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Abstract—Decision-making for self-adaptation approaches
need to address different challenges, including the quantification
of the uncertainty of events that cannot be foreseen in advance
and their effects, and dealing with conflicting objectives that
inherently involve multi-objective decision making (e.g., avoid-
ing costs vs. providing reliable service). To enable researchers
to evaluate and compare decision-making techniques for self-
adaptation, we present the RDMSim exemplar. RDMSim enables
researchers to evaluate and compare techniques for decision-
making under environmental uncertainty that support self-
adaptation. The focus of the exemplar is on the domain problem
related to Remote Data Mirroring, which gives opportunity to
face the challenges described above. RDMSim provides probe and
effector components for easy integration with external adaptation
managers, which are associated with decision-making techniques
and based on the MAPE-K loop. Specifically, the paper presents
(i) RDMSim, a simulator for real-world experimentation, (ii)
a set of realistic simulation scenarios that can be used for
experimentation and comparison purposes, (iii) data for the sake
of comparison.

Index Terms—Remote Data Mirroring, Self-Adaptive System,
Exemplar

I. INTRODUCTION

Remote Data Mirroring (RDM) is a disaster recovery tech-

nique used to protect data by storing multiple copies (i.e.

replicas) on physically remote servers (i.e. mirrors) [1], [2].

The RDM system tolerates failures by requesting or rebuilding

the lost or damaged data samples from another active mirror to

facilitate data recovery. Hence, the RDM helps in maintaining

data availability and preventing data loss. Furthermore, to

ensure that distributed data is not lost or corrupted, the RDM

is required to perform the replication and distribution of data

in an efficient and reliable way.

Considerable research efforts have targeted the domain of

Remote Data Mirroring [3]–[8]. However, the RDM appli-

cations are very costly to implement as the equipment used

to install such applications is expensive. To the best of our

knowledge, there is no exemplar available to support research

based on the RDM paradigm.

In this paper, we present RDMSim, an exemplar that sim-

ulates a Remote Data Mirroring environment. The goal of

the RDMSim is to offer researchers a RDM environment to

test and compare their decision-making techniques [9] against

other techniques. Other exemplars exist however, they focus

on other domains and aspects, such as cloud environments

[10], cyber-physical systems [11], traffic management system

[12], client-server systems [13] and IoT-based systems [14]. In

comparison to [10], that deals mainly with the functionality of

cloud environments such as workload management using the

addition and removal of virtual machines, RDMSim focuses

mainly on the simulation of Remote Mirroring process.

The RDMSim exemplar presented here is implemented in

Java, keeping in view the operational model presented in [1],

[2]. It simulates the RDM presenting a fully connected network

of mirrors. The simulator offers the flexibility of changing

the number of mirrors to create a customized RDM network

according to the experiment’s requirements. The focus is on

the application of self-adaptive realization strategies in the

form of the topologies of Minimum Spanning Tree (MST) and

Redundant Topology (RT). The application of these topologies

have an impact on the different network parameters such as

bandwidth consumption and active network links affecting

the quality objectives such as the minimization of operational

costs and the maximization of the reliability of the network.

A trade-off of such impacts has to be taken into account as

part of the decision making [15]–[19]. The topological impacts

have been defined based on the expert knowledge presented in

[6]. Additionally, we provide an implementation of different

scenarios that define possible different uncertain environmental

contexts for the RDM [20]. A Python version is also publicly

available. Researchers can use these scenarios to test their

specific decision-making techniques based on Reinforcement

Learning [21], Multi-Criteria Decision Analysis [22] and

Evolutionary Computation [3] among others. Researchers can

also design their own scenarios by modifying the different

parameter ranges.

The paper is organized as follows: Section 2 presents the

operational model of a RDM. In Section 3, we present the

architecture of the RDMSim exemplar. Section 4 provides a

description of the different scenarios for the experiments that

can be executed by the RDMSim. In Section 5, an example of

how to execute experiments using RDMSim is provided, which

http://arxiv.org/abs/2105.01978v1


is followed by Conclusion in Section 6.

II. REMOTE DATA MIRRORING

The RDM application is composed of data servers and

network links [1], [2]. It must replicate and distribute data in

an efficient manner by minimizing consumed bandwidth and

providing assurance that distributed data is neither lost or cor-

rupted [1]. The RDM application must achieve functional ob-

jectives such as construct a connected network and distribute

data. These functional objectives can be achieved through

alternative realization strategies represented by two different

topologies: Minimum Spanning Tree (MST) and Redundant

Topology (RT). An MST Topology uses the least possible

number of network links to transmit data among different re-

mote servers. Contrarily, an RT topology uses simultaneously,

several redundant network links paths to transmit information

among remote servers.

The implementation of the RDM considered in this paper

should also satisfy the following three quality objectives:

Maximization of Reliability (MR), Maximization of Perfor-

mance (MP) and Minimization of Cost (MC). The levels of

satisfaction associated with reliability, performance and cost

of the RDM are determined according to the trade-offs based

on:

• A RT Topology offers higher levels of reliability than an

MST topology. However, the cost of maintaining an RT

topology may be prohibitive in some contexts, given the

additional cost of bandwidth consumption required.

• Conversely, a MST Topology offers higher levels of per-

formance with lower levels of cost than an RT topology.

However, the reliability of the system can be impacted in

a negative way when an MST Topology is used.

Based on the above, we have designed the RDMSim exem-

plar. Next, we present the architecture for RDMSim.

III. ARCHITECTURE

The RDMSim exemplar has been developed to facilitate

the implementation of a two-layered architecture for a self-

adaptive RDM, as shown in Fig. 1. The architecture structures

a Managing System (based on feedback loop [23], [24]) on

top of the Managed System (the RDMSim). We next describe

each layer.

A. Managing System

The Managing System, at the upper layer, is responsible for

providing the self-adaptive decision-making logic. A feedback

loop is implemented to monitor the environment and managed

system, adapting the latter when necessary. The feedback loop

consists of Monitor-Analyse-Plan-Execute over a Knowledge

base K (MAPE-K) [23]. The MAPE-K loop is considered an

architectural blueprint for self-adaptive systems and is used

to perform adaptation decisions on the Managed System (i.e.

RDMSim in our case). When using the RDMSim exemplar,

researchers will provide their own decision-making techniques

to serve as a Managing System. The Managing System can be

Fig. 1. RDMSim Architecture

based on different techniques such as Multi-Criteria Decision-

Making [22], Reinforcement Learning [7], and Evolutionary

Computation [3], [8], etc.

B. Managed System

RDMSim represents the Managed System and provides

probes and effectors that can be used by the Managing System

to interact with the simulator. Probes are used to monitor

information (M in MAPE) whereas the effectors are used to

execute the adaptation decisions (E in MAPE) on the Managed

System.

Next, we present the architecture of the Managed System

implemented as Java Packages for the RDMSim software.

The components in the architecture for RDMSim, presented

in Fig.1, are as follows:

1) Management Component: which acts as a bridge be-

tween the Managing System and other internal components

of the RDMSim. It provides an implementation of probes and

effectors to be used by the Managing System. The functions

provided by the probes and effectors are used to both monitor

the status of the RDM (i.e. cost, reliability and performance)

and also change the network topology and different network

parameters according to the decision made as described in

Table I and II respectively.

2) Network Component: which provides an implemen-

tation of the main physical elements of the RDM. These

elements include the number of mirrors (i.e. servers) and

the network links that represent a fully connected network

of mirrors. As an example, for 25 mirrors, a network of



TABLE I
PROBE FUNCTIONS

Function Description

Topology getCurrentTopology()
Returns the current topology

for the network.

int getBandwidthConsumption()
Returns the bandwidth consumption

of the network.

int getActiveLinks() Returns the number of active links.

int getTimeToWrite()
Returns the time to write data

for the network.

Monitorables getMonitorables()
Returns the values for all the

monitorable metrics.

TABLE II
EFFECTOR FUNCTIONS

Function Description

void setNetworkTopology(int timestep,Topology selectedtopology)

To set the network

topology at a

particular timestep.

void setActiveLinks(int active links)

to set the number of

active links for

the network.

void setTimeToWrite(double time to write)

To set the time to write

data for the

network.

void setBandwidthConsumption(double bandwidth consumption)

To set bandwidth

consumption for the

network.

void setCurrentTopology(Topology current topology)
To set topology for the

network.

300 links will be created. The users of RDMSim can change

the number of mirrors to create a custom RDM network

for their experiments. The Network Component also provides

an implementation of the monitorables and topologies for

the network. Specifically, in the RDMSim, we provide an

implementation of three monitorables:

Mon1– Active Network Links: provides the current active

network links to measure the reliability of the RDM. The RDM

will provide a higher level of reliability with a larger number

of active links.

Mon2– Bandwidth Consumption: provides the current

bandwidth consumption to measure the operational cost for

the RDM in terms of inter-site network traffic. Operational

costs will be increased for the RDM with a higher amount of

bandwidth consumed. Bandwidth Consumption is measured in

GigaBytes per second.

Mon3– Time to Write Data to mirrors: measures the

performance of the network in terms of writing time to

maintain multiple copies of data on each remote site. A big

writing time leads to reduction of performance of the RDM.

Time to Write Data is measured in milliseconds.

For the communication between the mirrors, we consider

synchronous mirroring [2], [5]. During synchronous mirroring,

sequential writing is performed to prevent data loss [5]. In

sequential writing, the primary mirror (i.e. the sender) waits

for an acknowledgement (known as a handshake) regarding the

receipt and writing of data from the secondary mirror (i.e. the

receiver). This process is performed for each active link on the

communication path between the mirrors. Therefore, the time

to write data is computed as Total Writing Time= (α* number

of active links) * Time to Write Data Unit1. Here, α represents

a fraction of active links to constitute the communication path

between mirrors. α can have a value of greater than zero and

less than and equal to one. For our experiments, we have set

α = 1.

Similarly, the bandwidth consumption is also dependent on

the number of active links. More active links imply more data

transmission, which leads to a higher bandwidth consumption

[5]. Hence, we compute the Bandwidth Consumption as Total

Bandwidth Consumed=(α∗number of active links) * Band-

width per link2.

3) Simulation Component: which includes the implemen-

tation of the uncertainty scenarios [20], [25] that represent the

different dynamic environmental conditions that the RDM can

face, and which will be simulated. It allows the setting of the

simulation properties, such as the number of simulation runs

and the chosen uncertainty scenario(s) to be executed by the

RDMSim.

A partial class diagram representing the elements of the

Management Component, Network Component and Simula-

tion Component is shown in Fig. 2. The NetworkManagement

class along with the Probe and Effector interfaces provides an

implementation of the Management Component. The classes

NetworkProperties, Monitorables, Topology and TopologyList

are part of the Network Component and provide an imple-

mentation of the corresponding features of the RDM. The

SimulationProperties and UncertaintyScenario classes are part

of the Simulation Component, and are used to implement the

functionalities related to the simulations to be executed.

IV. SCENARIOS

Six different scenarios were defined to be used in simu-

lations of the RDM. These scenarios have been designed to

simulate different archetypal real situations, which can cause

deterioration of satisfaction of the quality objectives of the

system in relation to a scenario with stable conditions.

The main goal of the scenarios depicted below, is to

evaluate how decision-making techniques and algorithms

react under uncertain situations, specially different from the

stable conditions. Next, a description for each scenario is

presented.

Default scenario S0: For the sake of comparison between

techniques, a default scenario is provided that represents an

environment envisioned by the requirements experts [4], [6].

For the RDMSim, the following thresholds for the levels of

satisfaction associated with reliability, performance and cost

are suggested: bandwidth consumption should be on average

less than or equal to 40%. Similarly, the time to write data

should be on average less than or equal to 45%. On the other

hand, the number of active links should be on average greater

than or equal to 35% of the total number of links. The initial

1To implement realistic impacts, we vary the time between 10 to 20
milliseconds

2To implement realistic impacts we vary the Bandwidth per link between
20 to 30 GBps



Fig. 2. RDMSim Class Diagram

topology being used is MST topology.

Scenario S1 - Unexpected Packet Loss during MST:

The initial topology being used is MST Topology. A period

of consecutive and unexpected data packet loss during the

execution of the MST Topology generates a reduction on

the reliability of the system. Data packet loss represents

link failures in the RDM system, which may be caused, for

example, by problems with the equipment (e.g. failures in a

switch or router or power failures [1]).

Scenario S2 - Unexpected Packet Loss during RT: The

initial topology being used is RT Topology. Unexpected data

packet loss during the execution of the RT Topology, are

generating an unusual rate of data forwarding, which would

increase the bandwidth consumption (i.e. cost), and would

reduce the system’s performance. As said before, in the RDM,

the cost for inter-site links communication is a function of

the data sent over them. Therefore, a Redundant Topology

(RT), which involves a bigger number of inter-site network

links than a Minimum Spanning Tree Topology (MST), is

more expensive. Cost increases as the number of active links

increases and a reduction on the system’s performance3 could

also be expected.

Scenario S3. Simultaneous occurrence of the scenario S1

and S2. The current topology is randomly generated.

Scenario S4 - MST topology execution failures: The

topology being used is MST Topology. Involves the behaviour

3The performance in these systems is measured as the total time to perform
the write of data, which is the sum of the response times of the writes of each
copy of data on each remote site [1].

presented in the scenario S1. Additionally, during the execution

of the MST topology, an increment in bandwidth consumption

(MC) and the reduction of the system’s performance (MP) is

also produced due to synchronous mirroring.

Scenario S5 - RT Topology execution failures. The

topology being used is RT Topology. Involves the behaviour

presented in the scenario S2. Additionally, the RT topology

is also producing a reduction on the reliability of the system

(MR) due to failures in the equipment such as routers and

switches.

Scenario S6 - Significant site failure. The current topology

is randomly generated. This scenario involves the simultaneous

occurrence of the scenarios S4 and S5. It is related to a

significant site failure [1], [2], where both, repeated and

multiple concurrent failures are expected [1] as in the scenarios

S4 and S5 but all at the same time. A full-scale site failure

may be caused by a power outage affecting all the buildings on

different campuses, an earthquake or flood affecting buildings

within several metropolitan areas. Under this scenario, the

worst-case data loss [2] may occur in different sites (RDM

nodes), i.e. a site can be destroyed or inoperative before the full

backup of information is shipped offsite. Site failure disasters

are usually modelled with a failure rate of once per year [2].

V. EXPERIMENTS

In this section, we provide a simple example to describe

the steps to develop a custom adaptation logic for performing

experiments using the RDMSim. We also demonstrate the

execution of different uncertainty scenarios using the custom

adaptation logic.

The steps for developement of custom adaptation logic are

as follows:



Step: 1 Download the RDMSim Exemplar

Download the RDMSim package from the RDMSimExem-

plar repositoryS4 and install the required libraries.

Step: 2 Design an Adaptation Solution

Design an adaptation solution (Managing System) using

the Probe and Effector interface functions provided by the

RDMSim software as follows:

A. Loading Configuration Settings and Instantiation of

Probe and Effector : The first step in implementing the

custom adaptation logic is to load the configuration settings

for the experiment from the configuration.json file and instan-

tiation of the Probe and Effector components. The Probe and

Effector will enable the communication between our custom

adaptation logic and RDMSim. This can be done by using the

NetworkManagement class in your program as follows:

NetworkManagment network_management;

network_management=new NetworkManagment();

Probe probe;

Effector effector;

probe=network_management.getProbe();

effector=network_management.getEffector();

The NetworkManagement class is responsible for loading

the configuration parameters and instantiating the Probe and

Effector instances. The configuration settings include the

parameters like number of simulation time steps, the number

of mirrors for the RDM, number of active links and the

uncertainty scenario to be considered for the experiments.

The details of the configuration parameters is provided in the

RDMSim Artefact:User Guide document provided as part of

RDMSimExemplar repository.

B. Monitoring of the RDMSim network using Probe func-

tions: In order to monitor the RDMSim, we can use the probe

functions provided in Table I. For example, to get the values

of all the monitorable metrics, at a particular simulation time

step, we can use the getMonitorables() function as follows:

Monitorables m=probe.getMonitorables();

C. Performing Adaptations on the RDMSim using Effector

functions: In order to perform adaptations on the RDMSim,

we can use the Effector functions provided in Table II. For

example, to change the network topology at a particular

timestep, we can use the setNetworkTopology() function as

follows:

effector.setNetworkTopology(10,"mst");

The code above will set the Minimum Spanning Tree (MST)

topology for the network at the simulation timestep 10.

A step by step implementation of the MAPE-K loop using

steps A to C is provided in the User Guide document.

4https://doi.org/10.5281/zenodo.4613152

Step: 3 Design and Execute Experiments to test the Adap-

tation Logic

Once the adaptation solution is designed, an experiment

should be designed to test the adaptation logic. For an exper-

iment to be executed, the configuration parameters (provided

in the configuration file) should be set to execute a particular

simulation scenario. We have assigned some default values for

the configuration parameters based on the expert knowledge

provided in [6]. You can change the number of simulation

runs, the number of mirrors for the network, the uncertainty

scenario and the ranges for the different monitorables. The

details for the configuration parameters are provided in the

User Guide.

Example: To demonstrate RDMSim working under Default and

Detrimental Scenario S1

We demonstrate the execution of experiments under both

the default scenario S0 and uncertainty Scenario S1. For our

experiments, we consider an RDM network of 25 mirrors and

300 network links to create a fully connected network. We

have set the default values for the configuration parameters in

the configuration.json file. The satisfaction thresholds for the

quality objectives have been set based on the expert knowledge

provided in [6]. In order to satisfy the quality objectives

of minimization of operational cost and maximization of

performance, bandwidth consumption and time to write data

should be minimized. Conversely, the quality objective of

Maximization of Reliability requires maximization of number

of active links. Based on the expert knowledge, the bandwidth

consumption should be less than or equal to 40 percent to

satisfy minimization of operational cost. Similarly, the time

to write data should be less than or equal to 45 percent

to satisfy maximization of performance. On the other hand,

number of active links should be greater than or equal to 35

percent of total links to satisfy maximization of reliability

for the RDM. Once the configuration parameters are setup,

we have executed the experiments for 100 simulation runs

for the scenarios as shown in Fig. 3 and 4. Under default

scenario, the RDMSim will meet the satisfaction thresholds in

terms of the value ranges of bandwidth consumption, active

links and time to write data. Under uncertainty scenario S1,

the different disturbance levels are introduced to reduce the

number of active links affecting the reliability of the system

when MST is the selected topology as shown in Fig. 4.

For further validation purposes, we have applied reinforce-

ment learning based decision-making to the RDMSim. We

provide our initial evaluation results for the RDMSim using

MR-POMDP++ [7], [21] as part of the RDMSimExemplar

repository. MR-POMDP++ is based on Multi-Reward Partially

Observable Markov Decision Process (MR-POMDP). MR-

POMDP is a multi-objective reinforcement learning technique

that considers the decision-making agent performing in a

partially observable environment. MR-POMDP++ performs

adaptations on the basis of the multi-objective utility value

computed at each simulation time step. We have executed ex-

periments considering a network of 25 RDM mirrors using the



Fig. 3. Default Scenario

Fig. 4. Scenario 1

default configuration setup provided in the configuration file.

In order to test our decision-making techniques DeSIRE [26]

and MR-POMDP++ [27], we have also used the exemplar [14].

Both exemplars [14] and RDMSim, focus on different domains

and aspects, the IoT domain and the RDM and effect on quality

objectives respectively, and complement each other.

Discussion: An RDM can be seen as a specific example of a

more generic type of applications, where the decision making

guides self-reconfiguration by identifying a target system

configuration to provide the desired system behavior [19], [28].

A set of reconfiguration instructions to reach the desired target

configuration is applied (i.e. E in MAPE). These reconfigura-

tion instructions define an adaptation path. Several adaptation

paths may be chosen, and most self-reconfiguration approaches

select adaptation paths based on tradeo-offs between several

objectives goals, such as performance and reliability [19].

As such the RDMSim can be used to test decision-making

techniques applicable to other domains as well.

VI. CONCLUSION

In this paper, we have presented the RDMSim exemplar

to provide a simulating environment for the RDM. RDMSim

facilitates the researchers to execute experiments in the domain

of RDM. To the best of our knowledge, RDMSim is the first

simulator to be implemented for this domain. Using RDMSim,

researchers can compare their self-adaptive decision-making

solutions with other techniques, including ours [21]. We have

executed experiments for each scenario presented here, using

our own decision-making technique, called MR-POMDP++

[21]. The results are provided in the RDMSimExemplar repos-

itory, ready to be used for comparison purposes. Furthermore,

RDMSim also provides opportunities for researchers to design

their own scenarios for experiments by modification of values

in the configuration file using the instructions provided in

RDMSim user guide. We hope that the research community

will use the RDMSim to evaluate and compare novel solutions

in the area of self-adaptive decision-making.
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