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Abstract—In self-adaptive software systems, generic controllers
can be configured parametrically according to system needs,
even though their reuse is restricted because of the wide range
of services that can be provided by each of the stages of
a feedback control loop, like MAPE-K. Rainbow is a typical
example of such a generic, monolithic controller. This paper
advocates controllers that are structurally flexible, and which
are composed from micro-controllers, each providing specific
services (e.g., based on microservices). To provide evidence on
the feasibility of our approach, we compare three different
architectural configurations for the controller: monolithic, de-
centralised, and decentralised with a meta-controller. Results
from our experiments indicate that even though the decentralised
configuration with a meta-controller demanded more computa-
tional resources, it performed comparatively well when compared
to the other configurations. We conclude that a multi-layered
controller design, based on micro-controllers, provides the basis
for defining structurally flexible controllers at operational-time,
and may promote reuse at development-time.

Index Terms—self-adaptive software systems; feedback control
loop; flexible controller; microservices

I. INTRODUCTION

In self-adaptive software systems, Rainbow [14] is one
of the few examples of a generic controller that has been
used in several application domains [34] and by different
researchers [9]. Many of the existing controllers cannot be
reused across different applications and by different develop-
ers. In general, a key factor restricting the reuse of controllers
is that they are intrinsically dependent on the target system
(i.e., the software system to be controlled). To mitigate this
issue, Rainbow raises its abstraction of a target system to the
software architecture, which successfully reduces the coupling
between the controller and system [14]. However, the wide
range of applications, i.e., target software systems, may also
impose a wide range of services that are expected from the
different stages of a controller (such as controller based on
the MAPE-K reference architecture [20]). For instance, a
safety-critical target system may need an analysis stage based
on model checking, instead of a simpler architectural analysis.

Adopting the Rainbow approach to develop a truly generic
controller that is able to provide such a wide range of
services is quite challenging, and perhaps counter-productive
since the unit of reuse would be a monolithic controller
that is only parametrically configurable, which is the case
for most existing controllers [21]. In contrast, a controller
whose services are composed according to the actual needs
of the target system may achieve a higher flexibility and

variability than a monolithic controller [23]. For achieving
such modular and structurally flexible approach, controller
components implementing specific services should become
structurally independent from each other. Essentially, the claim
being made in this paper is that controllers for self-adaptive
software systems should consist of a collection of indepen-
dent micro-controllers. To coordinate these micro-controllers,
we envisage meta-controllers that are able to configure the
controller according to services required by the target system,
thus achieving structure flexibility at the controller level [23].

These micro-controllers would consist of microservices, and
in a previous work, we have demonstrated and evaluated
an embryonic multi-layer controller using the PhoneAdapter
exploratory study in which micro-controllers are configured
during system operation depending on changes affecting the
system or its environment [39]. In this paper, we describe in
detail our view of multi-layer controllers, and evaluate whether
a controller which is based on micro-controllers has the advan-
tage of being structurally flexible without compromising the
performance of the target system. For evaluating the proposed
approach, we have employed as an exploratory study a variant
of ZNN.COM [10], namely, Kube-ZNN [1], using three
different architectural configurations for the controller: mono-
lithic, decentralised, and decentralised with a meta-controller.
In the context of promoting flexible controllers in self-adaptive
software systems, the key contributions of this paper are:

• Definition of an approach, based on microservices, for
enabling structurally flexible controllers.

• Evaluation and comparison of three different architectural
configurations for controllers.

Results from the experiments we performed have indicated
that our multi-layer approach has little impact on performance
of the target system. It was also noticed that there are
some situations in which the decentralised controller with a
meta-controller outperformed the other two configurations.

The remainder of this paper is organised as follows. Sec-
tion II presents an overview of the main concepts about
Rainbow, Docker, Kubernetes and Kubow. Section III presents
the approach. Section IV introduces an exploratory study. In
Section V, we demonstrate and evaluate the proposed approach
using the exploratory study. Section VI discusses threats and
limitations of our research. Finally, we discuss related work
in Section VII, and conclude the paper in Section VIII.



II. BACKGROUND

A. Rainbow

Rainbow provides a reusable infrastructure and a set of tools
for supporting self-adaptation, thus allowing for its effortless
customisation across different target systems [14]. Rainbow
relies on the architecture model of the target system, and a col-
lection of adaptation strategies defined in the Stitch language.
Rainbow contains several components to store the architectural
model, evaluating the need for an adaptation, selecting the
appropriate adaptation, and executing the adaptation.

Despite the fact that Rainbow supports the development of
generic controllers, Rainbow-based controllers are typically
monolithic since all its components are used as a whole – they
can be configured, but they cannot be changed (for example,
for incorporating new services).

B. Docker and Kubernetes

The Docker1 platform automates the packaging, deployment
and execution of applications. These applications are also
named docker containers. They are based on the client-server
architectural style, and for each application, REST APIs are
defined for allowing the applications to be accessed.

Kubernetes2 is an open source based container orchestration
platform for automating deployment, scaling, and management
of containerised applications [8]. In this platform, the main
object is a pod that aggregates a set of one or more contain-
ers. These pods can use a unique IP and ports to perform
communication between themselves and shared storage. Any
application is able to be deployed in a Kubernetes cluster,
given that all its dependencies are specified in a configuration
file. In other words, a Kubernetes cluster allows to define
a complete software ecosystem composed of several sets of
applications (i.e., pods) that communicate with one another.

C. Kubow

Kubow3 is the implementation of Rainbow in Kuber-
netes [2]. As such, a Kubow instance (i.e., a controller that
is based on Rainbow) is also defined as a microservice.

In general, Kubow was implemented by customising and
extending Rainbow with support for docker containers and
Kubernetes [2]. These customisation and extension involve
implementations, such as, Rainbow probes and effectors using
the Kubernetes APIs. These APIs allow to access different
types of resources managed by Kubernetes (e.g., pods). Conse-
quently, all Rainbow components are Kubow instances within
a Kubernetes cluster. Moreover, Kubow provides tools that
allows the integration of other kinds of Kubernetes applica-
tions. For example, access metrics collected by Kubernetes’
own monitoring services (e.g., Kubelet and cAdvisor), as well
as, by other external monitoring tools (e.g., Prometheus).

1https://docs.docker.com/get-started/overview/ – accessed in Feb, 2023.
2https://kubernetes.io/ – accessed in Feb, 2023.
3https://github.com/ppgia-unifor/kubow – accessed in Feb, 2023.

III. APPROACH

Our approach considers multi-layered controllers for pro-
moting reuse at development-time, and structural flexibility at
operational-time. For promoting controller reuse, our approach
combines generic controllers, that can be easily configured,
and whose role is to manage a collection of specific con-
trollers. Structural flexibility is achieved by employing very
simple and specific controllers that can be easily replaced and
orchestrated by the generic controller.

This paper focuses on demonstrating the structural flexi-
bility of multi-layered controllers. The idea of multi-layered
controllers is not new [7, 18, 28], and it fits quite well into
the hierarchical control pattern [43]. Promoting multi-layered
controllers is to decouple the controller from the target sys-
tem because of the target system’s intrinsic intricacies and
complexities. The tight coupling between target system and
controller may hinder the reuse of controllers across different
applications since systems provide different services with
different levels of quality.

A self-adaptive system is composed by a target system and
a controller, and it should be considered in the context of its
environment. The loci of change are the target system and its
environment (i.e., external phenomena related to other systems
and humans). Whereas the locus of adaptation is the controller,
which empirically observes changes for building reasoning
models that allows it to control the target system. Adaptations
can either be parametric or structural [3, 23].

The approach being proposed, for decoupling the controller
from the target system, is to introduce a two-layer controller, as
shown in Figure 1. The controller layer is a structurally flexible
controller that should be able to adjust quite easily to the needs
of the target system. The meta-controller layer is a generic
controller, like Rainbow [14], that should be able to control
the controller layer by adapting its structure and parameters.
Although parametric adaptations of monolithic controllers are
more common [21], structural adaptations are also possible,
but these may require re-evaluation and redeployment of the
controller. In this context, the main idea being promoted in this
paper is that, controllers do not need to be structurally static
at operational-time (i.e., once deployed, they are not expected
to change): controllers can both be the locus of change and
the locus of adaptation.

System

Environment

Target System

Controller

Meta-controller

Micro-controller C

Micro-controller BMicro-controller A

Fig. 1. Multi-layered controller.
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A. Micro-controllers

The key idea being promoted is to use an ensemble
of micro-controllers instead of a monolithic controller, like
an implementation of a MAPE-K loop [14, 20]. These
micro-controllers would not be restricted to the implementa-
tion of services provided by the distinct stages of a MAPE-K
loop [29]. Instead, the micro-controllers would be associated
with specific services that make up the individual stages of
a controller [12]. For example, for the Analysis stage of the
MAPE-K loop, a micro-controller would implement the ser-
vices associated with integration testing [38], or model check-
ing [36]. The number of micro-controllers for implementing a
controller would depend on the needs of a target system, and
the granularity of the available micro-controllers in terms of
the services they provide. Therefore, in our proposed approach,
a controller for a self-adaptive system would be implemented
as an ensemble of service-specific micro-controllers.

These micro-controllers can either be open or closed loop.
An open-loop micro-controller requires predefined knowledge
about the specific target system. In contrast, a closed-loop
micro-controller dynamically takes the needs of the specific
target system into account (e.g., a closed-loop micro-controller
for online testing can refine its testing strategy if the achieved
test coverage of the target system is not sufficient). This
suggests that while a closed-loop micro-controller needs to be
configured with generic techniques (e.g., to explore various
testing strategies), an open-loop micro-controller requires a
target system-specific configuration (e.g., a testing strategy
suited for the specific target system).

Micro-controllers can be realised as microservices. Each
micro-controller can be developed as a separate process for
maximising independent deployment. Some of the benefits of
implementing controllers as a collection of micro-controllers,
include, independent development and deployment, dynamic
operational support, like, versioning and scaling.

B. Meta-controller

If the controller, realised as an ensemble of
micro-controllers, in addition of being the locus of adaptation
is also the locus of change, there may be the need for an
additional controller, at a higher-level, depending on its
complexity. This meta-controller would manage the changes
occurring at the controller by adapting the ensemble of
micro-controllers. An example of such controller could be
Rainbow [14], or any of its variants [2].

In the context of self-adaptive software systems, the
tailoring of a meta-controller to different ensembles of
micro-controllers would be simpler because the ‘target sys-
tem’ of the meta-controller would be just a collection of
micro-controllers, instead of a wide range of software com-
ponents that usually characterises a target system.

The meta-controller is responsible for orchestrating the
services provided by micro-controllers that implement the
controller. It should maintain a consistent view that
micro-controllers have of the target system and environ-
ment [27], including the state of the micro-controllers,
thus allowing the micro-controllers to be stateless. Although

micro-controllers should be independent, the coordination be-
tween micro-controllers could follow the control flow of a
MAPE-K loop [20]. Several micro-controllers do not preclude
that all micro-controllers are able to access the target system.
Conflicts might occur amongst micro-controllers and should
be handled by the meta-controller.

In summary, the multi-layered controllers approach be-
ing proposed is beneficial because the different needs of
a target system are addressed by specific micro-controllers.
This is achieved because of the structural flexibility of
the ensemble of micro-controllers, which is managed by a
meta-controller. Thus, the controller consisting of an ensemble
of micro-controllers reflects on changes affecting the target
system and environment, whereas the meta-controller reflects
on changes affecting the controller and the system environ-
ment, which makes the overall system meta-self-adaptive. Al-
though in this paper we have described a multi-layer controller
consisting of two layers, conceptually, a controller could have
more than two layers [28].

IV. EXPLORATORY STUDY

This section describes the implementation of our multi-layer
controller approach. First, we describe the exploratory study.
Then, we present the controller configurations employed for
evaluating our approach. Finally, we describe the environmen-
tal set up used for performing the experiments. The artefacts
used in our research are available online4.

A. Exploratory Study: ZNN.com and Kube-ZNN

We use the target system Kube-ZNN [1], which is based on
the ZNN.com [10] which reproduces a typical infrastructure
for a news website. ZNN.com is a three-tier architecture
consisting of servers providing news content to clients. The
goal of ZNN.com is to provide content to customers within
a reasonable response time, while keeping the cost of the
service within an operating budget. ZNN.com has a web-based
client-server architecture that uses a load balancer to deal
with requests across a pool of replicated servers. The number
of servers can be adapted according to service demand. In
our experiment setup (described in Section V), we have used
media quality (i.e., contents to user) and size of the server pool
for adapting the system according to demand (i.e., number of
user requests). Our measurements regarding the size of the
server pool and the quality of the media delivered at particular
moments (namely, right after the peak of demand, and right
after the demand decrease) provide evidence on the capacity
of the system to accomplish its goals.

Quality Attributes: Two ZNN.com key quality attributes are:
• Scalability: In case a server becomes overloaded, new
replicas (i.e., copies) of the server are created. On the other
hand, when a server replica ceases to be in demand, it can
be destroyed. This attribute brings elasticity to the system.

• Fidelity: Depending on the costs associated with service
demand, different levels of fidelity are provided for sup-
porting client experience (e.g., usage of different resources,
such as, text, images, or videos implies different costs). For

4https://github.com/californi/ExperimentsForMicrocontrollers/
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TABLE I
RULES IN THE ADAPTATION STRATEGIES.
Stitch Architecture

Attribute Strategy Tactic Predicate Configuration Component

Scalability IncreaseServers addReplica lowSLO && canAddReplica Mon-KZ Controller
Des-KZ ScalabilityA, ScalabilityB

Meta-KZ ScalabilityA, ScalabilityB
Scalability DecreaseServers removeReplica highSLO && canRemoveReplica Mon-KZ Controller

Des-KZ ScalabilityA, ScalabilityB
Meta-KZ ScalabilityA, ScalabilityB

Fidelity IncreaseMediaSize raiseFidelity highSLO && lowFidelity Mon-KZ Controller
Des-KZ FidelityA, FidelityB

Meta-KZ FidelityA, FidelityB
Fidelity DecreaseMediaSize lowerFidelity lowSLO && cannotAddReplica Mon-KZ Controller

Des-KZ FidelityA, FidelityB
Meta-KZ FidelityA, FidelityB

Failures ActivateNoFailureRate addHighScalabilityHighQuality noFailureRate Mon-KZ Controller
Meta-KZ Meta-controller

Failures ActivateLowFailureRate activateLowScalabilityHighQuality lowFailureRate && isScalabilityA Mon-KZ Controller
Meta-KZ Meta-controller

Failures ActivateHighFailureRate addLowScalabilityLowQuality highFailureRate && isScalabilityA Mon-KZ Controller
Meta-KZ Meta-controller

Failures ActivateFidelityB addLowQuality highFailureRate Des-KZ FidelityA
Failures DeactivateFidelityB removeLowQuality noFailureRate || lowFailureRate Des-KZ FidelityA
Failures ActivateFidelityA addHighQuality noFailureRate || lowFailureRate Des-KZ FidelityB
Failures DeactivateFidelityA removeHighQuality highFailureRate Des-KZ FidelityB
Failures ActivateScalabilityB addLowScalability lowFailureRate || highFailureRate Des-KZ ScalabilityA
Failures DeactivateScalabilityB removeLowScalability noFailureRate && (!canAddReplica || isScalabilityB) Des-KZ ScalabilityA
Failures ActivateScalabilityA addHighScalability noFailureRate Des-KZ ScalabilityB
Failures DeactivateScalabilityA removeHighScalability lowFailureRate || highFailureRate Des-KZ ScalabilityB

instance, if the maximum limit on the number of servers
is achieved, the servers start providing images instead of
videos, as a way to properly fulfil the service demand. Sim-
ilar to the elasticity for scalability, once the service demand
has decreased, the fidelity of content can be increased.

In this paper, we have adopted Kube-ZNN [1], which
is a new deployment of ZNN.com based on containerised
applications, using Docker and Kubernetes. Each server in
Kube-ZNN (i.e., either a physical or virtual machine) is a
pod object in Kubernetes. The client requests are handled
by a service object which is responsible for distributing and
delivering at run-time the requests according to the load.

Strategies: There are four adaptation strategies associated with
the Kube-ZNN exploratory study:

• IncreaseServers: it increases the number of servers avail-
able, and relies on tactic addReplica. Since there are more
resources, the latency of Kube-ZNN is decreased.

• DecreaseServers: in contrast to IncreaseServers, it
decreases the number of servers available, and uses the tactic
removeReplica. Thus, the latency of Kube-ZNN tends to
increase when the number of user requests is increased.

• IncreaseMediaSize: it improves the media quality pro-
vided by the target system. In Kube-ZNN the delivered
media quality is normally high, but when the number of
requests increases the latency may increase.

• DecreaseMediaSize: in contrast to the previous strategy,
this strategy ensures that the latency is kept at an acceptable
level by reducing media quality, when the number of client
requests starts increasing the latency of Kube-ZNN .

Additional quality attribute: in this paper, we introduce a
third quality attribute:

• Number of failures: Depending on the number of failures
affecting the server replicas of Kube-ZNN , different strate-
gies can be selected for improving the trade-off between
scalability and fidelity. In other words, the number of

failures becomes an observable variable that can influence
our adaptation strategies.

Resources like CPU, memory and storage are associated
with Kubernetes clusters. When resources are not available, a
failure is triggered by Kubernetes. For example, when a pod
is being created, Kubernetes services verify which resources
are available to be used. During this creation, if there is
no CPU available, then a CPU failure is raised. The same
occurs with memory and storage, once that each pod has
minimal requirements. All the raised failures may be handled
by the FailureManager, even though in this evaluation study
we focus on CPU failures, which are handled by using the
Kubernetes API.

Additional strategies: Based on the number of failures at-
tribute, three additional strategies are defined:

• ActivateNoFailureRate: if there are no server failures,
Kube-ZNN provides high scalability and fidelity.

• ActivateLowFailureRate: if the servers failure rate is low,
scalability should be low, but the fidelity can still be high.

• ActivateHighFailureRate: if the servers failure rate is
high, Kube-ZNN should provide low scalability and fidelity.

Table I shows the adaptation strategies and their respective
tactics and predicates defined for our Kube-ZNN exploratory
study. For the execution of a strategy, its associated pred-
icate must be satisfied. For example, for the execution of
IncreaseServers, and its tactic addReplica, both variables
lowSLO and canAddReplica must be true. The lowSLO
variable shows whether the number of user requests lost is
low, whereas canAddReplica shows when the limit of servers
is achieved.

The predicates that take into account the number of CPU
failures are defined as follows:

• noFailureRate: it is true when there is no CPU failure for
30 seconds.
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Fig. 2. Architectures for configurations Mon-KZ, Des-KZ and Meta-KZ

• lowFailureRate && isScalabilityA: it is true when the
failure rate is 0.5 for 30 seconds, and the micro-controller
ScalabilityA is activated.

• highFailureRate && isScalabilityA: it is true when the
failure rate is 1.0 for 30 seconds, and the micro-controller
ScalabilityA is activated.
Note that for the decentralised configuration (named

Des-KZ, described in the next section), we derived eight spe-
cific strategies, which are embedded in the micro-controllers of
that configuration. We highlight that those specific strategies
precisely reflect the rationale embedded in the ActivateNo-
FailureRate, ActivateLowFailureRate, and ActivateHigh-
FailureRate aforementioned strategies. These strategies en-
able the micro-controllers to adapt themselves, depending
on the current rate of failures affecting the server replicas.
Those specific strategies are listed in the last eight lines of
Table II. To illustrate a strategy associated with the Number
of Failures attribute, the ActivateLowFailureRate strategy
concerns situations in which CPU failures started to happen
(even if not in high number) but the quality of the media may
still be kept high. Therefore, the ScalabilityA micro-controller
is replaced with ScalabilityB and, as such, the system will
temporarily work with a lower number of active servers until
the number of failures decreases again.

B. Controller Configurations
To demonstrate and evaluate our approach, we have em-

ployed three functionally equivalent controller configurations
that are representative of existing solutions. Figure 2 illustrates
the structures and the relationship between the main compo-
nents of the three architectural configurations.

Mon-KZ: This configuration is identified as a monolithic
controller since a single controller implements all the adap-
tation strategies and tactics. It is an evolution of the original
implementation by Aderaldo et al. [2] in order to include
the new set of strategies and tactics to deal with the number
of failures in the server replicas. As shown in Figure 2(a),
Mon-KZ includes a single Kubow instance (hexagon labelled
with Controller).

The strategies that take into account the variations in the
failure rate aim to adapt the behaviour of the controller for
dealing with higher or lower number of active servers in the
target system (i.e., the adaptations w.r.t. scalability property),
and higher or lower quality of media delivered to the users
(i.e., the adaptations w.r.t. fidelity property).

Des-KZ: This is a decentralised implementation of config-
uration Mon-KZ, as shown in Figure 2(b). It consists of five
micro-controllers, from which four are implemented as Kubow
instances (namely, ScalabililyA, ScalabililyB, FidelityA and
FidelityB), and one is tailor-made (FailureManager) in order
to demonstrate the possibility of integrating heterogeneous
controller designs. To reproduce the behaviour of the Mon-KZ
controller, the micro-controllers of Des-KZ that deal with
scalability and fidelity have two variants each: ScalabililyA
and FidelityA, respectively, deal with high number of active
servers and high media quality. Their variants, ScalabililyB
and FidelityB, handle lower numbers of servers and reduced
media quality. According to the strategies described earlier,
only a single variant of each micro-controller is active at a
particular moment, depending on the failure rate gathered by
the FailureManager. As previously mentioned, the failures
considered in our implementations concern Kube-ZNN failures
related to the lack of CPU resources, even though Failure-
Manager could be easily tailored to handle other kinds of
failures.

Meta-KZ: This configuration includes a meta-controller for
controlling the configuration of micro-controllers, as shown in
Figure 2(c). Differently from Des-KZ, in which the choreog-
raphy of micro-controllers is responsible for adaptation, in the
Meta-KZ configuration the meta-controller orchestrates adap-
tation. Depending on the state (i.e., the failure rate) gathered by
the FailureManager micro-controller, the Meta-controller –
which is also implemented as a Kubow controller – selects
which Scalability and Fidelity micro-controller variant to
activate. The strategies to adapt the controller are in Table I.

The process for decomposing the monolithic controller
to build decentralised micro-controllers (for Des-KZ and
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Fig. 3. Stitch snippets that illustrate the differences of strategy implementations in the controllers for Mon-KZ (a), Des-KZ (b), and Meta-KZ (c) and (d).

Meta-KZ), as well as to build a meta-controller (for Meta-KZ)
relied on extracting micro-controllers directly from the Rain-
bow Stitch strategies. Figure 3 shows Stitch code snippets
that illustrate the decomposition. For instance, the condi-
tional sentence t0 in Figure 3(a) has been extracted into a
variant of scalability micro-controller, as illustrated in Fig-
ures 3(b) and Figures 3(d). Specifically, Figure 3(a) shows
the ImproveSlo strategy implemented in Mon-KZ; it mixes
the addition of server replicas and the lowering of me-
dia quality when user requests are high and requests are
lost. Figure 3(b) shows the same ImproveSlo strategy
for the ScalabilityA micro-controller in Des-KZ, which now
only focuses on adding replicas. Figure 3(b) also shows
the activateScalabilityB strategy that activates the
variant ScalabilityB when the failure rate starts to in-
crease. In Meta-KZ, the management of the variants of spe-
cific micro-controllers is concentrated in the meta-controller.
This is illustrated in Figure 3(c); such strategies are re-
sponsible for activating the variants of the scalability and
fidelity micro-controllers. Finally, Figure 3(d) shows that
the ImproveSlo strategy implemented in the ScalabilityA
micro-controller of Meta-KZ is exactly the same as in
Des-KZ, but now the strategy for activating the variant of
micro-controller is placed in the meta-controller.

Resources for each configuration: The two last columns
of Table I summarise, for each architectural configuration,
which controller component is responsible for implementing
the adaptation strategies (refer to Figure 2).

Since decentralisation tends to increase the number of pods,
Table II captures the number of pods associated with each
configuration. For the evaluation of different configurations,
this information is important to understand the impact of
decentralisation. In particular, regarding the Kube-ZNN target
system, the number of pods may vary from 1 to N. In our
experiments, we defined the upper limits of 10 (more details
about this in Section V-A). As Table II summarises, the other
components require one pod each, except FailureManager
that requires two pods.

Regarding how much resource is demanded for each pod,
the first two columns in Table II summarise such usage in
terms of CPU and memory. These amounts of resources were
defined based on the original Kubow implementation [2]. The
units used to represent the allocation are milliCPUs (m) and
Gigabytes (Gi). In the CPU column, 1000m represents a full
CPU allocation and 250m represents 1/4 of a CPU, whereas

in the Memory column 100mi represents 100 megabytes.
The ranges of total required memory and CPU for each
configuration are listed in the last two lines of Table II.

TABLE II
ARCHITECTURAL CONFIGURATIONS AND THEIR RESOURCES.

Resource per component Number of Kubernetes pods*

CPU Mem. Component Mon-KZ Des-KZ Meta-KZ

250m 100mi Target System
(Kube-ZNN )

[1 ... 10] [1 ... 10] [1 ... 10]

1000m 1Gi Controller 1
1000m 1Gi ScalabilityA 1 1
1000m 1Gi ScalabilityB 1 1
1000m 1Gi FidelityA 1 1
1000m 1Gi FidelityB 1 1
200m 64mi FailureManager 2 2

1000m 1Gi Meta-controller 1

Range of Kubernetes pods [2 ... 11] [7 ... 16] [8 ... 17]
Range of Required Memory [1.1Gi ... 2Gi] [2.228Gi ... 3.128Gi] [3.228Gi ... 4.128Gi]

Range of Required CPU units [1250m ... 3500m] [2650m ... 4900m] [3650m ... 5900m]

* Note that only one variant of a given component is included in a configuration at a particular
moment. Therefore, the ranges above consider a single variant of micro-controllers for dealing
with scalability and fidelity of the target system.

C. Experimental Infrastructure

The experimental setup was the same for the demonstration,
evaluation and comparison of the three architectural configu-
rations. Experiments were conducted on a single physical ma-
chine equipped with two AMD Ryzen 5, 3.6 GHz processors,
16GB of memory and 250GB SSD. MS Windows 10 was used,
supported with the following tools: Hyper-V for creating a
new local instance of a Kubernetes cluster; Minikube version
v1.23.1 to locally set up a single-node Kubernetes cluster;
and Kubernetes CLI version v1.22.2 command line tools for
controlling the Kubernetes clusters. To simulate a typical cloud
environment and also to dynamically change the resource
allocation, each application was deployed with all its tiers,
inside its own virtual machine, e.g., using a Minikube as a
Kubernetes cluster.

For conducting the experiments, these steps we followed:
1) configure the computational infrastructure, including, the
computer, virtual machines, Kubernetes CLI and Minikube;
2) deploy the monitoring tools, which involves the tools to sup-
port logging and monitoring (i.e., metrics-server, prometheus
and kube-state-metric); 3) deploy the target system objects,
which involves deploying objects responsible for managing the
entry point of the target-system (i.e., kube-znn-svc and ngnix),
at run-time, and storing the current media to be accessed by the
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users (i.e., db-svc); 4) select the structure of the controller, i.e.,
selecting which controller is used in the experiment (Mon-KZ,
Des-KZ, or Meta-KZ). 5) deploy the overload simulator, which
involves deploying tools responsible for simulating a load
of user requests (i.e., the tool k6); and 6) collect execution
data, which involves the deployment of tailor-made tools (e.g.,
Python scripts and shellscrips) responsible for collecting data
from the Kubernetes cluster.

V. EVALUATION

The evaluation consists in checking whether a controller
which is based on micro-controllers has the advantage of being
structurally flexible without compromising the performance
of the target system. The performance of the target system
is considered higher when the system responds to a given
demand by using fewer active servers, or by delivering higher
media quality than it would do in different execution setups.
The evaluation comprises two research questions:
• RQ1: How does a decentralised controller perform re-

garding architectural adaptations of the target system when
compared to a monolithic controller?

• RQ2: How does a decentralised controller perform re-
garding parametric adaptations of the target system when
compared to a monolithic controller?
To answer these questions, we experimented with the three

system configurations described in Section IV-B, namely,
Mon-KZ, Des-KZ, and Meta-KZ. The evaluation of the state
of the target system, in terms of scalability and fidelity, at
particular execution moments, provides us with evidence to
answer questions RQ1 and RQ2, respectively. Evidence was
collected from the target system through the following metrics:
M1: The middle state regarding the number of active servers.
M2: The final state regarding the number of active servers.
M3: The middle state regarding the fidelity.
M4: The final state regarding the fidelity.

By middle state, we mean the state of the target system at
the moment that represents the peak of system demand (i.e.,
number of user requests). In our experiments, the peak happens
at the end of the load period (which is described below, in
Section V-A). The final state, on the other hand, represents
the state of the target system right after the unload period.

A. Experimental Execution Setups
We defined two execution scenarios that consider each

a maximum number of 10 active Kube-ZNN servers. The
scenarios involve the predefined times (namely, short and long)
during which a load/unload of user requests are performed,
therefore simulating how the controller and the target system
are working. In this work we have used media quality and
size of the server pool for adapting the system according to
demand (i.e., number of user requests). Our measurements
regarding the size of the server pool and the quality of the
media delivered at particular moments (namely, right after the
peak of demand, and right after the demand decrease) provide
evidence on the capacity of the system to accomplish its goals.

For short executions, we defined 2 minutes of load/unload,
whereas for long executions, we defined 5 minutes. For
each predefined time (i.e., short or long), in each particular

configuration (i.e., Mon-KZ, Des-KZ and Meta-KZ), we ran
40 executions. For each set of 40 executions (80 executions
of each configuration; 240 executions, in total), we gathered
metrics M1, M2, M3 and M4. This allows us to to charac-
terise the performance of a given configuration regarding the
observed properties (i.e., scalability and fidelity).

The distributions of values with respect to each set of 40
executions are represented as boxplot charts in Figures 4 to
5. In Figure 4, the Y axes in the charts represent the number
of active Kube-ZNN servers, while the Y axes in the charts
of Figure 5 represent the quality of the media delivered to the
clients (ranging from 400KB to 800KB).

An example, let us consider the results for the scalability
property that are shown in Figure 4(a) (Short Executions). For
the 40 executions of Mon-KZ, at the end of the unload period
(i.e., the “Final” column for the Mon-KZ configuration), we
may observe a larger concentration of results between the 2
to 5 interval, whereas the minimum and maximum numbers
of active servers were 1 and 7, respectively).

B. Scalability Results

Figures 4(a) and 4(b) summarise the executions regarding
the scalability of Mon-KZ, Des-KZ, and Meta-KZ. We next
describe the results with focus on: (1) end of the load period,
and (2) end of the unload period. We also compare the results
for the three configurations.

Scalability-related results at the peak of demand: the
Mon-KZ configuration reached 5 active servers in both short
and long executions, across the 40 executions for each exe-
cution time. For the same scenarios, Des-KZ had a variation
between 5 and 7 for short executions and a variation between
5 and 9 for long executions. Finally, Meta-KZ reached 5 active
servers in short executions, and a variation between 4 and 7
for long executions.

Scalability-related results at the end of the unload
period: Regarding short executions, Mon-KZ has a variation
between 1 and 7 active servers (with higher concentration
between 2 and 4). For Des-KZ, the final state has variation and
concentration between 4 and 5 servers. Finally, for Meta-KZ
the final state varies and concentrates between 2 e 5 servers.

Regarding long executions, Mon-KZ showed a variation
between 1 and 7 servers (mostly concentrated between 2 and
5). Des-KZ results varied and concentrated between 3 and 6
servers, whereas Meta-KZ varied between 1 and 9 Kube-ZNN
servers (with a concentration between 2 and 5).

Comparison: For the short executions, at the peak of de-
mand, very similar results were observed for Mon-KZ and
Meta-KZ, whereas Des-KZ required a slightly higher number
of active servers. After the unload period, on the other hand,
results for Meta-KZ produced better results (lower number
of active servers). For the long executions, at demand peak
Meta-KZ mostly required up to 6 active servers; in most
Mon-KZ runs, 5 servers were required, while Des-KZ mostly
required from 5 to 8 servers. On the other hand, after the un-
load period, Des-KZ once again kept more active servers than
Mon-KZ and Meta-KZ; the two latter performed similarly.
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Mon-KZ Des-KZ Meta-KZ

(a) Short executions

Mon-KZ Des-KZ Meta-KZ

(b) Long executions

Fig. 4. Results regarding scalability (init = initial state; peak = middle state (peak of system demand); final = final state (just after unload period).

We noticed that, when the demand is very high (e.g., at
peak load), 10 servers are active and many failures start to
be generated by the Kubernetes environment and captured
by FailureManager. Thus, as explained in Secton IV-B, the
meta-controller adaptation rules – included as Stitch strategies
– define that a new capacity to respond to requests will start
working; more specifically, the meta-controller replaces Scal-
abilityA, which operates with a maximum of 10 active servers,
with ScalabilityB, which operates with a maximum 4 active
servers, until the failure rate returns to a low value. When the
system capacity changes, it is noted that the Meta-KZ con-
figuration was able to manage more efficiently the controller
reconfiguration, and thus the reaction to the decrease in system
capacity was faster in the Meta-KZ configuration.

Regarding RQ1, in terms of structural adaptations of the
target system, the Mon-KZ and Meta-KZ configurations per-
formed better than Des-KZ, without a clear distinction between
the performance of Mon-KZ and Meta-KZ.

C. Fidelity Results

Figures 5(a), and 5(b) summarise the executions regarding
the fidelity of configurations Mon-KZ, Des-KZ, and Meta-KZ.
Similarly to the discussion presented for scalability, we next
describe the results with focus on: (1) end of the load period,
and (2) end of the unload period. We also compare the results
for all configurations.

Fidelity-related results at the peak of demand: irre-
spective of the execution time (short or long), the Mon-KZ
decreased the fidelity to the minimum level (i.e., 400KB) when
the highest number of user requests were reached (i.e., peak
of demand), whereas higher levels of fidelity were observed
for Des-KZ and Meta-KZ. For Des-KZ, the values are highly
concentrated in 600KB, wheres the values range from 400KB
to 600KB for Meta-KZ.

Fidelity-related results at the end of the unload pe-
riod: with respect to the final states, in Mon-KZ the fidelity
level ranged from 400KB and 600KB after the unload period.

For Des-KZ the level was concentrated again in 600KB, and
for Meta-KZ the fidelity level ranged from 400KB to 800KB.

Comparison: For fidelity, Des-KZ and Meta-KZ outper-
formed Mon-KZ. From the results depicted in Figures 5(a)
and 5(b), the Mon-KZ has decreased the level of fidelity to the
minimum at the peak of demand, and was not able to restore
it to the maximum level after the unload period. Regarding
Des-KZ, it was able to keep the fidelity level in 600KB, despite
the fact that no increase in the final state was observed. For
Meta-KZ, when compared to Des-KZ, we observed slightly
inferior results at the peak of demand, while slightly better
results were achieved in the final state. Similarly to what
happened with the variants of scalability micro-controllers,
replacements of FidelityA by FidelityB and vice versa in
Des-KZ and Meta-KZ were observed in the experiment runs.

Regarding RQ2, in terms of parametric adaptations of
the target system, the Des-KZ and Meta-KZ configurations
performed better than Mon-KZ, without a clear distinction
between the performance of Des-KZ and Meta-KZ.

D. Further discussion

When comparing the three configurations, setting up a
higher number of Kube-ZNN servers may negatively impact
the restoration time for the configurations that need to deal
with larger numbers of components (namely, Des-KZ and
Meta-KZ). In the context of our study, restoration regarding
scalability means returning the target system to only one active
server, whereas restoration regarding fidelity means increasing
the quality of the media delivered to the clients to its maximum
(i.e., 800KB). Experiments to address the restoration time will
be addressed in future work.

From a perspective of conflicts and synchronisation of
the target system state, the Mon-KZ configuration contains
a single set of adaptation strategies. As such, the Kubow
controller was in charge to apply the strategies, without the
need to solve issues related to conflicts among strategies,
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Mon-KZ Des-KZ Meta-KZ

(a) Short executions

Mon-KZ Des-KZ Meta-KZ

(b) Long executions

Fig. 5. Results regarding fidelity (init = initial state; peak = middle state (peak of system demand); final = final state (just after unload period).

neither issues related to the synchronisation of the state of the
target system. For the Des-KZ and Meta-KZ configurations, on
the other hand, even though the variants of micro-controllers
are mutually exclusive (i.e. either ScalabilityA or ScalabilityB
is active at a particular time, but not both; likewise for fidelity
micro-controllers), conflicts may arise due to the inherent
characteristics of pod management performed by Kubernetes.
That said, we have not noticed any significant impact regarding
this issue on our experimental results

As shown in Table II, even though Meta-KZ demanded more
resources (at least 3650m of CPU and 3.228Gi of Memory)
when compared with configurations Mon-KZ (at least 1250m
of CPU and 1.1Gi of Memory) and Des-KZ (at least 2650m
of CPU and 2.228Gi of Memory), results for Meta-KZ were
not compromised (cf. Figures 4(a), 4(b), 5(a), and 5(b)).

VI. THREATS TO VALIDITY

This section discusses the threats to the validity of our
experiment according to the categories listed by Wohlin
et al. [44]. Our experiment involved one independent variable
(namely, the controller design approach) to which three treat-
ments were applied (namely, monolithic, decentralised, and
decentralised with a meta-controller). The dependent variables
are scalability and fidelity observed in the target system when
the different treatments are applied. The Kube-ZNN system
was a single subject handled in the experiment.

Internal validity: In our study, the software under analysis
presents some factors of uncertainty which may lead to vari-
ations in the observed outcomes for the given treatments. In
particular, uncertainty is present in the controller (processing
uncertainty related to the periodical monitoring of controller
components and target system components), in the commu-
nication between components (regarding the inconsistency
between the observed states from the target system to allow
for decisions taken by the controller), and in the target system
and its environment (variations in the available resources to
run a target system inside a Kubernetes cluster deployed in a
single physical machine). To mitigate this threat, we performed

40 executions of each scenario and based our analysis on the
median value of collected quantitative data.

Construct validity: In our study, a threat could be the lack
of prior knowledge to design and operate with the adopted
technologies, namely, Rainbow / Kubow and ZNN.com /
Kube-ZNN . To mitigate it, we established communication
with the original developers of Kubow and Kube-ZNN [2],
who helped us to improve their implementations (the fixes
were propagated to all configurations we used). We also relied
on available documentation for other applied technologies.

Another construct threat concerns the interaction of different
treatments. In this case, there was a natural evolution of the
architectural configurations used in the experiment. We started
with the original Kubow and Kube-ZNN implementations [2]
and evolved them to create the other two configurations which
included micro-controllers and meta-controller. To mitigate
this threat, we applied good design practices, performed code
revisions, and assessed the implementations with support from
the Kubow and Kube-ZNN developers.

External validity: In our study, we used a single subject
(Kube-ZNN ) and small set of micro-controllers. Thus, our
results may not translate to other settings that, for instance,
use different target systems, sets of micro-controllers, or even
execution infrastructures.

VII. RELATED WORK

Here we discuss four topics of related work, as follows:
(1) Microservices for self-adaptive systems: Baylov
and Dimov [5] provided a reference architecture supporting
the design of self-adaptive microservices, however it implies
a specific structure that does not provide the same level of
flexibility compared to our approach.

Hassan and Bahsoon [17] proposed the creation of a
controller for microservice-based self-adaptive applications.
Sampaio Jr. et al. [33] support the reconfiguration of
microservice-based systems based on affinities and history
of resource usage. In contrast, we promote architecting con-
trollers based on micro-controllers (as microservices). Aligned
with Mendonça et al.’s suggestion [25], we propose and
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assess a concrete solution for deploying microservice-based
controllers that are able to adapt at run-time.

(2) Flexible controllers and meta-controllers: Banija-
mali et al. [4] emphasise the increasing interest in microser-
vices in self-adaptive systems, in particular, in the automotive
domain. In their approach, which is similar to ours, they con-
sider a controller consisting of microservices. However, they
do not address the role of a coordinating entity for managing
those microservices, which is addressed by Gerostathopoulos
et al. [15] on their approach for incorporating homeosta-
sis [37] into an additional control layer. This homeostasis
layer is above the controller, as our meta-controller layer,
and is responsible for changing adaptation strategies at the
lower layer, at run-time. While Gerostathopoulos et al. [15]
focused on mechanisms for the homeostasis layer, we focus
on micro-controller-based controllers. We address is from as
a bottom-up approach, so that micro-controllers could have
more specific characteristics and functionalities.

Pereira et al. [29] proposed the development of flexible
controllers that are based on MAPE-K (each sate as a single
microservice), whereas our approach is not limited to the
MAPE-K components. We also include the meta-controller as
an additional layer, which is able to reconfigure the controller.

(3) Decentralised controllers: Florio and Di Nitto [13]
proposed adding autonomic capabilities (in a decentralised
way) to containerised and microservice-based not originally
designed to be autonomic. Nallur and Bahsoon [26] also devel-
oped a decentralised, multi-agent self-adaptation approach for
web service-based systems deployed in the cloud. Considering
both pieces of work [13, 26] and ours, key differences are:
(i) both [13, 26] were specifically designed to be applied
to particular domains (namely, systems based on microser-
vices, and systems based on web services, respectively);
and (ii) the controllers based on multi-agent systems are
non-reconfigurable.

Recently, Quin et al. [31] reported on a systematic literature
mapping that focused on characterising the state-of-the-art
of decentralised self-adaptive systems. The authors justify
the focus of their research by highlighting the increasing
ubiquity and scale of self-adaptive systems. Differently from
our work, their study has particular interest on systems that
have controllers exclusively based on the MAPE-K, and that
have the MAPE-K functions (e.g., monitoring and planning)
realised by multiple inter-coordinated components. In that
direction, the micro-controllers proposed in our work may also
be split in inter-communicating components, and hence turning
themselves into decentralised controllers.

(4) Reuse for self-adaptive systems: Mendonça et al.
[24] discussed difficulties for reusing self-adaptation services
and frameworks across different self-adaptive software sys-
tems. Their proposed solution is to use containerised mi-
croservices as a primary abstraction to build target systems.
Other pieces of work support conceptual reuse of controllers
by using MAPE-K blueprint [20], design patterns [32], and
control patterns [43]. Technical reuse of the controller is also
addressed. For instance, in Rainbow [14], the level of abstrac-
tion is raised to the software architecture so that a controller

performs generic architectural adaptation by adding, removing,
and reconfiguring components in a target system. For this,
Rainbow has to be tailored with target system-specific gauges
and effectors that bridge the abstraction gap, which could be
eased by using model-driven engineering techniques [6, 40].

Other approaches enable reuse of execution engines for
controllers specified by models [19, 41]. The resulting models
are specific for each target system but the engines executing
these models are generic and reusable. This principle has
been extended to individual controller stages, which allows
reuse of engines at a more fine-grained level [42]. While
such a reuse ease developing controllers, the models have
to be created for each specific target system. To ease the
creation of models, reusable templates for each MAPE-K
controller stage exist [11]. Similarly but for code-based de-
velopment, Krupitzer et al. [22] provided reusable templates
for components of these stages. However, the controllers
resulting from these approaches do not address the wide
range of needs of target systems since the unit of reuse is
either a monolithic controller, templates typically restricting
the structure or behaviour of controllers, or model execution
engines. In contrast, we address the wide range of needs of
target systems by orchestrating a controller from a collection
of generic micro-controllers.

VIII. CONCLUSION AND FUTURE WORK

This paper presented a novel approach, based on microser-
vices, for the design and deployment of multi-layered con-
trollers for self-adaptive software systems. The feasibility of
the approach, that promotes flexibility and reuse, has been
demonstrated and evaluated using three different controller
architectural configurations (monolithic, decentralised, and
decentralised with a meta-controller), and deployed on the
Kube-ZNN exploratory study. The evidence collected for
the evaluation was related to two key Kube-ZNN attributes:
structural flexibility in terms of the number of servers (i.e.,
scalability of resources), and parametric adaptation related to
the content provided by the servers (i.e., fidelity of content).
From the results obtained, we conclude that the design of
controllers based on micro-controllers allows for the definition
of controllers that are structurally flexible, without compro-
mising the overall system performance. Based on this, we
envisage a whole range of self-adaptive software systems
for which our proposal would be suitable. Taking as a ref-
erence the Self-Adaptive Systems Artifacts [35], there are
several exemplars that could make use of micro-controllers.
For example, in Body Sensor Network exemplar [16], both
the Strategy Manager and the Strategy Enactor could be
implemented as micro-controllers. Since there are just two
of them, a simple choreography, without a meta-controller,
could be implemented to coordinate their activities. In the
case of the SEAByTE exemplar [30], instead of having a
single Feedback Loop managing performing A/B testing on
several components, we could have several micro-controllers
each implementing the Feedback Loop to manage the A/B
testing of each component.

As future work, a key challenge to be handled is the poten-
tial increase in risk for having multiple feedback control loops
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associated with the different micro-controllers. Moreover, co-
ordination mechanisms need to be defined for dealing with
potential conflicts amongst the micro-controllers’ decisions.
Another challenge that needs to be addressed is related to
the actual controller reuse. This requires a different kind
of study involving different applications and repositories of
micro-controllers aiming to collect evidence for substantiating
the benefits that multi-layered controllers might bring.
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nell, and A. Wesslén, Experimentation in Software Engi-
neering, 1st ed. Springer: Springer, 2012.

12

https://www.hpi.uni-potsdam.de/giese/public/selfadapt/
https://www.hpi.uni-potsdam.de/giese/public/selfadapt/

	Introduction
	Background
	Rainbow
	Docker and Kubernetes
	Kubow

	Approach
	Micro-controllers
	Meta-controller

	Exploratory Study
	black Exploratory Study: ZNN.com and Kube-ZNN 
	Controller Configurations
	Experimental Infrastructure

	Evaluation
	Experimental Execution Setups
	Scalability Results
	Fidelity Results
	Further discussion

	Threats to Validity
	Related Work
	Conclusion and Future Work

