the goal is the
encoding rate y(k), we can express the relationship between
these two quantities as

s(k—1)

y%)ZE@jjj

where w(-) is the possibly time varying application workload,
i.e. the (nominal) time between two subsequent frame encod-
ings, and d(-) is an exogenous disturbance accounting for any
non-nominal behavior. If the workload parameter is considered
constant w(-) = w, the model is linear. Otherwise, this is an
instance of a Linear Parameter Varying (LPV) model.

If w is a constant in (5), the transfer function of the plant,
from s to y is

+d(k—1) (5)

Pz =2 _ 1 ©)

w-z

where S(z) is the Z transform of the control signal (the
speedup), and Y (z) the Z transform of the encoding rate.
The Z transform converts a dynamical model from the time
domain (where time is represented with a sequence of k
discrete instants) to the frequency domain (where z represents
the frequency).

Although there is no direct correspondence of such control-
theoretical models to software engineering models used for
adaptation, some parallels can be drawn. In software engi-
neering, a system at this phase is typically represented by
its structure in an architectural model [31, 45]. Following a
gray-box approach, only the details relevant for adaptation
are modeled. For example, if we use the architectural model
for performance analysis, we will typically annotate each
component with its measured/predicted service time.

Architectural models are then either directly employed or
transformed into analytical models and used in the adapta-
tion logic of the system. The adaptation logic is typically
captured in Event-Condition-Action rules, which model the
connection between the state (captured in architectural models,
deployment models, etc.) and the goals (captured in goal
models, constraints, etc.). Such a connection can be drawn
since different system configurations (architecture or param-
eter configuration) fulfill the goals to different degrees. The
concrete adaptation is either determined at design time (though
often in an ad-doc manner) or inferred at runtime based on
knowledge about which configuration “best” fulfills the goals.

The connections between the state and the goals, however, are
often not formalized in an analytical model.

Markov models are often used in the analysis phase of
an adaptation loop. They are a class of state-based models
describing systems that exhibit probabilistic behavior. There
are a number of Markov models. We categorize them by the
type of available control variables. The described models are
for a discrete-time case, but for each model there exists a
continuous-time counterpart.

In cases of fully deterministic systems, we can use discrete-
time Markov chains (DTMC). DTMCs describe the probabil-
ity of moving between system states and the model itself
does not include any controllable actions. There are several
methods employing DTMCs in the context of controlling
software [11, 23, 25, 27, 28]. A typical scenario includes
verifying a DTMC model of a system against a property.
If a violation is identified, a reconfiguration of the system
is triggered. When some of the actions in the system are
controllable, we can use Markov decision processes (MDPs).
MDPs extend Markov chains by modeling controllable actions
using non-determinism. The resolution of the non-determinism
is then used as a controller of the system. Controller synthesis
for MDPs is a well researched subject with a number of
synthesis method for various types of properties [5, 8, 47,
61]. Systems with multiple players with conflicting objectives
where players exhibit probabilistic behavior can be formalized
using stochastic games. Stochastic Games can be seen as an
extension of MDPs where the control over states is divided
between several players. Typically, we are interested in the
resolution of the non-determinism that allows certain player
to achieve his/her objective despite possibly hostile actions of
other players. For stochastic games, controller synthesis has
been a subject of recent interest [6, 22] including development
of a tool for generating controllers in practice [14].

D. Design the controller

Different techniques can be used to design a controller.
These techniques differ in the amount of information required
to set up the control strategy, in the design process itself, and
in the guarantees they offer [7].

The technique requiring the least information is synthetic
design, which combines pre-designed control blocks. It often
relies on the experience of the control specialist who looks
at data concerning the controlled system and decides which
blocks are necessary. For example, given a noisy output
signal, a filter block could reduce the noise. Synthetic design
usually starts with a basic control block and adds more to
the system as more experiments are performed. Although the
information required to set up the control strategy is very
low, the expertise necessary to effectively design and tune
such systems is high and both controller design experience
and domain-specific knowledge are required. Furthermore, the
formal guarantees this technique offers are limited [7]. This is
due to the empirical nature of the controller design, where trial
and error is applied and elements are added and removed. The
main obstacle to formal guarantees is the interaction between
the added elements, which is hard to predict a priori.



The second technique is a variation of the first one. It
is based on the selection of a controller structure and it is
often called parameter optimization. The only difference is
that the choice of the controller parameters is often based on
optimization strategies or on analytical tuning methods [70].

The last technique is often referred as analytical design,
and it is based on the solution of an analytical problem.
The information requirements greatly increase as an analytical
model of the controlled entity is required. Based on an
equation-based model, controller synthesis selects a suitable
equation to link the output variables to the control variables.
Depending on which analytical problem is used (the opti-
mization of some quantities, the tracking of a setpoint, the
rejection of disturbances), different guarantees are enforced
with respect to the controlled system. In some cases, this
process can be automatized and analytical control synthesis
can be used with domain-specific knowledge but without prior
control expertise [26]. This generally imposes limitations on
the models to be used and on the obtained guarantees. Also,
not all the control problems can be formulated in such a way
that the solution can be derived automatically.

In the example of video encoding, since we have the transfer
function of the plant, we can use a common methodology,
called loop shaping, that consists of selecting the closed
loop system’s transfer function and deriving the controller
expression based on the selected closed loop function and the
plant’s transfer function (it is thus a case of analytical design).
We have modeled the plant, obtaining the transfer function of
Equation (6), also denoted with P(z). We define the transfer
function of the controller as C'(z) and we denote with G(z)
the transfer function of the system after closing the loop (the
transfer function that expresses the relationship between the
desired value of the goals and the current real measurements).
With the control design, we impose the closed loop transfer
function G(z) to have the expression

Gy Y __CE)PE)_1-p
Y(2) 14+C(2)-P(z) z-—0p

is the generic expression of the loop of

(7
where %
Figure 2, l%g is the particular expression that we want the loop
to assume, p is a generic parameter and Y (z) is the transfer
function of the setpoint. The static gain of the closed loop
transfer function (that is obtained by computing the function
when z = 1) is 1, meaning that the value of the setpoint will
be transferred to the output unchanged. Also, we choose the
closed loop transfer function so that the parameter p is the root
of the denominator. This parameter will be used later to prove
properties on the closed loop system and enforce stability and
robustness to disturbances.

Computing C(z) from Equation (7), substituting Equation
(6) to P(z), one obtains

(1-p)-2

C(z) = w—— n 3)

Moving from the transfer function domain back to the time
domain, this corresponds to the following control law.

s(k)=s(k—=1)+w-(1-p)[Hk) —y(k)]. )

Equation (9) requires us to know the value of w, or to estimate
it with other techniques. For now, we assume we know the
correct value of the parameter.

E. Formally evaluating the closed loop system

From a software engineer’s perspective, a controller should
provide the following properties [18, 26, 28]:

Setpoint Tracking. The setpoint is a translation of the goals
to be achieved. For example, the system can be considered
responsive when its user-perceived latency is below one sec-
ond. Here, the setpoint is the one second value for maximum
user-perceived response time. In general, the self-adaptive
system should achieve the specified setpoint, whenever this
is possible. If the setpoint is changed during the software’s
lifetime, the controlled system should react to this change
and achieve the new setpoint. Whenever the setpoint is not
reachable the controller should make the measured value y(k)
is as close as possible to the desired value y(k).

Transient behavior. Control theory not only guarantees
that the setpoint is reached but also how this happens. The
system’s behavior during the initialization phase or when an
abrupt change happens is usually called the “transient of the
response”. For example, it is possible to enforce that the
response of the system does not oscillate around the setpoint,
but is always below (or above) it.

Robustness to inaccurate or delayed measurements. Of-
tentimes, in a real system, obtaining accurate and punctual
measurements is very costly, for example because the system
is split in several parts and information has to be aggregated
to provide a reliable measurement of the system status. A
controlled system’s (in control terms a closed-loop system
composed by a plant and its controller) ability to cope with
inaccurate measurements or with late measurements is called
robustness. The controller should behave correctly despite
transient errors or delayed data.

Disturbance rejection. In control terms a disturbance is ev-
erything that affects the closed-loop system other than the con-
troller’s action. For example, when a virtual machine provider
places a machine belonging to a different software application
onto the same physical machine as the target software, the
performance of the controlled software may change due to
interference [33]. Disturbances should be properly rejected by
the control system, in the sense that the control variable should
avoid any effect of this external interference on the goal. In
the video encoding example, the controller should be able to
distinguish between a drastic change of scene (like the switch
between athletes and commentators in a sport event) and a
temporary slow down due to the switch between speakers in
a conference recording. In the virtual machine example, the
controller should be able to distinguish between a transient
migration that is slowing down the software for a limited
period of time and a persistent co-location that requires action
to be taken to guarantee the goal satisfaction.

These high level objectives have counterparts in control
terminology and their satisfaction can be mapped into the “by
design” satisfaction of the following properties [18, 67]:



Stability. An equilibrium is asymptotically stable when it the
system tends to reach it and remains there, irregardless of the
initial conditions. This means that the system output converges
to a specific value as time tends to infinity. This equilibrium
point should ideally be the specified setpoint value.

Absence of overshooting. An overshoot occurs when the
system exceeds the setpoint before convergence. Controllers
can be designed to avoid overshooting whenever necessary.
This could also avoid unnecessary costs (for example when
the control variable is a certain number of virtual machines to
be fired up for a specific software application).

Guaranteed settling time. Settling time refers to the time
required for the system to reach the stable equilibrium. The
settling time can be guaranteed to be lower than a specific
value when the controller is designed.

Robustness. A robust control system converges to the set-
point despite the underlying model’s imprecision. This is very
important whenever disturbances have to be rejected and the
system has to make decisions with inaccurate measurements.

These four properties can be analytically guaranteed, based
on the mathematical definition of the control system and the
software. A self-adaptive system designed with the aid of
control theory should provide formal quantitative guarantees
on its convergence, on the time to obtain the goal, and on its
robustness in the face of errors and noise.

In the case of discrete-time control systems depicted in
Figure 2, it is possible to analytically express the closed loop
transfer function that relates the goal %(k) as input and the
measured value y(k) as output. This has the form of Equation
(7) and, factoring the denominator, can be rewritten without
loss of generality as
B G
Hie[l,m] (z —pi)
where f(z) is a generic function of z and the denominator
is the product of m factors (z — p;). The values of p;
are the poles of the closed loop system. The poles can be
real or complex numbers. To guarantee stability for discrete-
time control systems, the poles p; should lay in the unit
circle (the circle with radius 1 of the complex plane). If one
restricts to the real number case, this means that to guarantee
stability, the poles should lay in the open interval (—1,1).
For a more detailed explanation the reader can refer to [4].
Analogous analytical formulations are available for all the
mentioned properties, hence it is possible to check if the
original requirements are satisfied.

In the example of video encoding, the closed loop transfer
function has the expression of Equation (7),

G2 =2

Z=Dp
that has one pole in z = p. Depending on the choice of p,
the system can be proven to be stable or unstable. If —1 <
p < 1, the system is stable, therefore it reaches the setpoint.
Moreover, if the value of p satisfies 0 < p < 1 there are no

oscillations in the transient response.

G(2) = (10)

The settling time of the controlled system is also determined
from Equation (7). We can now convert the model from the
frequency domain back to the time domain by appling the
inverse Z transform. The inverse transform of the closed-loop
transfer function G(z) gives

y(k) =5 (1-p") (1D
As k increases the system approaches y, as confirmed by the
stability and setpoint tracking properties. We define the settling
time as the time it takes the system to achieve (100 — €)% of
the final value of §, which means that the system’s operating
point is only a small distance from the desired goal. We refer
to this region, which is within € of the goal, as the e confidence
zone. Analyzing Equation (11), the first value of £ for which
our output enters the e confidence zone is

log 0.01e

© loglpl
which means that after k. control steps the signal reaches
the confidence zone. That value depends on €, which is often
chosen to be 5%, defining the confidence zone as the interval
in which the controlled variable has reached 95% of its final
value. In that case k. = log 0.05/log |p|, which depends only
on p. Therefore, the position of the pole determines how fast
the system will reach its equilibrium. Indeed, the pole’s value
p can trade responsiveness — how fast the controller reacts,
measured as settling time — and robustness in the face of noise
or unmodeled variance in system behavior. The controller acts
based on its model, or estimation of the effect of its action on
the system.

Whenever the desired properties are not satisfied, one can
step back in the design process and design a different con-
troller, as discussed in Section III-D. In some other cases, the
model can be refined or a more comprehensive model can be
used, as discussed in Section III-C. The use of a more complex
model can capture a part of the self-adaptive software system
that can be necessary to provide formal guarantees on the time
behavior of the system. Finally, in some cases, one can go back
and add a different knob, as discussed in Section III-B, to have
better control over the goals of the software system.

(12)

FE. Implement and integrate the controller

The next step after the controller design is its implementa-
tion and integration with the system under control. Although
this step appears to be quite straightforward, it has also been
called “the hard part” [34].

One of the main problem is that the implementation team
(software engineers) often works independently from the con-
trol team (control experts) [51]. The transition from control
algorithms, which are typically in form of formulas or simu-
lation results, into software is a non-trivial process. It involves
many ad-hoc decisions, not only in the controller implemen-
tation itself (e.g., types of state variables), but also in the
implementation of the accompanying code that is responsible
for the integration. This becomes particularly challenging in
the case of remotely distributed systems.

Controller Implementation: Much of today’s control code
is not handcrafted, but automatically generated from block



diagrams and equations by tools that control engineers use
in their daily routine. Among others, these tools include
MATLAB/Simulink®, Modelica’, and SCADE'?. Such a use of
models as design blueprints differentiates model-based from
model-driven development approaches. While both use models
for design, communication, documentation, and analysis pur-
poses, model-driven approaches also use them to automatically
derive (parts of) the implementation via code generation.

Code generation is performed in both “classical” control
(control of physical plants) and in control of software systems.
As an example from classical control, MATLAB/Simulink
can generate efficient Hardware Description Language (HDL),
Programmable Logic Controller (PLC), or C/C++ code.
In control of software systems, domain-specific languages
(DSLs) have been proposed to model feedback loops. The
resulting software models are used to generate code that can
be traced back to the models [46] or to directly execute the
feedback loop via model interpretation [71]. Another popular
approach in software engineering is the use of frameworks
(cf. [63]) for control-theoretical controllers, such as [51]
that is based on Ptolemy 2!', or for rule- and utility-based
controllers such as [31]. Finally, there are libraries for various
programming languages that support implementing common
controllers, such as for Python'?.

Regardless of the specific implementation technology and
the degree of automation in translating the control algorithm
to runnable code, there are some recurring issues in every
controller implementation. Namely:

Actuator saturation occurs when the controlled system is
unable to follow the controller’s output. This happens when
a control knob is fully engaged. In classical control, actuator
saturation is a direct result of a physical constraint (e.g., a
valve can only open up to a certain point and not more); in
software systems control, similar constraints can be observed
as well (e.g., the number of servers used cannot exceed the
number of available servers in the cluster).

Integrator windup is a direct consequence of the actuator
saturation and occurs in controllers with integral terms (the
I term in a PID controller). During actuator saturation, the
integral control accumulates significant error, which causes a
delay in error tracking when the system under control recovers
to the point that the actuator is no longer saturated. Therefore,
a conditional integrator (or integrator clamping) should be used
to avoid the windup.

Integrator preloading is similar to windup and can occur (i)
during system initialization, or (ii) when there is a significant
change in the set point. In both cases, the integral term should
be preloaded with a value to smooth the setpoint change.

Apart from dealing with the common problems presented
above, the controller implementation has to be robust. Com-
mon mechanisms to achieve robustness are (i) determination

8http://www.mathworks.fr/products/simulink/

“https://www.modelica.org/

10http://www.esterel-technologies.com/products/scade-suite/

http:/ptolemy.eecs.berkeley.edu/ptolemyIl/
2http://sourceforge.net/projects/python-control/

and disregard of invalid input signals (e.g., out-of-bound val-
ues), (ii) preventing duplicate control actions, and (iii) graceful
degradation in case design-time assumptions are invalidated
(e.g., when the actual computation and communication jitter
is larger than assumed by controller designers).

Controller Integration: After a controller has been imple-
mented, it has to be integrated with the rest of the system. This
includes wiring all responsible components together, ensuring
that the measurements are consistently collected across all
sources, and that adaptation actions are correctly coordinated.

Regarding the running example, in the simplest case, this
involves (i) instrumenting the video encoding software with
appropriate sensors (e.g., to observe the frame rate) and actua-
tors (e.g., to adapt the encoding quality) [54], and (ii) providing
a runtime with a protocol that connects these sensors and
effectors with the controller.

When integrating a controller into a system, there are two
basic approaches to follow, with respect to the separation of
concerns between the controller and the system under con-
trol [63]: (i) intertwine the control logic with the system under
control — internal control, and (ii) externalize the control logic
into a “controller” component and use sensor and actuator
probes to connect the controller and the system under control
— external control.

The external control provides a clear separation of concerns
between the application and adaptation logic. Its advantages
with respect to maintainability, substitutability, and reuse of
the adaptation engine and associated processes makes it the
preferred engineering choice [63]. It also allows building
adaptation on top of legacy systems where the source code
might be unavailable. The main drawback of external control
is the assumption that the target system can provide (or can
be instrumented to provide) all the necessary endpoints for
its observation and consequent modification. This assumption
seems reasonable since many systems already provide some
interfaces (e.g., tools, services, APIs) for their observation
and adjustment [31], or could be instrumented to provide
them (e.g., by using aspect-oriented approaches). There is
also a potential performance penalty as a consequence of
using external interface or running some extra components
and connectors which cannot be tolerated in some resource-
constrained environments (e.g., in embedded devices where
memory footprint and transmission delays matters).

The separation of concerns in the external approach also
makes it possible to provide more systematic methods for
control integration by leveraging model-driven engineering
techniques and domain-specific modeling [46, 71]. Essentially,
these solutions raise the level of abstraction on which the
feedback control is described and therefore make it amenable
to automated analysis as well as complete integration code
synthesis.

G. Test and validate the system

The next step involves the test and validation of the
controller. This can be divided into two broad categories.
first, one needs to test the controller itself and check that it
does the correct thing. A part of this is already done with



proving the properties of the closed loop system. This proof,
however, does not test the controller implementation. Second,
is the controller verification together with the system under
control, to understand if the controller can deliver the promised
properties. This should be true, in general, but there might have
been model discrepancies that have been overlooked during
the design process, therefore validation is needed despite the
analytical guarantees given by control theory.

Verification and validation of the controller: Static analysis
and verification techniques can be used to assess both the
controller code’s conformance to its intended behavior and the
absence of numerical errors due to the specificity of different
programming languages and execution architectures.

There is a growing area of verification theories and tools
focusing on real analysis and differential equations. The most
recent advancements include Satisfiability Modulo Theory
(SMT), Ordinary Differential Equations (ODEs) and hybrid
model checking. The former can be used to verify if a system
described by means of a set of differential equations can reach
certain desirable (or undesirable) states, within a set finite
accuracy [30]. In terms of scalability, SMT approaches over
ODE:s have been proved to scale up to hundreds of differential
equations. Hybrid model checking is instead focused on the
verification of properties for hybrid systems [62], which can, in
general, be defined as finite automata equipped with variables
that evolve continuously over time according to dynamic laws.
These formalisms are useful to match a system’s different
dynamic behaviors with its current configuration, and can be
especially valuable to study and verify switching controllers
and the co-existence of discrete-event and equation-based
ones. Current hybrid model checkers are usually limited to
linear differential equations [29, 37].

Controller code usually relies on numerical routines. Using
the primitives of general purpose programming languages to
develop complex numerical procedures introduces unavoidable
source of uncertainties, including the common issues related to
finite numerical precision of their implementations. Some tools
(e.g., jpf-numeric) use model checking techniques to identify
possible sources of numerical problems for programs imple-
mented with general-purpose languages (e.g., Java) and pro-
duce counter examples helping the developer with reproducing
and fixing problems. Moreover, modern SMT tools can be used
at compile time to verify the occurrence of numerical problems
and automatically provide fixes guaranteeing the final results
of the procedures to be correct up to a target precision [16].
Ad-hoc languages for implementing numerical routines: apart
from the code-generation functions and API provided by
established mathematical programming environments, such as
Matlab, Maple, or Mathematica, some extensions to general
purpose programming languages provide constructs useful for
specifying mathematical solutions that may support coding and
compiler-level verification and optimization of controllers.

Verification and validation of the controlled software system:
Once the controller itself is verified, it is necessary to verify
the controller implementation together with the system under
control. This can be done by means of extensive experiments

but the process can be supported by different tools. Each tool
comes with its own drawback and guarantees.

Rigorous analysis: one can use tools like the scenario
theory [10, 12, 13, 57] to provide probabilistic guarantees on
the behavior of the controlled system together with the control
strategy. The performance evaluation can be formulated as a
chance constrained optimization problem and an approximate
solution can be obtained by means of scenario theory. If this
approach is taken, the software system’s performance can be
guaranteed to be in specific bounds with a given probability.
This, for example, allows for quantifying the probability
that the proposed solution is fulfilling the Service Level
Agreements in the case of failures or unexpected behaviors.
This type of analysis requires performing an extreme number
of experiments, varying many sources of randomness in the
system, to cover potentially many cases with the randomized
experiments. It is advisable to use this tool when one needs
formal guarantees that the implementation meets specific re-
quirements in all the possible conditions and when it is not
too costly to experiment with the production-ready system.

Empirical study: other types of analysis are based on
systematic testing. One common way to validate a controller
implementation and its system under control is to show
statistical evidence, for example, using cumulative distribution
functions, as done in [43, 44]. In this work, less experiment
effort is required are than for the rigorous analysis mentioned
previously. Based on the results of these experiments, one can
compute the empirical probability distributions of the goals. If
the most important test cases are covered with the experiments,
an empirical guarantee of the system behavior is obtained. This
type of guarantee, however, does not offer any bound or any
formal characterization of the system’s behavior. In fact, if
the system experiences different conditions than those tested,
it might expose an undiscovered bug and misbehave.

IV. CONCLUSIONS

This paper discussed how control theory results can be
integrated in the design of self-adaptive software. We have
clearly defined the steps that are required to develop control
strategies for a software system and used an example to clarify
and discuss how each phase of the control loop design process
can be cast in a practical application. We believe that this
knowledge systematization is the first step towards introduc-
ing control strategies in the design of self-adaptive software
systems that offer formal guarantees on their behavior.
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