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Abstract—Digital Twins are part of the vision of Industry
4.0 to represent, control, predict, and optimize the behavior
of Cyber-Physical Production Systems (CPPSs). These CPPSs
are long-living complex systems deployed to and configured for
diverse environments. Due to specific deployment, configuration,
wear and tear, or other environmental effects, their behavior
might diverge from the intended behavior over time. Properly
adapting the configuration of CPPSs then relies on the expertise
of human operators. Digital Twins (DTs) that reify this expertise
and learn from it to address unforeseen challenges can signif-
icantly facilitate self-adaptive manufacturing where experience
is very specific and, hence, insufficient to employ deep learning
techniques. We leverage the explicit modeling of domain expertise
through case-based reasoning to improve the capabilities of
Digital Twins for adapting to such situations. To this effect, we
present a modeling framework for self-adaptive manufacturing
that supports modeling domain-specific cases, describing rules for
case similarity and case-based reasoning within a modular Digital
Twin. Automatically configuring Digital Twins based on explicitly
modeled domain expertise can improve manufacturing times,
reduce wastage, and, ultimately, contribute to better sustainable
manufacturing.

Index Terms—Self-Adaptive Manufacturing, Digital Twins,
Case-Based Reasoning, Domain-Specific Languages

I. INTRODUCTION

Industry 4.0, the fourth industrial revolution, focuses on
integrating Cyber-Physical Production Systems (CPPSs), their
processes, and stakeholders to optimize the complete value-
added chain to ultimately save time, cost, and reduce resource
consumption [1]. These CPPSs are long-living complex sys-
tems deployed to and configured for diverse environments.
Due to specific deployment, configuration, wear and tear, or
other environmental effects their behavior as-operated can
diverge from its behavior as-designed over time. Successfully
using the CPPSs demands the expertise of human operators to
mitigate these effects. In such cases, experienced operators
employ significant manual efforts to configure the CPPSs
before starting production. Making their expertise machine-
processable can facilitate their self-adaptive operations.

One vision for implementing Industry 4.0 are so-called Dig-
ital Twins (DTs) [2], which are digital duplicates of CPPS that
represent, control, and predict the behavior of their physical
counterparts. Where DTs control CPPSs, they need to have
knowledge about the CPPS and its operations. Consequently,
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they are connected to the CPPS and lend themselves for
automatically adapting it to changing challenges. For their
adaptation of the overall manufacturing system consisting of
DT and CPPS, the DTs need to be enabled to sense changes
in the CPPS’s behavior, reason over reified domain expertise,
and make changes to the CPPS accordingly.

Case-Based Reasoning (CBR) [3], [4] is an AI planning
technique in which highly specific, and hence, sparse domain
expertise is reified in cases. These describe undesired situa-
tions a system should react to together with suitable reactions
to capture the expertise of CPPS operators. Based on this
domain expertise, the DT of a CPPS can detect undesired
situations, find matching or similar cases, and adjust the CPPS
according to their reactions to produce a desired system state
again.

This enables integrating highly domain-specific expertise
(that can hardly be foreseen by the CPPSs’ developers) in
brownfield settings where the long-living CPPSs are already
in place as well as in greenfield settings, where the CPPS and
its DT are developed together.

To leverage CBR over domain expertise into self-adaptive
manufacturing, we devised a modeling framework comprising
multiple interrelated modeling languages and integrate it into
our model-driven architecture for DTs [5], [6], [7]. The
contributions of this paper are

• extensible modeling languages to capture domain exper-
tise in the form of cases and to describe the similarity
between them, and

• a modular architecture for integrating CBR into DTs and
supporting all activities related to identifying, applying,
and learning cases.

In the following, Sec. II illustrates the challenges of incor-
porating domain expertise into manufacturing on the example
of injection molding. Sec. III then introduces preliminaries.
Afterwards, Sec. IV presents our CBR modeling languages and
Sec. V presents our realization of CBR within DTs. Sec. VI
illustrates our method’s application to the configuration of an
injection molding process. Sec. VII discusses observations and
Sec. VIII highlights related research. Sec. IX concludes.

II. CONTEXT

Injection molding is a popular form of batch processing
for the mass production of 3D plastic parts that is performed
daily billionfold around the world to manufacture identical
parts repeatedly in high quality. Injection molding itself is
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Figure 1. Detailed view of the plasticizing unit of an injection molding
machine.

highly automated but requires a configuration that often has to
be determined and adjusted manually due to changing CPPS
properties, materials, or environmental characteristics.

Figure 1 illustrates the typical components of an injection
molding machine. It consists of a hopper to insert the material
into the plasticizing unit. The plasticizing unit heats the
material until it melts and carries it to the front through a
screw. Heating bands support the melting. Next, the material
is injected into the mold, which is the 3D negative of the part
to be produced. The material solidifies inside the mold and
forms the desired shape.

Overall, the production process consists of four phases:
(1) Dosing: The material is fed into the cylinder. Rotation of
the plasticizing unit screw conveys the material to the nozzle.
Through the heating and the movement friction, the material
plasticizes. (2) Injecting: The screw moves towards the nozzle
and injects the material into the mold. The movement speed
and the viscosity of the material determine the speed of the
injection. Parameters of this phase are temperature, volume,
time, speed, and mold characteristics. (3) Holding: The screw
slows down, and the clamping unit applies pressure to the
mold. Thereby, the material fills the last parts of the mold.
The characterizing parameters during the holding phase are
the time and pressure. (4) Cooling: Before ejecting the finished
part, the material has to solidify by cooling off. The correct
time and temperature of the mold prevent defects such as
warpage.

The great variety of environmental and CPPS influences,
as well as of process parameters and their impact on the
process and part quality complicates finding optimal CPPS
configurations. Deviations from the predictions of simulations
are common, especially due to wear and tear. Consequently,
only experienced operators can configure the CPPS properly
by applying domain expertise learned during their career. DTs
can help to overcome these difficulties by reifying the opera-
tors’ domain expertise and automatically controlling the CPPS.
We, therefore, identify the following four requirements for
incorporating domain expertise via DTs in batch processing:
R1 Comprehensibility: Operator expertise must be reified

in means that are comprehensible by domain experts and

support non-clear cohesion as well as the integration of
empirical knowledge.

R2 Automatability: The DT has to monitor the situation of
the underlying CPPS permanently and, when encounter-
ing undesired states, has to automatically adapt the CPPS
without further interaction based on the reified domain
expertise.

R3 Adjustability: The DT and its domain knowledge have to
be adjustable to different contexts, deployments, config-
urations without in-depth software engineering expertise.

R4 Self-Explainability: Extracting knowledge is difficult in
a domain with unclear coherence, yet the CPPSs’ deci-
sions should be comprehensible by domain experts. To
support self-explainability, the DT needs to support the
creation of empirical-based analytical knowledge.

We conceived extensible modeling languages to fulfill R1
and R2, a modular DT architecture supporting R3, and a case
synthesis realizing R4. In the following, we present these
modeling languages, an implementation of our DT architecture
for CBR, and a system for reifying, applying, and producing
domain expertise through CBR.

III. PRELIMINARIES

In our approach to self-adaptive manufacturing, we employ
CBR, AI action planning, and software language engineering.
This section introduces these preliminaries.

Case-Based Reasoning and Planning
A DT that controls a CPPS encounters situations that are
not anticipated during specification and thus should adapt to
new conditions autonomously. CBR [3] is a problem-solving
paradigm that utilizes knowledge about previously encoun-
tered situations and reuses their solutions. Consequently, a case
consists of a situation description (a condition over available
data sources), its solution, and additional information about
how the solution was derived. The CBR cycle is divided
into four phases: (1) Retrieve the case most similar to the
current situation. (2) Reuse the solution of the most similar
case. (3) Revise that solution if the case differs too much
from the current situation. (4) Retain the revised case in the
knowledge base. Hence, an essential part of the CBR cycle is
the identification of similar cases. If the case’s condition can
reference multiple heterogeneous attributes, a generally useful
similarity cannot be specified; instead, this consideration is
highly domain-specific. To support engineers and domain ex-
perts in specifying similarity measures, these often are broken
down according to the local-global-principle: A distinct local
measure defines the similarity for each individual attribute
referenced in a case condition. A global similarity measure
then enables computing the similarity for the whole case by
using, e.g., the weighted average of all the local similarities.

CBR, hence, is limited to applying existing cases and
learning deviations of cases. It cannot, generally, produce
new solutions to completely unforeseen challenges. General
automated planning and scheduling supports creating new
solutions (plans) to unforeseen challenges, if the necessary



primitives (types, actions) are provided. In our architecture, we
leverage AI planning based on the Planning Domain Definition
Language (PDDL) [8] as a fallback mechanism when CBR
fails. PDDL is a language for representation and exchange of
planning domain models comprising types, constants, and ac-
tions with preconditions and postconditions. A PDDL problem
description is an instantiation of model elements and formu-
lates a goal that describes which situation the DT shall achieve.
A planning system, such as MetricFF [9] processes domain
models and problem descriptions and derives a sequence of
actions, a plan, that leads from the initial situation to the
goal [10]. Thus, PDDL can be employed as a fallback if CBR
cannot find a similar case to address undesired situations [11].

MontiCore Language Workbench

Our method presented in the following relies on modeling
languages [12] to describe cases, case similarities, DT archi-
tecture components, and its ties to CPPS, model transforma-
tions, and code generation. All of these exist in the techno-
logical space of the MontiCore [13] language workbench [14]
for the efficient engineering of modular, textual modeling
languages. These modeling languages comprise context-free
grammars, Java-based well-formedness rules, model-to-model
transformations, and FreeMarker-based code generators [13].
From grammars, MontiCore derives an extensible infrastruc-
ture to parse, check, and transform models of the languages
defined by the grammar. MontiCore comes with a multitude of
reusable modeling language modules ranging from expressions
and statements of various complexities, to UML fragments,
software architectures, and more.

A particular kind of languages available in the techno-
logical space of MontiCore are domain-specific tagging lan-
guages [15] that support extending models of a base language
with additional information without polluting these. To this
effect, their infrastructure (grammar, well-formedness rules)
is derived from a base language to enable enriching models of
that language with information, e.g., about platform-specific
details of their use, without polluting them. As the tag model
is separate from the base model, models of the base language
are unaware of being tagged and can thus be reused in different
contexts.

Digital Twin Architecture

MontiArc [16], [17] is an architecture description language
for specifying reusable components within a software archi-
tecture and their connections through typed, directed ports.
MontiArc comes with a Java code generator that generates
Java classes conforming to the specified components, methods
to access port values, and a mechanism to inject handwritten
behavior specifications. In previous work, we built a DT with
MontiArc, that enables automatic experiment execution on
injection molding machines [5] and also provides a cockpit
for visualizing the current state of the machine [18]. We
define a Digital Twin (DT) of a system as a set of models
of the system, a set of contextual data traces, and a set of
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Figure 2. Reusable Digital Twin Architecture modeled with MontiArc.

services to use the data and models purposefully with respect
to the original system [5]. In our notion, a DT is a software
system representing a physical counterpart and encapsulating
domain knowledge in the form of models that characterizes
this physical counterpart. Further, it contains data about the
physical counterpart and services to collect more data or
interact with this counterpart. We built a DT (cf. Figure 2)
with MontiArc that provides the following components:

• Data Lake: Encapsulates multiple databases that store
data about the physical system, its context, and data
produced by the DT

• Data Processor: Accesses the Data Lake and collects
relevant data for the DT

• Evaluator: Supervises the physical system’s state and
triggers the reasoner if a malfunctioning is detected

• Reasoner: Based on data about the physical system and
models describing its intended behavior, finds a solution
to return to the intended state

• Executor: Accesses the physical system via OPC UA [19]
and ensures that the solution provided by the Reasoner
is executed on it.

While previous reasoner implementations offered a way to
organize experiments, we will exchange this Reasoner with
a new reasoner that performs CBR.

IV. MODELING LANGUAGES FOR CASE-BASED
REASONING

We present a modeling framework that supports the cycle
of CBR and supports the creation, storage, retrieval, and
comparison of cases via the case base. Since the DT archi-
tecture and connectivity to the CPPS are provided by the DT
framework, domain experts only need to provide the essential
domain knowledge, defining known experiences as cases and
specifying case similarity measures to create a new DT for a
CPPS. We utilize UML/P class diagrams (CDs) [20] and in-
troduce further modeling languages to support the description
of the domain knowledge. The integration of these models



supplements the framework configuration and incorporates
the domain knowledge into the workflow. Additionally, the
framework enables defining PDDL-based fallback strategies
for circumstances where CBR fails to produce a suitable case.
These fallback solutions are also modeled by domain experts
and thus explicitly tailored to the underlying CPPS.

A. CBR Modeling Languages

Modeling languages facilitate the specification of the CBR
framework and assist domain experts in making their expertise
machine-processable. Their models tailor the steps of the CBR
cycle and the case base to a specific application domain.
Figure 3 gives an overview of the integrated modeling lan-
guages employed in our approach: (1) Class diagram models
describe the elements and relations of the domain and specify
data structures available to the framework. (2) Case base
models describe acquainted cases of the physical system. The
framework interprets and synthesizes case models at runtime.
(3) Case similarity models specify how to compute the sim-
ilarity between cases based on their attributes. (4) Models
of the MontiArc architecture description language define the
components and architecture of the DT implementing the
CBR loop. These are predefined and provided with the DT
framework. (5) OPC UA tagging models [5] define how the
DT architecture connects to the API of the CPPS.

The case base language foresees extension with domain-
specific expressions and actions using the language extension
mechanisms of MontiCore [13]. The code generated from the
case similarity models supports integrating handcrafted code
to define more complex similarity analyses.
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Figure 3. Modeling languages, relations, and artifacts specifying the domain,
cases, and fallback option for an application of the CBR framework.

Class Diagrams
CDs describe the elements and relations of the application
domain. The case-based reasoner utilizes the corresponding
data structures to build and compare cases. Figure 4 presents
a textual UML/P CD that illustrates an excerpt of the domain
of injection molding. Class ProcessData symbolizes a data
record in the molding process. Besides metadata like the
cycleId and cycleTime (l. 3), it provides the values of
the nozzle temperature and the injection pressure (l. 4).

classdiagram InjectionMolding {

class ProcessData {

int cycleId, cycleTime;

double nozzleTemperature, injectionPressure;

boolean heating;

}

}
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Figure 4. Class diagram for an excerpt from the domain of injection molding,
containing a small set of parameters of the injection process.

Case Base Language
The case base language supports domain experts in defining
cases. To this end, they distinguish between known and un-
known cases. Known cases describe undesired situations for
which the domain expert knows a solution with its expected
consequences. If a similar situation occurs, one or multiple
solution steps can be repeated to solve the problem. Unknown
cases describe undesired situations for which the expert does
know that the situation might occur and that the system
configuration has to adapt, but does not know how to adapt it.
Although domain experts might not be able to provide precise
instructions, they can provide helpful context knowledge to
sort out the problem through a fallback system. By combining
both types of cases, the domain expert can describe the whole
space of situations that can occur and should be handled by a
CBR system.

The Case-Base Language (CBL) is defined as textual Mon-
tiCore modeling language (cf. Figure 5). Every case definition
references the domain CD by importing models (l. 2) using
the non-terminal ImportStatement provided by inheriting
from MontiCore’s MCExpressions language for binary
expressions, statements, and types. Each case base can contain
multiple cases (l. 2) and each case consists of a head, a body,
and an optional fallback (l. 3). Its head denotes the state of
the case and specifies its name (l. 4). The body comprises a
condition and an optional solution (l. 5). If the body features
a Solution part, the case is known. Otherwise, it is treated
as an unknown case. The condition essentially is a Boolean
expression (l. 6) over any types and properties available
through the domain model. Well-formedness rules of the CBL
ensure that the expressions are valid Boolean expressions (i.e.,
referenced types exist and can be compared as specified by the
expression). The solution is a non-empty sequence of solution
parts with a consequence (l. 7). Each solution part (l. 8)
refers to the interface non-terminal SolutionExpression
(l. 12) that is an extension point of this grammar and can
be implemented in domain-specific sub-grammars. Per default,
arbitrary assignments are supported as solutions (ll. 15-16) and
corresponding well-formedness checks are provided. Further,
domain experts can also specify java code that performs a
solution and call this code in the solution part. Java calls
are realized by the imported MCExpressions. The CBL
also supports PDDL specifications (provided by importing
PDDL) for planning if the solution for a case is unknown.
The consequence describes a postcondition that should hold
after the case has been applied. The CBR system relies on



the specified yields consequence to check whether a case
was successfully applied. If the specified postcondition is not
fulfilled, the DT applies this case less likely in the future.
Similarly, the fallback (l. 10) is an extension point for fallback
actions to be used if the case fails. Per default, notifying
users (ll. 17-18) and falling back to PDDL planning (ll. 19-
20) are supported. Both solutions and fallbacks are meant
for extension through domain-specific or application-specific
sub-grammars in which, e.g., temporal expressions, fallback
automata, or other means can be integrated using MontiCore’s
language extension mechanisms [13].

grammar CaseBaseLanguage extends MCExpressions, PDDL {

CaseBase = ImportStatement* Case+;

Case = Head "{" Body "}" Fallback?;

Head = "case" Name;

Body = Condition Solution?;

Condition = "if" Expression;

Solution = SolutionPart+ Consequence;

SolutionPart = "do" SolutionExpression;

Consequence = "yields" Expression;

Fallback    = "fallback" FallbackExpression;

interface SolutionExpression;

interface FallbackExpression;

AssignmentSolution implements SolutionExpression

= AssignmentExpression;

NotifyFallback implements FallbackExpression

= "notify" message:String;

PDDLFallback implements FallbackExpression

= "goal" PDDLGoal;

}
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Figure 5. Excerpt of the MontiCore grammar of the case base language.

Figure 6 illustrates a model of the CBL that refers to the
injection molding domain model ProcessData (l. 1) and
shows two cases that may occur in the injection molding
machine. The first case represents a known case (ll. 3-7)
that handles a problematic temperature of the injection nozzle
characterized by being higher than 500 degrees Celsius (l. 4).
The attributes in this expression reference the domain model
of Figure 4. As a solution, the case contains an assignment
expression that specifies setting the heating to level 1. The
second case is unknown (ll. 9-12) and addresses dangerous
pressure in the injection process (l. 10). When the condition
holds, a retrieval of similar known cases is triggered. In case
the search yields no cases, the DT uses the PDDL fallback
expression to start finding a plan over the CPPS actions and
properties that, when executed, will reduce the pressure.
Case Similarity Language
The second essential part of a case-based reasoning system is
its ability to assess similarity between a situation in the CPPS
and a case. Similarity as a metric is expressed as a positive
rational number with 0 being considered equal. The Case Sim-
ilarity Language (CSL) supports describing weighted global
and local similarity based on a the types of domain models
and promotes integration of further, handcrafted, similarity
analyses using the top mechanism [13] with its generated code
artifacts. We developed a Domain-Specific Language (DSL)
for specifying similarities between cases (Figure 7). Every case

import InjectionMolding.ProcessData;

case Overheating {

if ProcessData.nozzleTemperature > 500

do ProcessData.heating = 1

yields ProcessData.nozzleTemperature < 500

}

case DangerousPressure {

if ProcessData.injectionPressure > 20

fallback goal (injectionPressure 10)

}
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Figure 6. Excerpt of a case base for injection molding regarding dangerous
temperatures and pressures.

similarity definition is based on domain models and consists
of global and local similarity metrics (ll. 2-5). After an import
list establishing relation to the domain of discourse (l. 2),
a name case similarity specification follows (ll. 3-5), which
contains (l. 4) multiple local similarity metrics (l. 7) that relate
to individual attributes of the domain models and a single
global similarity metric (l. 8) describing how these individual
similarities are weighted. Both kinds of metrics reference to
interface non-terminals (ll. 10-11) that facilitate introducing
new metrics into the CSL. The CSL features two kinds of
metrics for local and global similarities (ll. 13-17) out of which
the manual metric specifies that a handcrafted similarity
analysis should be used. This demands implementing a specific
Java interface of the CSL’s runtime system, which is then
invoked if the manual is used. Well-formedness rules ensure
that the referenced domain types exist and are correctly used.

grammar CaseSimilarityLanguage extends MCExpression {
CSD = ImportStatement* 

"case" "similarity" Name "{" 
LocalMetric* GlobalMetric

"}";

LocalMetric = "local"  Name Local  ";";
GlobalMetric = "global" Global ";";

interface Local;
interface Global;

Manual implements Local, Global = "manual";
Absolute implements Local = "absolute";
Weighted implements Global = "weighted" "{" Weights "}";
Weights                    = (AttributeWeight || ",")+;
AttributeWeight = Name "=" weight:Double;

}
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Figure 7. Excerpt of the MontiCore grammar of the CSL.

Figure 8 displays a model of the CSL. It refers to the
injection molding domain model ProcessData (l. 1) and
specifies two local similarities for this domain (ll. 4-5). The
model specifies the absolute distance local similarity metric
for the nozzleTemperature and a handcrafted metric for
the pressure attribute. Global similarity then is defined
through the weighted combination of nozzleTemperature
and pressure (ll. 7-10).

Similar to the CBL, the CSL also does not aim to be a catch-
all language but supports leveraging MontiCores language ex-



import InjectionMolding.ProcessData;

case similarity InjectionMolding {

local ProcessData.injectionPressure manual;

local ProcessData.nozzleTemperature absolute;

global weighted {

ProcessData.injectionPressure = 0.7,

ProcessData.nozzleTemperature = 0.3

};

}
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Figure 8. Exemplary case similarity model.

tension mechanisms to define highly specific similarity metrics
(e.g., featuring uncertainty, SI units, or domain terminology).

PDDL Fallback Modeling
The selection of cases to resolve a situation bases on their
similarity. Depending on the size and scope of the case base,
no case might be available. As this is not unusual, the DT has
to be able to handle such situations. Therefore, we provide a
fallback possibility to full AI planning.

Due to the dependence on the domain, we do not pre-
scribe a specific modeling language for fallback activities but
provide extension points in both CBL and DT. The default
implementation of these extension points are notification of
human operators and invoking a PDDL planning. Depending
on the case defined by the domain expert, parameters for a
Fallback component or PDDL goals can be defined. For the
former, a DT component taking care of the fallback activities
has to be provided, for the latter, the corresponding goal must
be defined in the DT’s PDDL knowledge base.

B. Integrating Domain-Specific Models into CBR

In our approach, the CSL models are interpreted at DT
runtime, whereas the CSL models are used for code gener-
ation at design-time to enable the integration of handcrafted,
more complex, similarity analyses (cf. Figure 9). This section
explains their overall integration.

At Design-Time
The similarity measures do not change once the DT is
running. Hence, at design-time, CSL models are translated
into Java artifacts that are invoked when their computations
are necessary. As the models feature planned extension with
handcrafted Java computations (indicated by the manual
keyword), we exploit the code generation to support injection
of these handcrafted similarity analysis artifacts using the
TOP mechanism [13], a variant of the generation gap pattern,
and generate factories to inject implementations of known
similarity analysis interfaces into the similarity computations.
Leveraging Java for more complex analysis liberates domain
experts specifying similarities from the complexities of an
overly generic (possibly Turing-complete) modeling language
and supports engineers in using established tools, frameworks,
and libraries to develop the analyses. Where more complex
analyses are required within in the CBL, MontiCore’s language

extension enables creating sub-languages whose grammars
implement and extend the CBL’s extension points.

Each model for local similarity is translated to a class with
a name of the form <Name>LocalSimilarity. <Name>
is replaced with the name of the domain model attribute. The
class provides a single public method to calculate the local
similarity. As a parameter, the respective attribute and the
condition expression of the case to compare to are given. The
domain model determines the type of the attribute. Therefore,
type-safe artifacts can be produced, and their stable interfaces
hide whether these are generated or handcrafted from the
framework.

The model of global similarity results in a class with a
name of the form <Name>Similarity, where <Name> is
the name of the overall similarity model (Figure 8, l. 1). The
class provides a single public method to calculate the global
similarity. All domain attributes and all condition expressions
are passed as parameters. Based on the defined similarity
type, an implementation is generated. This holds for the
global weighted similarity. The CBR modeling framework
collects the artifacts for the local similarities based on the
models. Based on the weights, their calculated similarity is
summarized.

Ultimately, this enables domain experts to develop their
own DTs and enrich these with domain knowledge without
requiring any programming skills.

At Runtime
The case base comprises cases, which are interpreted at
runtime. To this end, they are parsed, and their abstract syntax
representation is stored in memory. During runtime, the DT
monitors the CPPS and checks for undesired situations using
the case models. If such a case is found, DT action is required,
and it tries to retrieve the most similar case.

During the retrieve phase of the CBR cycle, the DT receives
the undesired (current) situation and the list of known cases as
input. To determine similar cases, the similarity is calculated
for every case. The metric value is determined based on the
conditions and the situation. This step relies on the similarity
computation artifacts generated based on the CSL models and
the related handcrafted artifacts. Next, the results are filtered
by a predefined constant threshold. Similarities between cases
range between 0 and 1 in our implementation, and we consider
a value smaller than 0.2 as similar enough to try to apply the
solution of a case.

In the reuse phase, the DT then determines the actual
solution to execute. For this, the previously selected set of
similar cases is taken. By default, the DT tries to employ the
most similar case. How new cases should be constructed and
under which assumptions their solutions can be synthesized
again is highly domain-specific and depends on the context
our framework is employed in and the connected CPPS. For
instance, synthesizing multiple new cases to experiment with
finding CPPS behavior optima might be a valid approach in
an initial deployment setting but not during normal operations.
Hence, our framework supports extension with more sophis-



ticated reuse mechanisms, such as constructing new cases
by deviating case conditions and solutions systematically or
interpolating between multiple similar cases.

After executing a solution, the DT uses the retain phase
to learn from the result, which requires the situation before
and after applying the solution. Based on the situation after
executing the solution, the expected outcome is compared to
the resulting of applying the solution. If the resulting outcome
matches the expectation, the existing case is either reinforced
as being useful or the new case is added to the case base. For
the latter, the situation’s properties are therefore converted into
equality equations. Next, the similarity of the new case to those
in the case base is assessed. If the smallest similarity is above a
domain-specific learning threshold, the DT considers the case
as new and adds it to the case base models. Independent of
whether a new case was learned, the situation triggering the
CBR, the selected cases, solutions, and outcomes are logged
for the operators to support explaining system behavior.

V. MODEL-BASED FRAMEWORK FOR CASE-BASED
REASONING

By providing DSLs and adequate code generators, we
enable domain experts to adapt the DT framework we built to
individual CPPS and specific requirements. Figure 9 presents
the realized framework for generating DTs. It contains the
general DT services for storing data, sending OPC UA com-
mands and evaluating data to identify the current system state.
Furthermore, it offers the general functionality to perform
CBR. The components for assessing the current CPPS state
and storing data are predefined in the framework and tailored
to the application scenario by generating, e.g., the actual
data base structure and OPC UA commands according to the
domain and OPC UA models. Since all parts of the DT can
be generated, explicitly no software developers are required to
create a DT. The generator creates a DT that is self-adaptive
based on the domain knowledge that is provided as cases. If the
DT detects an unintended behavior, it adapts the configuration
of the physical twin accordingly. If this does not improve the
CPPS’s behavior and results in the state described in the case’s
consequence part, the DT learns that the case is not successful
and tries to apply an alternative.

The DT is tailored to a specific CPPS through models,
describing this CPPS. A domain expert specifies the CPPS
in a domain model and adds information for data retrieval
via an OPC UA tag model. These models serve as input for
the generator that creates Java code for OPC UA access, data
objects, and storage. To enrich the generated DT with domain
knowledge for self-adaptation, the domain expert also creates
case models that characterize critical situations at runtime
and how the DT should handle these situations. Besides, the
domain expert specifies similarities to determine whether the
CPPS situation at hand resembles one of these cases. The case
and similarity models are interpreted while the DT is running.
Thus after generation, the domain expert can add further cases
to the case base if necessary. The DT calculates the similarity
of the situation in the CPPS and a case in the case base
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Figure 9. Framework for generating a DT based on domain knowledge
provided in models.

by mapping the actual machine values with parameters in
the case. Since the case and the data access are consistent
with the domain model (cf. Figure 4), the DT can map sensor
values with parameters in the case. e.g., the current value of
the nozzleTemperature (l.4) is sensed by a sensor in the
machine and mapped to the parameter in the case (cf. Figure 6
(l.4)) when the DT calculates the similarity.
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Figure 10. Internal composition of the Case-Based Reasoner. It con-
nects to the Case Base and comprises components for the steps of the CBR
cycle as well as a fallback.

Internally, the Case-Based Reasoner comprises six
sub-components that are responsible for the individual CBR
activities (cf. Figure 10). A control component manages the
process and interacts with the respective CBR components.
The Case Retriever obtains those cases from the Case
Base that are similar to the current problem situation. The
Case Reviser tailors the contained solutions to the prob-
lem at hand. Additionally, it reacts to feedback received from
the Executor and further adapts the solution if necessary. When
the Case Base does not contain known cases, the Case
Reviser employs the Fallback which is usually notify-
ing the machine operator or stopping the machine. Finally,
the Case Retainer stores the experience, including the
encountered the problem, applied solution, and its success,



in the Case Base.
We implement the CBR framework (i.e., the Case-Based

Reasoner and its sub-components) as an extension for the
base DT architecture (cf. Figure 2). For that purpose, we
provide a general implementation for the CBR components
and define the domain-specific details via CBR models. Mod-
els of the Case Base Language describe known cases in the
domain at hand and, thus, determine the Case Base contents
and guide a system’s management. The Evaluator monitors
the system by checking the occurrence of unknown cases.
The Case-Based Reasoner utilizes the known cases and
the Fallback to find a solution for the detected situations. To
that end, it relies on the Case Similarity Language models to
determine the similarity between a case and the given situation
to find an applicable case or adequately store new experiences.
Fallback models provide an alternative method of solution-
finding when CBR does not yield a suitable solution. The
generated DT relies on this framework when performing self-
adaption through CBR but is enriched with domain-specific
models that experts can provide.

VI. APPLICATION EXAMPLE

We created a DT with CBR for an injection molding
machine as a demonstrator. The CBR framework and the
DT architecture were specified by us while domain experts
from injection molding created models of the CBL and CSL.
We tested the generated DT on real data from a filling
experiment series in injection molding. After mounting a new
mold part for series production, the exact parameter settings
are unknown, and the operator usually runs a so-called filling
study to slowly approach an ideal configuration. Step by step,
the amount of injected plastic is increased until the mold is
filled. Then, fine-tuning finds a configuration that also ensures
a smooth surface of the part and reduces leakage. We aim to
speed up the process of finding the correct parameters while
focusing on one specific machine and one mold.

Our DT is tailored to a ALLROUNDER 520 A 1500 by
ARBURG. The adaption efforts can roughly be structured as
follows: 1) provide data binding to the machine, 2) identify
domain model, 3) devise a case base, and 4) establish a notion
of similarity. For data access, the manufacturer provides an
OPA UA interface through which the DT can access runtime
data.

In cooperation with domain experts from injection molding,
we identified representative parameters (cf. Figure 11) for
capturing the machine’s state. PhaseData comprises all
parameters of an injection process. DosingTime determines
for how long plastic is loaded into the plasticizing unit.
The attributes cylinderHeating, injectionFlow,
and switchOverVolume (ll. 7-9) describe the injec-
tion parameters. cylinderHeating sets the tempera-
ture inside the plasticizing unit, injectionFlow and
switchOverVolume influence how fast and long plastic is
injected. The meltCushion (l. 12) is the surplus of material
left in the plasticizing unit after the injection.

classdiagram InjectionMolding {

class PhaseData {

int cycleId;

double dosingTime;

double cylinderHeating;

double injectionFlow;

double switchOverVolume;

double backPressure;

double meltCushion;

// further attributes

}

}
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Figure 11. Injection molding domain model. PhaseData comprises
parameters of the production of a single part. Only the most critical parameters
are depicted.

import InjectionMolding.PhaseData;

case tooMuchMaterial {

if PhaseData.meltCushion > 20

fallback notify("Material remainder high")

}

case increaseBackPressure {

if PhaseData.switchOverVolume == 70 &&

PhaseData.meltCushion == 20 &&

PhaseData.backPressure == 10

do PhaseData.backPressure = 15

yields PhaseData.meltCushion == 12 &&

// further effects

}

case injectMore {

if PhaseData.switchOverVolume < 70 &&

PhaseData.meltCushion < 10

do PhaseData.switchOverVolume = 70

yields // further effects

}
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Figure 12. Example cases from the case study in injection molding. The
first case defines the problematic parameter space. The others are solutions
to handle more specific situations. Repeating imports are omitted.

Figure 12 exemplarily shows cases identified for the case
study. The first case is unknown (ll. 3-6). It describes the prob-
lematic parameter state of having too much residual material.
The other two cases (ll. 8-21) feature possible solutions. The
first handles a situation where too little material is injected.
The specified backPressure is too low, leading to missing
material in the mold. The second covers the situation where
more material can be injected.

For similarity, we employ a weighted similarity calculation,
as specified in Figure 13. The local similarities define the
critical parameters with influence on the metric (ll. 4-8).
The values of backPressure and dosingTime are more
sensitive to changes. Therefore, we use a squared local sim-
ilarity for them. It is offered by the CSL where the difference is
squared. The global similarity characterizes the weights (ll. 10-
16). The similarity of switchOverVolume has the most
influence with a weight of 0.4. A minor influence has the
similarity of cylinderHeating with a weight of 0.05.

Using models and the customized DT components, one



import InjectionMolding.PhaseData;

case similarity InjectionMolding {

local PhaseData.meltCushion absolute;

local PhaseData.switchOverVolume absolute;

local PhaseData.backPressure squared;

local PhaseData.dosingTime squared;

local PhaseData.cylinderHeating absolute;

global weighted [

PhaseData.meltCushion = 0.2,

PhaseData.switchOverVolume = 0.4,

PhaseData.backPressure = 0.2,

PhaseData.dosingTime = 0.15,

PhaseData.cylinderHeating = 0.05

];

}
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Figure 13. Model for similarity calculation in injection molding.

receives a fully functional DT generated based on domain
models, case models, and similarity models to provide a CBR
for an injection molding machine.

For evaluating the generated DT, we captured the cycle-
times for CBR cycle execution in the DT while it was running
on a local computer with Intel(R) Core(TM) i7-7600U CPU.
The DT operated on real historical data of the injection
molding machine but, due to safety issues, could not change
settings on the machine.

Initially, the DT started with a case base of 20 cases that we
identified in cooperation with the injection molding experts.
The measured results are displayed in Table I. The DT’s

Table I
CYCLE TIMES OF THE DT’S CBR CYCLE.

Minimum Maximum Average
ms ms ms

First Cycle 16, 9181 110, 2881 42, 2136
No Case 2, 6234 50, 6226 16, 16197
Case Detected 1, 7137 75, 6592 13, 01902

CBR cycle was triggered every time that the machinecycle
counter in the machine changed. This parameter simply counts
the number of performed production cycles on the ARBURG.
During the first cycle, the DT loads the initial cases from the
file system. Consequently, this cycle’s duration had a longer
execution time ( 42, 2136ms in average) than other cycles. The
DT monitors the injection molding machine and compares
the current state to identified cases. When no case matched
the current machine’s state, this comparison took 16, 16197ms
on average. If a case was present, the DT detected it within
13, 01902ms on average and tried to adapt its behavior based
on the solution stated in the case model. If the machine
data confirmed the case’s success, the DT marked the applied
case as successful or unsuccessful, respectively. We expect
an increase in cycle time due to communication latency if
the DT connects to the CPPS and autonomously changes
process parameters. Given that injection molding is a cycle-
based process where the process settings can only be updated
for the next cycle, and that production cycles take between 50

seconds and 2 minutes, the computing times of the DT are
sufficient to adapt the process settings in time.

VII. DISCUSSION

We applied the presented framework and modeling lan-
guages to create a DT of an injection molding machine. The
realized DT establishes a connection to the injection molding
machine and reads its sensor values. Based on these, the
DT autonomously detects unintended system behavior and
produces solutions based on similar cases provided by the case
base.

While cases consisting of conditions and effects are very
intuitive, the modeling languages of our framework rely on
some experience with data types and structures (int, float,
Boolean, objects), an understanding of model relations (im-
ports), and might even relate to PDDL knowledge bases.
The first challenge can be mitigated by providing even more
domain-specific extensions of the CBL that rely only on data
types and data structures well known by the domain experts
and by intelligently translating these to the data structures
communicated via OPC UA to the CPPS. The notion of
model imports could be omitted by fixing a CBR DT to a
single domain model class diagram and adjusting the CBL
again. Similarly, PDDL fallbacks can be prohibited in domain-
specific sublanguages of the CBL. Hence, the languages
employed within our framework can be tailored precisely to
the complexity suitable for the domain experts operating the
systems. These, of course, limit the usefulness of the overall
framework. Nonetheless, due to MontiCore’s language exten-
sion mechanisms, making the language as comprehensibly as
necessary is possible (R1). In general, CBL and CSL were
regarded as easy to understand and use. However, injection
molding experts had difficulty in explicitly expressing simi-
larities between cases because they often also work by gut
feeling and could not pinpoint the exact point that triggers
their adaptation of the machine configuration.

The generated DT works autonomously (R2) and evaluates
the current CPPS state every time that a new production cycle
starts. If the CPPS state matches the condition of a case,
the DT adapts the CPPS configuration based on the solution
specified in the case. If this adaptation does not lead to the
expected behavior of the CPPS the DT learns to prioritize this
case lower in the future.

The presented DT can connect to any CPPS that provides
a communication interface; thus, it receives the data for eval-
uating if any unintended situations occurred. Active writing
of parameters to the machine while it is running remains
critical and, due to liability issues, might be prohibited in other
domains. Nonetheless, the DT provides solutions for detected
cases and attempts to implement these autonomously. If the
connected CPPS prohibits manipulation of settings without
human interaction, the DT can at least provide a recommen-
dation for adapting the machine configuration. Moreover, the
presented framework is reusable for other CPPS (requirement
R3) as essential parts of the DT are modeled independent of
the underlying CPPS. Transferring the DT to another CPPS



requires implementation of adapters to communicate with the
machine, manipulating the domain model, and specifying an
application-specific case base and similarity measurements.
The model-driven development of the DT based on a generator
that derives the concrete implementation from domain models
further speeds up the development process. Overall, the various
configuration means support tailoring our approach to a variety
of self-adaptive manufacturing scenarios (R3).

When the DT that we realized encounters new cases, it first
searches through the case base to find the most similar case and
tries to adapt its solution to the case at hand. If this adaptation
is successful, it creates a new case and adds it to the case base.
Thus, when running over a more extended period of time the
DT learns more cases and becomes more effective. Thus, the
realized DT improves over time by persisting experiences that
domain experts can review as explanations of self-adaptive
behavior (R4). Interesting challenges arise due to the indeter-
ministic nature of CPPS, the actions taken in the past may not
be relevant for similar cases in the future. Nonetheless, since
the DT is able to adapt cases in terms of their success, it at
least does not try to apply solutions that verifiably do not lead
to desired situations.

VIII. RELATED WORK

An approach similar to ours utilizes an IIoT Gateway with
an OPC UA interface as a mediator between a DT and
the physical system [21]. We suggest exchangeable adapter
components for both, data retrieval and control, supporting a
range of different communication technologies and protocols.
A different idea investigates model-based DTs that support and
guide product development in all phases of the life cycle [22].
During design and engineering, DTs comprise collections of
digital artifacts (data and models) to provide simulations of
the expected system behavior.

A similar concept utilizes DTs to merge different kinds
of system data to model its behavior [23]. Thus, the DT
shows the effect of design changes on the physical system and
supports virtual verification of its behavior. Further research
demonstrates the extent of technologies and application do-
mains for DTs in manufacturing. In a framework for smart
workshops, DTs control CPPS, providing local optimizations
and communicating to achieve a global optimization [24].
Another approach employs edge, fog, and cloud computing
to implement DTs [25]. The DTs control physical entities
via virtual models and are connected on a network level
or through the cloud to perform optimizations of increasing
degree. However, these proposed DTs are tailored to the given
tasks or application domain while we present a customizable
approach that is applicable to a wide variety of purposes.

Autonomic system must be able to handle unexpected and
novel situations. Thus, CBR is well suited for application
in autonomic systems and especially in DTs. This includes
employing CBR for self-configuration in autonomic systems
[26] or utilizing CBR to detect and repair system failures at
runtime (self-healing) [27]. These approaches face the cold-
start problem, though. As a solution is derived from existing

cases, considerable effort and knowledge about the domain is
required to set up an extensive case base. A solution to the
cold-start problem is a combination of CBR and goal reasoning
[28], [29]. A case-based reasoner tries to solve problems based
on the experiences in the case base. If the cases do not yield
a solution, the system applies goal reasoning as a fallback
to create new cases and adds these to the case base. An
alternative is building the case base in an offline learning
phase [30]. The approach utilizes reinforcement learning for
creating new cases. In the online learning phase, the system
finds appropriate cases via CBR and applies reinforcement
learning to adapt the solution to the situation at hand.

Multiple contributions deal with CBR in the domain of
injection molding. A prototype recommendation system for
parameter determination provides an interface for manual
parameter input and suggests corrections using CBR [31].
Another interactive user system for the shop floor determines
parameters first by CBR and improves these through a rule-
based system [32].

Further research reviews different methods for parameter
determination injection molding [33]. The authors identify
CBR as one of three main approaches. They report no commer-
cial or systematic solution since feedback on quality remains
challenging. Instead of requiring manual reading and writing
of parameters, a more integrated approach incorporates the
injection machine into the system [34]. However, it employs
a very rudimental read/write approach without the goal of
creating a digital machine representative. A concept of DTs
in injection molding identifies all different phases of the
process and their linking [35]. However, it provides no defined
method for the individual steps. Our system focuses on the
manufacturing procedure on the machine itself and employs
CBR for this.

IX. CONCLUSION

To leverage CBR over domain expertise into self-adaptive
manufacturing, we devised a modeling framework comprising
multiple interrelated modeling languages and integrate it into
our architecture for DTs [5], [6], [7]. We have presented a
collection of modeling languages to support domain experts
in encoding their knowledge into DTs that perform self-
adaptation at runtime. This enables the DTs to react to
unforeseen situations quickly and learn from past situations.
Models of these languages describe domain-specific cases and
their similarity and are processed by a modular DT architecture
that manages the CBR cycle of retrieving cases similar to
the current situation, reusing these to handle the situation,
revising these if necessary, and retaining these if the revisions
were successful. The realized framework is not tailored to one
specific CPPS but can be customized to any other CPPS. The
model-driven development simplifies developing DTs and can
lead to more efficient manufacturing, less misproduced goods,
and, ultimately, reduced production cost.
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