
Runtime Resolution of Feature Interactions through
Adaptive Requirement Weakening

Simon Chu
Carnegie Mellon University

Pittsburgh, PA USA
cchu2@andrew.cmu.edu

Emma Shedden
University of Michigan

Ann Arbor, MI USA
emshedde@umich.edu

Changjian Zhang, Rômulo Meira-Góes
Carnegie Mellon University

Pittsburgh, PA USA
{changjiz, rmeirago}@andrew.cmu.edu

Gabriel A. Moreno
Software Engineering Institute, Carnegie Mellon University

Pittsburgh, PA USA
gmoreno@sei.cmu.edu

David Garlan, Eunsuk Kang
Carnegie Mellon University

Pittsburgh, PA USA
{dg4d, eunsukk}@andrew.cmu.edu

Abstract—The feature interaction problem occurs when two or
more independently developed components interact with each
other in unanticipated ways, resulting in undesirable system
behaviors. Feature interaction problems remain a challenge for
emerging domains in cyber-physical systems (CPS), such as the
Internet of Things and autonomous drones. Existing techniques
for resolving feature interactions take a “winner-takes-all” ap-
proach, where one out of the conflicting features is selected
as the most desirable one, and the rest are disabled. However,
when multiple of the conflicting features fulfill important system
requirements, being forced to select one of them can result in
an undesirable system outcome. In this paper, we propose a new
resolution approach that allows all of the conflicting features
to continue to partially fulfill their requirements during the
resolution process. In particular, our approach leverages the
idea of adaptive requirement weakening, which involves one or
more features temporarily weakening their level of performance
in order to co-exist with the other features in a consistent
manner. Given feature requirements specified in Signal Temporal
Logic (STL), we propose an automated method and a runtime
architecture for automatically weakening the requirements to
resolve a conflict. We demonstrate our approach through case
studies on feature interactions in autonomous drones.

I. INTRODUCTION

Modern software systems are often constructed by compos-
ing a set of independently developed components or features,
each of which is designed to achieve a particular objective
or a requirement. For instance, a typical automotive system
contains an array of software features that are designed to
ensure vehicle safety under different circumstances, such as
emergency braking and lane-keeping assist.

Sometimes, these features can interact with each other in
unanticipated ways, resulting in undesirable system behavior.
This type of problem, also called the feature interactions
problem, has been long studied by the software engineering
community [1]–[3], but remains a major challenge, especially
in emerging domains such as the Internet of Things and
autonomous systems [4]–[7]. There are two main aspects to
the feature interactions problem: (1) detection of a possible
conflict between features and (2) its resolution. In this paper,
we focus on the resolution of feature interactions at run-time.

Existing approaches to resolution leverage some notion of
what it means for one feature to be more desirable than others;
then when a conflict arises, the most desirable out of the
conflicting features is selected as the one that is ultimately ex-
ecuted by the system (and actions from the rest are discarded).
One such common notion is based on user-defined priorities
or precedent list [8]–[11]. Other recent approaches include
variable-specific resolution (where a conflict between features
that modify the same variable is resolved by selecting the
action that is considered safest [7], [12]) and property-based
resolution (where the feature that is most likely to satisfy a
given system requirement is selected [13]).

These “winner-takes-all” approaches, however, share one
major drawback: When multiple of the conflicting features
fulfill important system requirements, being forced to select
only one of them leads to an outcome that is undesirable
from the developer’s perspective. For example, when a pair of
conflicting features in a vehicle are both designed to perform
critical safety functions (e.g., maneuvering around an obstacle
while staying within the lane), discarding one or the other
might bring the system into an unsafe state in either case.

To overcome this challenge, we propose a new resolution
approach that allows the conflicting features to continue to
(partially) fulfill their requirements during the resolution pro-
cess. The key idea behind this approach is that of adaptive
requirement weakening: When a feature conflicts with another,
it may be acceptable to temporarily “compromise” the level
of its functionality, by weakening the requirement that it is
designed to achieve. Consider a pair of features, F1 and F2,
that are designed to fulfill requirements R1 and R2, respec-
tively. When in presence of each other, there may be scenarios
in which both requirements cannot be fulfilled simultaneously
(i.e., F1 ⊕F2 ̸|= R1 ∧R2). To resolve this conflict, instead of
disabling F1 or F2, our approach involves weakening one or
more of the given feature requirements (e.g., from R1 to R′

1)
such that the features are able to function and co-exist with
each other in a consistent manner (e.g., F1⊕F2 |= R′

1∧R′
2). In

addition, we say that our approach is adaptive, since the degree

1

ar
X

iv
:2

31
0.

18
21

7v
1

 [
cs

.S
E

]
 2

7
O

ct
 2

02
3

to which one or more requirements are weakened depends on
the particular environmental context in which a conflict arises.

In this paper, we present a realization of this approach in a
class of systems called cyber-physical systems (CPS), where
software features are used to monitor and control one or more
physical entities in the environment [14]. The requirements of
individual features are specified using a notation called Signal
Temporal Logic (STL) [15], which is particularly well-suited
for describing continuous-domain and time-sensitive behaviors
of CPS. Based on the semantics of STL [15], we provide (1) a
formal definition of what it means to weaken a requirement, (2)
a method for automatically transforming a pair of conflicting
requirements, R1 and R2, into weakened, consistent versions,
R′

1 and R′
2, and (3) a runtime architecture that leverages this

method to dynamically modify the behavior of the components
and resolves the conflict.

Weakening the requirement of a feature, however, involves
degrading the level of its functionality and can reduce the
overall utility of the system. Thus, an ideal method would
weaken the requirements no more than by a minimal degree
that is sufficient to resolve the given conflict. Finding such
minimal weakenings, however, is a challenging problem, since
in general, the space of weakening candidates for a given
requirement R can be enormous, if not infinite. In particular,
we demonstrate how this problem can be formulated as an
instance of mixed-integer linear programming (MILP) [16],
where the goal is to synthesize weakened requirements that
no longer conflict with each other while being as close to the
original requirements as possible.

We have built a prototype implementation of our runtime
resolution approach on top of PX4 Autopilot [17], an open-
source autopilot software used in consumer and industrial
drones. We have evaluated our approach using four different
(possibly conflicting) features in an autonomous drone under
a wide range of simulated scenarios. Our evaluation shows
that our weakening-based approach is effective at resolving
conflicts while allowing the features to continue to satisfy the
weakened versions of their requirements.

The contributions of this paper are as follows:

• A theoretical foundation for the resolution of feature in-
teractions using STL-based requirement weakening (Sec-
tion IV)

• A runtime architecture that leverages requirement weak-
ening to resolve conflicts (Section V),

• An approach for finding minimal weakening through
translation into MILP (Section V-B), and;

• An implementation of the weakening-based resolver (Sec-
tion VI) and an evaluation on case studies involving
autonomous drone features (Section VII).

Relevance to SEAMS. Our approach can be regarded as
performing a type of self-adaptation, as it involves dynamically
changing the behavior of components to manage conflict
scenarios that are difficult to predict or resolve at the design
time. As opposed to the typical control loop used in self-
adaptive systems (e.g., MAPE-K [18]), which adapts the

Fig. 1: A possible conflict in an organ delivery drone.

system asynchronously, our approach is synchronous with the
control loop of the CPS, as later described in Section V, Fig. 2.

II. MOTIVATING EXAMPLE

Consider an autonomous organ delivery drone attempting
to deliver an organ from a donor in Hospital B to a recipient
in Hospital A, inspired by the example from [19]. The drone
contains two features: (1) the delivery path planner, which
ensures the organ is delivered to the receiver’s hospital in
the most efficient manner possible, and (2) the safe landing
enforcer, which ensures that the battery on the drone has
enough charge to safely make it to the nearest land. Under
normal conditions, the delivery path planner will always be
active, generating an action (adeliver) to move the drone to
its destination, while the safe landing enforcer remains off by
default unless triggered upon sensing a low battery level.

Imagine a scenario where the drone encounters unexpected
turbulence mid-flight, causing the battery to discharge much
faster. When the battery dips below a certain threshold, the
safe landing enforcer is activated, which then generates a safe
landing action (aland) to direct the drone to the nearest land.
Since the delivery path planner is unaware of the landing
enforcer, it continues to generate adeliver, which results in
a conflict between the two features, as depicted in Figure 1.

a) Existing methods: One possible approach to resolving
this conflict is to leverage a user-defined list of priorities
among the features. The drone operator, for example, may des-
ignate the safe landing feature as having the highest priority,
and the flight controller could be programmed to disregard
the actions from all other features, including the delivery
path planner. This approach to resolution results in system
behaviors where the requirement of the highest-ranked feature
(i.e., safe landing) is satisfied while the others are disregarded;
in this example, choosing to land the drone may result in the
organ failing to be delivered before its expiry time.

This type of “winner-takes-all” approach, however, may
not be suitable in situations where such a strict ordering
among features does not exist, or all of the conflicting features
play a critical role in maintaining the system’s safety and
performance. For instance, while landing the drone safely
before running out of battery is certainly important, giving up
an organ in the process is also a highly undesirable outcome,
as the life of a patient may depend on its timely delivery.

b) Proposed method: Our approach, in comparison, at-
tempts to resolve the conflict in a way that satisfies the
requirements of both conflicting features. The key idea is

2

that for certain types of requirements in CPS, it may be
acceptable to temporarily compromise the degree to which
the system satisfies them; i.e., satisfy a weaker version of an
original requirement. This notion of requirement satisfaction,
also termed satisficing [20], can enable a resolution approach
that involves relaxing some of the requirements but without
entirely giving up on any one of them.

For example, suppose that the requirements for the safe
landing and delivery planning features are as follows:

Rland: If the battery threshold falls below 10%, the
drone should land on the nearest land.
Rdeliver: The drone should fly at a fast-enough speed
to reach the destination before the delivery time.

During resolution, one or both of these requirements can be
weakened. For example, the requirement for the safe landing
feature may be weakened by lowering the threshold that
triggers the drone to find a landing spot (e.g., from 10% to
5%). With the new weakened requirement (Rland → R′

land),
the behavior of the two features becomes consistent again (i.e.,
R′
land ∧ Rdelivery is satisfiable). Intuitively, this amounts to

delaying the safe landing feature in order to allow the drone
to complete its organ delivery mission. As a trade-off, the
safe landing feature has compromised the level of safety that
it originally promised, since there is now an increased risk that
the drone may run out of battery before landing.

Alternatively, the conflict could be resolved by weakening
both requirements. For example, Rdelivery may be weakened
by reducing the speed of the drone, to allow the battery to
be depleted at a slower rate than at the original speed. This
would cause a delay in organ delivery, but it would also enable
the drone to complete its delivery while weakening the battery
threshold from 10% to 8% only. In either case, this weakening-
based approach results in an arguably more desirable system
outcome than the priority-based method, since both the re-
quirements of the features can be satisfied (at the cost of
temporarily compromising their optimal functionality).

c) Challenges: In general, there may be a large number
of ways to resolve a conflict using this approach, weakening
one or more requirements by different amounts. Since weak-
ening involves degrading the functionality of the features, an
ideal resolution process would involve weakening the require-
ments no more than needed. At the same time, the system
operator may also wish to place a harder constraint on the
maximum amount by which a requirement can be weakened
(e.g., for Rland, the threshold cannot be set below 5%, since
that might compromise the safety of the battery beyond what
is acceptable). We later show (1) how this type of weakening
can be formally realized over STL and (2) an approach that
uses a MILP solver to generate minimal weakenings.

III. PRELIMINARIES

a) Signals: In our approach, the behavior of CPS is
modeled by real-valued continuous-time signals. Formally, a
signal s is a function s : T → D mapping from a time domain,
T ⊆ R≥0, to a tuple of k real numbers, D ⊆ Rk. Intuitively,
the value of a signal s(t) = (v1, . . . , vk) represents different

state variables of the system at time t; (e.g., v1 might represent
the altitude of the drone).

b) Signal Temporal Logic (STL): STL extends linear
temporal logic (LTL) [21] for specifying the time-varying
behavior of a system in terms of signals. The basic unit of a
formula in STL is a signal predicate in the form of f(s(t)) > 0,
where f is a function from D to R; i.e., the predicate is true
if and only if f(s(t)) is greater than zero. Then, the syntax of
an STL formula φ is defined as:

φ := ⊤ | f(s(t)) > 0 | ¬φ | φ1 ∧ φ2 | φ1U[a,b]φ2

where ⊤ is a Boolean true constant, a, b ∈ R and a < b. The
until operator φ1U[a,b]φ2 means that φ1 must hold until φ2

becomes true within a time interval [a, b]. The until operator
can be used to define two other important temporal operators:
eventually (♢[a,b]φ := True U[a,b]φ) and always (□[a,b]φ :=
¬♢[a,b]¬φ).

c) Robustness: Typically, the semantics of temporal logic
such as LTL is based on a binary notion of formula satis-
faction (i.e., formula φ is either satisfied or violated by the
system). Due to its signal-based nature, STL also supports
a quantitative notion of satisfaction, which allows reasoning
about how “close” or “far” the system is from satisfying or
violating a property. This quantitative measure is also called
the robustness of satisfaction.

Informally, the robustness of signal s with respect to formula
φ at time t, denoted by ρ(φ, s, t), represents the smallest
difference between the actual signal value and the threshold at
which the system violates φ. For example, if the property φ
says that “the drone should maintain an altitude of at least 5.0
meters,” then ρ(φ, s, t) represents how close to 5.0 meters the
drone maintains its altitude. Formally, robustness is defined
over STL formulas as follows:

ρ(f(s(t)) > 0, s, t) ≡ f(s(t))
ρ(¬φ, s, t) ≡ −ρ(φ, s, t)

ρ(φ1 ∧ φ2, s, t) ≡ min{ρ(φ1, s, t), ρ(φ2, s, t)}
ρ(♢[a,b]φ, s, t) ≡ sup

t1∈[t+a,t+b]

ρ(φ, s, t1)

ρ(□[a,b]φ, s, t) ≡ inf
t1∈[t+a,t+b]

ρ(φ, s, t1)

where infx∈X f(x) is the greatest lower bound of some
function f : X → R (and sup the least upper bound). The
robustness of satisfying predicate f(s(t)) > 0 captures how
close signal s at time t is above or below zero. For example,
consider formula φ ≡ alt(t) − 5 > 0, capturing the property
that “the drone altitude is at least 5.0 meters.” If, at time t,
the altitude signal is alt(t) = 10 meters (i.e., 5.0 meters above
the required altitude), ρ(φ, s, t) is computed as 5.

On the other hand, robustness ρ(□φ, a, t) describes the
point at which the system is furthest away from satisfying
φ. For instance, consider property ϕ ≡ □[0,2](alt(t)−5 > 0),
which says that the drone must maintain a minimum altitude
of 5.0 meters for interval t = [0, 2]. Suppose that the system
evolves to generate signal s with the altitude of 6.0, 3.0,
5.5 meters at t = 0, 1, 2, respectively; then, ρ(ϕ, s, 0) =

3

ρ((alt(t) − 5 > 0), s, 1) = -2.0 (i.e., the system violates ϕ
by the robustness value of 2.0).

IV. REQUIREMENT WEAKENING

We present an extension to STL to support the systematic
weakening of requirements in STL. It enables us to specify
the maximum extent of weakening allowed for a requirement
and quantitatively measure the degree of weakening, which
later plays an important role to ensure that requirements are
weakened no more than needed to resolve a conflict. The
extension is built upon the observation that the robustness
value of an instantiated STL formula can be increased by
changing the atomic proposition, and shortening or enlarging
the time interval of the temporal operators in STL. This
increase in robustness quantification leads to a less restrictive
requirement, which is easier to satisfy than the original one.

A. weakSTL: STL with Weakening

We propose weakSTL, an extension to STL with weak-
ening semantics. weakSTL introduces additional parameters
to atomic propositions and temporal operators to indicate
the range of signal values and time intervals allowed for
weakening. The syntax of a weakSTL formula is defined as:

φ := ⊤ | fp(s(t)) > 0 | ¬φ | φ ∧ ψ | φ ∨ ψ |
□I,p,qφ | ♢I,p,qφ | φ UI ψ

where I represents the original time interval [a, b], and p, q
represent the weakening parameters that define the maximum
range for the signal values and time intervals to be weakened.
Note that, our definition does not allow weakening parameters
over the Until operator (φ U[a,b] ψ) because when φ and ψ
are non-trivial formulas, changing the time interval ([a, b]) has
a mixed-effect over the difficulty of satisfaction; i.e., it cannot
guarantee the resulting formula will be weaker. For example,
increasing b allows ψ to occur later (which makes it easier to
satisfy) but requires φ to hold longer (which makes it harder).

1) Semantics: Formally, a weakSTL formula φ defines a set
of STL formulas that are weaker variants of the original STL
formula. We define the translation rules M : weakSTL →
P(STL) as follows:

M(⊤) = {⊤}
M(fp(s(t)) > 0) = {f(s(t)) + i > 0 | 0 ≤ i ≤ p}

M(¬φ) = {¬φ′ | φ′ ∈Ms(φ)}
M(φ ∧ ψ) = {φ′ ∧ ψ′ | φ′ ∈M(φ), ψ′ ∈M(ψ)}
M(φ ∨ ψ) = {φ′ ∨ ψ′ | φ′ ∈M(φ), ψ′ ∈M(ψ)}

M(□[a,b],p,q φ) = {□[a+i,b−j] φ
′ |

0 ≤ i ≤ p, 0 ≤ j ≤ q, φ′ ∈M(φ)}
M(♢[a,b],p,q φ) = {♢[a−i,b+j] φ

′ |
0 ≤ i ≤ p, 0 ≤ j ≤ q, φ′ ∈M(φ)}

M(φ U[a,b] ψ) = {φ′ U[a,b] ψ
′ | φ′ ∈M(φ), ψ′ ∈M(ψ)}

For example, consider φ ≡ fp(s(t)) > 0 for some given value
p, where f(s(t)) ≡ alt(t) − 5. Then, M(φ) represents the

set of all STL formulas of the form alt(t) − 5 + i > 0 for
0 ≤ i ≤ p; in other words, M(φ) represents weaker variants
of φ that requires the drone to maintain an altitude higher than
(5− i) only instead of 5 meters in the original φ.

Given φ ≡ □ϕ, M(φ) represents the set of formulas where
the system is required to maintain ϕ throughout a narrower
interval than the one specified by the original formula φ.
Similarly, for φ ≡ ♢ϕ, M(φ) relaxes this requirement to allow
the system to satisfy ϕ just once during a larger window than
in φ, which is easier to fulfill.

Note that weakening formulas of the form ¬φ involves
strengthening φ. To achieve this, we also introduce Ms, which
defines the translation rules for strengthening an STL formula.
In short, Ms is similar to M but inverses the weakening
computations in M :

Ms(fp(s(t)) > 0) = {f(s(t))− i > 0 | 0 ≤ i ≤ p}
Ms(¬φ) = {¬φ′ | φ′ ∈M(φ)}

Ms(□[a,b],p,q φ) = {□[a−i,b+j] φ
′ |

0 ≤ i ≤ p, 0 ≤ j ≤ q, φ′ ∈Ms(φ)}
Ms(♢[a,b],p,q φ) = {♢[a+i,b−j] φ

′ |
0 ≤ i ≤ p, 0 ≤ j ≤ q, φ′ ∈Ms(φ)}

2) Instantiation: By assigning concrete weakening values
to each of the weakened operators and propositions, we can
instantiate an STL formula from a weakSTL formula. Formally,
we state this as φθ = κ(φ, θ), where κ is the instantiation
function, φ is a weakSTL formula, φθ is an STL formula, and
θ assigns concrete weakening values within the range given
by the weakening parameters (i.e., p, q’s) in φ.

Specifically, θ is a partial function of type weakSTL→ Zk,
where k equals the total number of weakening parameters in φ.
Given φ, θ maps each sub-expression of φ to concrete values
that are used to determine how much that sub-expression is
weakened. Formally, we have:

θ(⊤) = ()

θ(fp(s(t)) > 0) = (x), 0 ≤ x ≤ p

θ(¬φ) = θ(φ)

θ(φ ∧ ψ) = θ(φ)⌢θ(ψ)

θ(φ ∨ ψ) = θ(φ)⌢θ(ψ)

θ(□[a,b],p,q φ) = (x, y)⌢θ(φ), 0 ≤ x ≤ p ∧ 0 ≤ y ≤ q

θ(♢[a,b],p,q φ) = (x, y)⌢θ(φ), 0 ≤ x ≤ p ∧ 0 ≤ y ≤ q

θ(φ U[a,b] ψ) = θ(φ)⌢θ(ψ)

(1)

Then, the instantiation function κ takes a given mapping θ
and generates an STL formula based on the translation rules
M and Ms, i.e., plugging in values from θ into i, j’s as it
walks over the sub-expressions of φ recursively.1

We say that a weakSTL formula φ is satisfiable when there
exists an instantiated STL formula that is satisfiable, i.e.,

(s, t) |= φ⇔ ∃φθ ∈M(φ) • (s, t) |= φθ

1s⌢1 s2 represents the result of concatenating sequences s1 and s2.

4

In addition, we define φ0 be the instantiation without any
weakening from the weakSTL formula φ, i.e., θ is defined
to be 0 for every sub-expression of φ.

Finally, we leverage the robustness concept in the original
STL to measure the degree of weakening between two instan-
tiations of a weakSTL formula φ, as follows:

∆(φθ1, φθ2, s, t) = ρ(φθ2, s, t)− ρ(φθ1, s, t)

where φθ1, φθ2 ∈M(φ).
3) Example: Let us revisit the example in Section III, where

ϕ ≡ □[0,2](alt(t) − 5 > 0). Consider the weakSTL formula
φ ≡ □[0,2],0,2(alt(t) − 5 > 0) (i.e., φ = M(ϕ) with p = 0
and q = 2). Then, φ can be instantiated into two weaker
versions of φ, by weakening the time interval to t′ = [0, 1]
with θ = (0, 1) or t′ = [0, 0] with θ = (0, 2).

Given signal s with an altitude of 6.0, 3.0, 5.5 meters at
t = 0, 1, 2, respectively, the original STL requirement ϕ is
violated, with the robustness value of -2.0. However, with θ =
(0, 2), the resulting, weaker STL requirement φθ is satisfied,
with the robustness value of ρ(φθ, s, 0) = 1.0. The degree
of weakening between the weaker and initial requirements is
measured as ∆(φ0, φθ) = ∆(ϕ, φθ) = 1.0− (−2.0) = 3.0.

V. RUNTIME RESOLUTION ARCHITECTURE

An overview of our proposed runtime architecture for
weakening-based resolution is shown in Figure 2. We assume
that each feature in our system periodically observes the
state of the environment (through one or more sensors) and
generate a command to an actuator in order to influence the
state. For example, the safe landing feature from our running
example periodically monitors the state of the battery (which
is a physical component and is thus considered part of the
environment for the software system). If the battery level
drops below a safe threshold, the landing feature generates
a command to direct the drone to land on the nearest land.

There are two major components in the proposed architec-
ture: (1) the detector, which detects possible conflicts between
the features, and (2) the resolver, which resolves a possible
conflict by generating a new set of actions that are consistent
with each other. Since the focus of this paper is on resolution,
for detection, we adopt the approach proposed by [7] and [12],
where a pair of features are considered to be in conflict if
they generate actions that modify an overlapping part of the
environment (e.g., the safe landing and delivery path planning
features both affect the direction of the drone’s next movement
and thus are in conflict).

When triggered by the detector, the resolver takes three
types of inputs: (1) a conflict, represented by a set of con-
flicting features, (2) a set of requirements for the conflicting
features, and (3) an environment model, which describes how
the state of the environment evolves based on the action
of the system (explained further below). Then, the resolver
performs two steps: (1) weakening of one or more of the
given requirements, and (2) produce a set of actions of the
features that adhere to the weakened requirements (and thus,
non-conflicting with each other).

ak

a2

a1
conflict

EnvironmentSensors Actuators

Feature1

Feature2

Featurek

Detector
…

Feature1
Req.

Environment Model

Weakened
Req.

Non-conflicting
Actions

Runtime Resolution Architecture Feature2
Req.

Featurek
Req.

…

Resolver

Weakening Resolution

non-conflicts

Fig. 2: Overview of the proposed resolution architecture.

In the subsequent sections, we further explain (1) how an
environment model is used to predict the behavior of a system
given an action and (2) how the weakening and resolution steps
by the resolver are carried out using a MILP solver.

A. Environment Model
Given a set of feature requirements, R1, ..., Rk, the goal

of the resolution is to find weaker versions of one or more
of them, R′

1, ..., R
′
k, such that they are consistent (i.e., it is

possible to satisfy R′
1 ∧ ... ∧ R′

k). In the context of STL,
checking the satisfaction of weakened requirement R′ involves
evaluating it over some signal s that represents the possible
future states of the system if the component behaved according
to R′. In the proposed framework, the environment model
plays the role of generating such a predictive signal.

More specifically, the environment model is represented as
transition system T = (Q,A, δ,Qi), where:

• Q ⊆ Rk is the set of environment states. Each state is
a particular combination of values for signal variables,
represented as a k-dimensional tuple; q = (v1, ...vk) ∈ Q.

• A is the set of actuator actions.
• δ : Q × A → Q is the transition function that captures

how the system moves from one state to another by
performing an action.

• Qi is the set of initial states.
For example, the environment model for the drone example
may capture the (x, y, z) location of the drone, its velocity,
as well as the amount of remaining battery. The location of
the drone changes during each transition depending on the
current velocity, which, in turn, may be modified by a system
action that accelerates or decelerates the drone. Similarly, the
battery level also can be modeled as decreasing at a steady
rate (drain rate) while the drone is in movement:

q′ = δ(q, a)

q′.battery level = q.battery level − drain rate

Then, given a sequence of actions a1, a2, ..., an and the current
state q, the environment model can be executed over these ac-
tions to generate a corresponding state sequence, q0, q1, ...qn,
which can then be formed into predictive signal s.

Our approach does not prescribe a particular notation for
specifying an environment model, as long as it can be used to
generate signals as depicted above. For our implementation,
we use the MiniZinc modeling language [22], which provides
declarative constraints for specifying relationships between
different variables of a system.

5

B. Weakening-based Resolution as MILP

In our approach, the weakening and resolution steps inside
the resolver (Figure 2) are carried out together by reduction
to a constrained optimization problem—in particular, MILP.
A standard MILP problem involves finding values for a set of
decision variables that maximize (or minimize) an objective
function while satisfying a set of constraints. We describe how
our problem can be formulated into MILP2.

1) Minimal requirements: As inputs, the resolver is given
a pair of feature requirements in STL, R1 and R2. From
these, the resolver first generates weakSTL formulas for R1

and R2. In addition, the user specifies the maximum allowed
degree of weakening by providing values for p and q for
each weakSTL requirement. These bounds, in effect, define the
weakest possible requirement that is allowed by the weakSTL
requirement, also called the minimal requirement.

For example, consider R1 ≡ (alt(t) > 5). Suppose that the
user is willing to accept R1 to be weakened but no more than
(alt(t) > 2), since staying below that altitude is considered
unacceptable. Then, the user would specify the value of 3 for
bound p in weakSTL φ ≡ fp(s(t)) > 0, where φ0 ≡ R1.

2) Conflict resolution: Weakening-based resolution prob-
lem is formulated as follows:

Problem 1: Given (i) the original STL formulas φ0, ψ0

instantiated from weakSTL φ and ψ, respectively, (ii) past
signal spast where ¬∃spred • (spast⌢spred, 0) |= φ0 ∧ψ0, find
a pair of weakened STL formulas, φ′ ∈ M(φ), ψ′ ∈ M(ψ),
and a predictive signal, spred, such that

∃ spred • (spast⌢spred, 0) |= φ′ ∧ ψ′ (2)

Problem 1 defines a conflict as a condition where no possi-
ble future states (as represented by predictive signal spred) can
satisfy the conjunction of the original requirements. Intuitively,
weakening-based resolution attempts to resolve this conflict by
finding weakened requirements φ′ and ψ′ that are satisfiable
over some possible future execution (i.e., spast⌢spred).

3) Optimization problem: Problem 1 can be formulated as
a constrained optimization problem, as follows:

Problem 2: Given φ,ψ ∈ weakSTL, transition system T =
(Q,A, δ,Qi), and state sequence qt = q0, . . . , qt representing
the signal observed from the environment so far, compute:

argminθ(φ),θ(ψ),a ∆(φ0, φθ(φ), s, 0) + ∆(ψ0, ψθ(ψ), s, 0) (3)

s.t. θ(φ) ∈ Zk (4)
θ(ψ) ∈ Zm (5)
si = qi for i ≤ t (6)
si = δ(si−1,ai−1) for t < i ≤ t+N (7)
(s, 0) |= φθ(φ) ∧ ψθ(ψ) (8)

where k and m are the total number of weakening parameters
of φ and ψ as defined by Eq. 1, N ∈ N is a finite horizon
provide by the user, s = s0 . . . st+N , and a = at . . . at+N−1.
Moreover, transition system T is provided by the environment
model and is used to predict signal s from t to t+N .

2Without loss of generality, we show a formulation for a MILP problem to
resolve a conflict between two features.

Problem 2 poses the weakening-based resolution problem as
an optimization problem. Intuitively, this optimization problem
generates (1) weakening parameters θ(φ), θ(ψ) for weakSTL
formulas φ,ψ and (2) a sequence of N actions at . . . at+N−1

that result in the satisfaction of the weakened requirements.
These parameters are generated such that the degree of weak-
ening for each of the weakSTL formulas is minimized, i.e.,
weaken the requirements no more than necessary (Eq. 3).
Signal s is the concatenation of the past signal (Eq. 6) and
the predicated signal generated via the environment model
T and actions a (Eq. 7). Finally, the weakened requirements
φθ(φ) ∧ ψθ(ψ) must hold over s (Eq. 8).

To encode Problem 2 as an MILP instance, we extend the
MILP-based formulation of the STL control synthesis problem
in [23] to capture the degree of weakening ∆(φ0, φθ(φ), s, 0)
and ∆(ψ0, ψθ(ψ), s, 0). In [23], the control synthesis problem
finds a signal s that satisfies a given STL formula under an
environmental model. In our scenario, we include additional
variables to capture the weakening parameters θ(φ) and θ(ψ)
to the STL MILP encoding in [23]. As in [23], we assume
that every predicate function f that defines f(s(t)) > 0 in STL
formula φ must be a linear or affine function. This assumption
guarantees that our encoding is expressible as a MILP.

Finally, the translated MILP problem is dispatched to an
off-the-shelf solver (Gurobi [24] in our implementation). The
solver can either find a solution or return UNSAT (meaning it
cannot find weakened requirements and actions that satisfy the
constraints). If the solver is able to find a solution, the resolver
returns the generated action sequence a = at . . . at+N−1 to be
executed by the system as the resolved actions.

VI. IMPLEMENTATION

A. Simulator

To demonstrate our approach, we have implemented a pro-
totype of our resolution architecture3 on top of PX4, an open
source flight control software [25]. To run our experiments,
we use the jMAVSim drone simulator (part of PX4), which
supports the simulation of the physical dynamics of the drone
while it reacts to control actions.

For evaluation, we implemented the following features on
top of the PX4 flight control software:

• Delivery Planning Feature: Plans for the shortest path
from point A to point B and generates a set of velocity
vectors during the flight to follow the designated path.

• Safe Landing Feature: Directs the drone to land on the
nearest land when the battery level drops below a preset
safety threshold.

• Boundary Enforcer: Ensures that the drone remains
within the map boundaries. When active, it generates a
velocity vector orthogonal to the map boundary.

• Runaway Enforcer: Ensures that the drone stays away
from drones nearby. When active, it generates a velocity
vector to evade a nearby drone.

3All of the code, models, and experimental data is available at https://github.
com/sychoo/CPS-weakening-based-resolution

6

https://github.com/sychoo/CPS-weakening-based-resolution
https://github.com/sychoo/CPS-weakening-based-resolution

B. Environment Model

As discussed in Section V, our framework leverages a model
of the environment during the resolution process. For the drone
system, the environment model captures (1) 3D Cartesian
space around the drone, (2) the physical dynamics of the
drone, including how its location is changed by an action
that sets its velocity, and how its speed is affected by an
acceleration/deceleration action, (3) the amount of remaining
battery and its depletion rate (based on the velocity of the ego
drone), and (4) the estimated speed and location of a nearby
drone (which we call the chaser drone); in particular, the
model assumes that the chaser is moving towards the ego drone
at a fixed speed. We believe that this model is general enough
to capture important aspects of a typical drone environment
and reusable across multiple features.

The environment model is specified in the MiniZinc mod-
eling language and is automatically translated into the under-
lying MILP constraints during the resolution process.

VII. EVALUATION

This section presents the evaluation of our proposed ap-
proach. We focus on the following 3 research questions:

• RQ1. Does the weakening-based approach better achieve
the desired feature requirements compared to the existing
priority-based approach?

• RQ2. Does the weakening-based approach provide a
stronger guarantee for satisfying the minimal feature
requirements compared to the existing priority-based ap-
proach?

• RQ3. What is the performance overhead of our approach?
Does it interfere significantly with the system operation?

To study the proposed questions, we conducted two case
studies involving autonomous drones: (1) an organ delivery
drone and (2) a surveillance drone. In each case study, we
evaluated our weakening-based method to resolve conflicts
between two different features of the drone.

A. Experimental Design

We designed a set of experiments4 to compare the pro-
posed weakening-based approach to a priority-based resolution
approach, which uses a fixed ordering among the features
and only selects the action generated by the highest-ranking
feature. The weakening-based resolution approach does not
require any ordering between different features. Instead, it
allows the user to define an original requirement and a minimal
requirement for each feature (specified as bounds on weakSTL
formulas, as described in Section V-B).

When the MILP solver is unable to generate a solution, it
outputs UNSAT (for unsatisfiability); this may occur in certain
environmental contexts where it is impossible to weaken the
requirements (within the maximum allowed degrees as defined
by the minimal requirement). In that case, the resolver simply
selects one of the conflicting actions to execute.

4All our experiments were run on a macOS machine with 32 GB RAM
and a 6-core Intel Core i7.

To test the resolution approaches under diverse scenarios,
we randomly generated different configurations for the drone
simulation, including the initial starting points of the ego
and nearby drones, the maximum speeds of the drones, the
mission waypoints (e.g., delivery destination), and the size
of the map boundary. Then, for each of these scenarios, we
simulated the drone multiple times (each under a different
resolution approach) and recorded the system states throughout
its execution (i.e., the signal for the entire simulation).

To measure the performance of the resolution approaches,
we use the robustness of satisfaction of the given feature
requirements as the metric. Our rationale behind choosing
this metric is that robustness captures how well the system
is achieving the objectives of the features, and thus can serve
as a reasonable proxy for the desirability of system behavior
that results from a particular resolution approach. In particular,
to analyze the impact of resolution, we measure and record
the robustness values for the original (not the weakened)
requirements during the period of a feature interaction; that
is, we start collecting the values starting at the time point
where both features are activated and stop at the point where
both features are deactivated.

Finally, before carrying out our experiments, we developed
the following hypotheses to be tested:

• H1 (for RQ1). The weakening-based approach results in
a higher overall satisfaction of feature requirements than
the priority-based approach.

• H2 (for RQ2). The weakening-based approach provides
a stronger guarantee of minimal requirements than the
priority-based approach.

• H3 (for RQ3). The weakening-based approach incurs
non-trivial overhead, but it is not significant enough to
disrupt the operation of the existing drone controller.

B. Organ Delivery Drone Case Study

As described in Section II, there are two features of interest
in the organ delivery drone: the delivery planner and the the
safe landing feature. A conflict between these two features
arises when both features are activated simultaneously (i.e.,
the battery drops below a safe threshold while the planner is
computing the next velocity vector to the destination).

The original STL requirements specified for the two features
are as follows:

Rdeliver : □[0,1](curr speed >

(distance to dest/remaining delivery time))

Rland : □[0,1](battery < 40% → ♢[0,1](is landing = 1))

In addition, we also specified the following minimal require-
ments for the two features:

Rdeliver : □[0,1](curr speed >

(distance to dest/remaining delivery time))

Rland : □[0,1](battery < 20% → ♢[0,1](is landing = 1))

Note that the minimal requirement for the delivery planner
is the same as the original one (i.e., it cannot be weakened),
since timely delivery of the organ is considered critical.

7

Fig. 3: A conflict scenario between the boundary and runaway
enforcers. Action aresolve represents a possible action generated by
the weakening-based approach.

For this case study, we generated 25 randomized scenar-
ios by varying the configuration parameters as described in
Section VII-A. Then, we ran each scenario four times: (1)
weakening-based approach with the delivery planner as the
fallback action, (2) weakening with the landing feature as
the fallback, (3) priority-based approach with the planner as
the preferred feature, and (4) priority with the landing feature
preferred. This resulted in a total of 100 scenario runs.

C. Surveillance Drone Case Study

Consider a drone that performs a surveillance mission, visit-
ing a set of waypoints within a designated boundary of the map
(inspired by an example from [26]). The environment contains
another simulated drone (called the chaser) that constantly
flies towards the ego drone. The two features of interest here
are the boundary enforcer and the runaway enforcer, each of
which is tasked with keeping the drone safe from a collision
with the boundary or the chaser (respectively). A conflict can
occur in situations when the ego drone travels to a position that
is close to the boundary and the chaser, as shown in Figure 3.

The following original STL requirements were specified for
the two features:

Rrunaway : □[0,1](distance to chaser > 10)

Rboundary : □[0,1](distance to boundary <= 20 →
♢[0,1]distance to boundary > 20)

In addition, we also specified the following minimal require-
ments for the two features:

Rrunaway : □[0,1](distance to chaser > 2)

Rboundary : □[0,1](distance to boundary <= 20 →
♢[0,1]distance to boundary > 2)

As with the organ delivery case study, we generated 25 random
scenarios and ran each scenario four times (twice with the
weakening-based approach and the other two times with the
priority-based approach).

D. Experimental Result

Figure 4 shows, for each case study, the overall robustness
values for the weakening-based and priority-based approaches.
The overall robustness value is computed as the average of the
normalized robustness values for the feature requirements and
is intended to show how the system fulfills the objectives of
all the features. As seen in Figure 4, the weakening-based

Fig. 4: Overall robustness values for the two case studies.

approach achieves higher overall robustness than the priority-
based approach, as it attempts to satisfice the requirements of
both features (unlike the priority-based method, which gives
up on the feature that is not selected).

One may note that in the organ delivery case study, the
overall robustness values for both approaches are negative;
this is because during the conflicts in these scenarios, the
actions available to the drone are drastically different (land
vs. keep flying) and thus selecting one feature will result in
a large violation of the other’s requirement. Even in such
negative scenarios, the weakening-based approach is still able
to achieve a lower overall violation of the requirements than
the priority-based method, as shown in Figure 4.

We provide a more detailed analysis of the results, broken
down by the individual feature requirements, shown in Fig. 5.

1) Organ delivery drone: In Fig. 5, charts (A) and (B)
show the average robustness values for the landing and de-
livery requirements, respectively. The results show that the
priority-based approach achieves the highest robustness for
the requirement of the feature that it selects (e.g., 7.07 for
the delivery planning feature in (B)). At the same time, the
requirement of the feature that is discarded by the priority-
based method shows a large violation. Both of these outcomes
are as expected, since the system achieves the requirement of
the feature that it specifically prioritizes.

In comparison, the results suggest that the weakening-based
approach achieves a compromise between prioritizing one of
the features and discarding the other. For example, in chart
(B), although the weakening-based approach achieves a lower
robustness value than the priority method that selects the
delivery feature, it avoids the large violation that would result
if this feature was entirely discarded.

In (C), it can be seen that the weakening-based approach
ensures the satisfaction of the minimal requirement (even
in the worst case) while the priority-based method fails to
do so. Lastly, in (D), none of the resolution methods can
guarantee the delivery planning feature, as it is deemed as
a hard constraint that cannot be weakened (i.e., the minimal
requirement is the same as the original requirement). We did,
however, observe that the weakening-based resolution still
obtains a higher robustness value in its worst-case scenario
than the priority-based method does.

2) Surveillance drone: Similar patterns can be observed
here as the ones in the prior case study. In Fig. 5, charts
(E) and (F), it can be seen that on average, the weakening-

8

Fig. 5: Robustness breakdown by each feature requirement. Chart groups (A)-(D) and (E)-(H) correspond to the organ delivery and
surveillance drone case studies, respectively. Each of (A), (B), (E), and (F) compares the average robustness values for three different
approaches: (1) weakening-based, (2) priority-based with feature 1, and (3) priority with feature 2. Charts (C), (D), (G), and (H) show the
lowest robustness values; the red line represents the threshold at which the minimal requirement is violated.

based approach achieves a compromise between prioritizing vs
discarding a feature as it is done by the priority-based method.

In (H), for the boundary enforcer, the weakening-based
approach is not able to guarantee the minimal requirement,
violating it in its worst-case outcome (-22.26). This is due
to the fact that occasionally, the feature interaction scenario
forces the drone into a non-recoverable position (i.e., cannot
avoid crashing into the boundary), causing the resulting MILP
problem to be unsatisfiable. Even then, it can be seen that the
weakening-based approach avoids the large violation that is
caused by the priority-based method (-46.26).

3) Summary: Based on Fig. 4, we conclude that the
weakening-based approach attains a higher overall robustness
value than the priority-based approach, supporting hypothesis
H1. This suggests that the weakening-based approach is effec-
tive at satisficing the requirements of both conflicting features.

In Fig. 5, (C-D), (G-H), it can be seen that the weakening-
based approach, in its worst-case outcome, may fail to guar-
antee the minimal requirement under environmental scenarios
that do not permit any weakening solution. This suggests that
if satisfying a particular requirement is critical, the priority-
based method that always selects that feature may be more
desirable. Thus, hypothesis H2 is not supported.

E. Performance Overhead

Since the weakening-based approach uses a MILP solver,
it incurs significantly more overhead than the priority-based
method, which simply involves selecting the preferred action.
Based on our timing measurement, the MILP-based resolution
process took approximately 0.28 seconds on average across
the two case studies. During our simulation runs, we did
not observe any noticeable delays or disruptions to the drone
operation. This is because the control loop inside the PX4

drone software was running at 2Hz, resulting in a window of
0.5 seconds for each cycle of the controller update (i.e., the
resolution process completed before the next control action
was to be generated).

On the other hand, the amount of overhead depends on the
complexity of the feature requirements and the environment
model, and thus it is possible that one may run into per-
formance issues for larger, more complex systems than our
drone software. As part of future work, we plan to explore
other methods that leverage different types of search heuristics
(e.g., machine learning-based or generic algorithms) and could
potentially provide more efficient resolution.

F. Threats to Validity

There are three sources of potential errors in our experi-
ments: (1) the selected case study may not be representative
of general CPS applications, (2) the scenarios generated may
exclude exceptional scenarios, and (3) drone simulation is
hardware-dependent.

For (1), we believe that the two case studies we con-
ducted embody common characteristics of CPS, as PX4 is
a well-established, popular drone software. However, a more
extensive validation that involves other types of CPS (e.g.,
automotive systems) may provide further support for the
effectiveness of the proposed resolution approach. To address
(2), we generated a comprehensive sampling of scenarios and
reduced selection biases by randomizing the configuration
parameters. However, our sampling is non-exhaustive and is
likely to exclude some exceptional scenarios. For (3), more
restrictive hardware may cause an increase in the performance
overhead due to the computing resources that are required for
the MILP solver and the simulator.

9

VIII. RELATED WORK

There is a large body of work on feature interactions within
software engineering [1]–[3], [7], [12], [27]–[34]. Here, we
mainly provide a discussion of related work on resolution
(rather than detection) of feature interactions.

Gafford et al. [26] proposes a synthesis-based approach to
the resolution of feature interactions, where given a pair of
conflicting actions, a space of possible alternative actions is
enumerated to find an action that best satisfies the objectives
of the two features. Their approach is similar to ours in
that it also (1) relies on the notion of robustness in STL to
define the desirability of an action and (2) attempts to find
an action as a middle-ground between the two conflicting
actions. However, their approach is limited to cases where
the features generate the same type of action (e.g., a pair
of velocity vectors), whereas our approach can be applied to
features with different types of actions (e.g., landing vs. flying
towards the destination).

Maia et al. investigates the problem of defiant components,
where one or more local components, in trying to achieve their
individual objectives, conflict with a global system require-
ment [19]. They propose an approach called cautious adaption
to dynamically modify the behavior of the local component
and fulfill the global requirement when a conflict arises;
adaptation here is carried out by injecting a piece of logic
into the local component that overrides its default behavior.
Although their approach shares some similarities with ours in
that they both involve temporarily changing the objective of
a system component, there are some noticeable differences:
(1) our work deals with conflicts between competing features
(or components) instead of local vs. global requirements and
(2) their approach requires wrappers that are crafted at design
time to handle known “exceptional situations” (i.e., conflicts),
whereas our approach can handle unexpected conflict scenar-
ios, as long as they are captured by the environment model.

Requirement relaxation (or weakening) has been investi-
gated in self-adaptive systems. RELAX [35] is a temporal
logic to support the specification of requirements that ex-
plicitly capture uncertainty about possible system behavior.
RELAX can support self-adaptation mechanisms where the
system dynamically adjusts its behavior to accommodate for
uncertainty or changes in the environment. DeVries et al.
use RELAX to investigate the concept of partial feature
interactions, where a pair of features only partially satisfy (i.e.,
satisfice) their individual requirements [36], although they do
not discuss a mechanism for resolving such interactions. One
interesting future direction is to leverage RELAX as another
type of requirements specification language (instead of STL)
to support the weakening-based resolution.

In [37], the authors propose an iterative, multi-grained
approach to requirements relaxation, where requirements of
a higher granularity are relaxed first (for computational ef-
ficiency) before lower-level requirements. Although our ap-
proach currently assumes feature requirements to be at the
same level of granularity, their approach may be useful for

resolving more complex interactions that involve requirements
across different levels of system abstraction.

Our approach for leveraging an environment model to
generate an action that satisfies a desired objective can be
regarded as a type of model-predictive control (MPC) [38]. In
particular, we adopt the STL-based MPC method developed
by Raman et al. [39], where they also leverage a MILP solver
to synthesize an action that satisfies an STL property.

IX. LIMITATIONS AND FUTURE WORK

We propose a reconciliation-based approach to the resolu-
tion of feature interactions, where one or more of the given
requirements are weakened to enable the conflicting features
to behave consistently. Through case studies on autonomous
drones, we have demonstrated that the proposed approach
can achieve an overall higher satisfaction of the conflicting
features, compared to the conventional priority-based method.

Our work makes several assumptions about the character-
istics of the underlying system. First, it is most effective for
systems where requirements can be assigned a meaningful,
quantitative notion of satisfaction (i.e., STL-based require-
ments), are of equal importance, and where the user is willing
to accept temporary degradation in the system performance of
the original requirements (i.e., soft requirements). Thus, this
approach may not be suited for features that perform a very
critical function (e.g., emergency braking feature in a vehicle)
where even small degradation is unacceptable; in such cases,
a priority-based method may be more suitable.

Our approach also relies on an environment model that gen-
erates predictive signals for different feature actions. Instead of
a deterministic, discrete transition system, a stochastic model
(e.g., Markov decision processes) may provide a more realistic
model of the environment. Such a model would also require
a very different approach to weakening than our MILP-based
method and is beyond the scope of this paper.

So far, we have evaluated our approach on pairwise feature
interactions. Although, in principle, the weakening-based ap-
proach should be applicable to any number of features, a more
extensive validation involving N-way interactions [40] would
further support the generality of the proposed approach.

Finally, we believe that the idea of requirements weakening
have other applications beside feature interaction resolution
(e.g., using weakening to gracefully degrade the quality of a
service in response to environmental deviations). We plan to
explore such applications as part of future work.

ACKNOWLEDGEMENT

This material is based upon work funded and supported by
the Department of Defense under Contract No. FA8702-15-
D-0002 with Carnegie Mellon University for the operation
of the Software Engineering Institute, a federally funded
research and development center DM23-0069. This work was
also supported in part by award N00014172899 from the
Office of Naval Research, by the NSA under Award No.
H9823018D0008, and by the National Science Foundation
award CCF-2144860.

10

REFERENCES

[1] M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec, “Fea-
ture interaction: a critical review and considered forecast,” Computer
Networks, vol. 41, no. 1, pp. 115–141, 2003.

[2] A. Nhlabatsi, R. Laney, and B. Nuseibeh, “Feature interaction: The
security threat from within software systems,” Progress in Informatics,
vol. 5, pp. 75–89, 2008.

[3] P. Zave, “Feature interactions and formal specifications in telecommu-
nications,” IEEE Computer, vol. 26, no. 8, pp. 20–30, 1993.

[4] L. Yarosh and P. Zave, “Locked or not?: Mental models of IoT feature
interaction,” in Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems, Denver, CO, USA, May 06-11, 2017.,
2017, pp. 2993–2997.

[5] A. L. J. Dominguez, N. A. Day, and J. J. Joyce, “Modelling feature
interactions in the automotive domain,” in International Workshop on
Modeling in Software Engineering (MiSE), 2008, pp. 45–50.

[6] A. Metzger, “Feature interactions in embedded control systems,” Com-
puter Networks, vol. 45, no. 5, pp. 625–644, 2004.

[7] M. H. Zibaeenejad, C. Zhang, and J. M. Atlee, “Continuous variable-
specific resolutions of feature interactions,” in Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2017, Paderborn, Germany, September 4-8, 2017, 2017, pp. 408–418.

[8] Y. Chen, S. Lafortune, and F. Lin, “Resolving feature interactions using
modular supervisory control with priorities,” in Feature Interactions in
Telecommunications Networks IV, June 17-19, 1997, Montréal, Canada,
1997, pp. 108–122.

[9] J. D. Hay and J. M. Atlee, “Composing features and resolving interac-
tions,” in ACM SIGSOFT Symposium on Foundations of Software Engi-
neering, an Diego, California, USA, November 6-10, 2000, Proceedings,
2000, pp. 110–119.

[10] P. A. Zimmer and J. M. Atlee, “Ordering features by category,” Journal
of Systems and Software, vol. 85, no. 8, pp. 1782–1800, 2012. [Online].
Available: https://doi.org/10.1016/j.jss.2012.03.025

[11] A. Chavan, L. Yang, K. Ramachandran, and W. H. Leung, “Resolving
feature interaction with precedence lists in the feature language exten-
sions,” in Feature Interactions in Software and Communication Systems
IX, International Co nference on Feature Interactions in Software and
Communication Systems, ICFI 2007, 3-5 September 2007, Grenoble,
France, 2007, pp. 114–128.

[12] C. Bocovich and J. M. Atlee, “Variable-specific resolutions for feature
interactions,” in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, (FSE-22), Hong
Kong, China, November 16 - 22, 2014, 2014, pp. 553–563.

[13] S. G. Raghavan, K. Watanabe, E. Kang, C. Lin, Z. Jiang, and S. Shi-
raishi, “Property-driven runtime resolution of feature interactions,” in
Runtime Verification - 18th International Conference, RV 2018, Limas-
sol, Cyprus, November 10-13, 2018, Proceedings, 2018, pp. 316–333.

[14] D. L. Parnas and J. Madey, “Functional documents for computer
systems,” Sci. Comput. Program., vol. 25, no. 1, pp. 41–61, 1995.

[15] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals,” in Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems. Springer Berlin Heidelberg, 2004, pp.
152–166.

[16] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization:
Algorithms and Complexity. Prentice-Hall, 1982.

[17] Dronecode Project, “PX4 autopilot,” https://px4.io, 2020.
[18] B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee,

J. Andersson, B. Becker, N. Bencomo, Y. Brun, B. Cukic, G. D. M.
Serugendo, S. Dustdar, A. Finkelstein, C. Gacek, K. Geihs, V. Grassi,
G. Karsai, H. M. Kienle, J. Kramer, M. Litoiu, S. Malek, R. Mirandola,
H. A. Müller, S. Park, M. Shaw, M. Tichy, M. Tivoli, D. Weyns, and
J. Whittle, “Software engineering for self-adaptive systems: A research
roadmap,” in Dagstuhl Seminar Report, 2009, pp. 1–26.

[19] P. H. Maia, L. Vieira, M. Chagas, Y. Yu, A. Zisman, and B. Nuseibeh,
“Cautious adaptation of defiant components,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2019, pp. 974–985.

[20] H. A. Simon, “Rational choice and the structure of the environment,”
Psychological Review, vol. 63, no. 2, pp. 129–138, 1956.

[21] A. Pnueli, “The temporal logic of programs,” in 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA,
31 October - 1 November 1977, 1977, pp. 46–57.

[22] N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, and
G. Tack, “Minizinc: Towards a standard cp modelling language,” in
Principles and Practice of Constraint Programming (CP). Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007, pp. 529–543.

[23] V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-
Vincentelli, and S. A. Seshia, “Model predictive control with signal
temporal logic specifications,” in 53rd IEEE Conference on Decision
and Control, 2014, pp. 81–87.

[24] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2022. [Online]. Available: https://www.gurobi.com

[25] L. Meier, D. Honegger, and M. Pollefeys, “Px4: A node-based mul-
tithreaded open source robotics framework for deeply embedded plat-
forms,” in 2015 IEEE International Conference on Robotics and Au-
tomation (ICRA), 2015, pp. 6235–6240.

[26] B. Gafford, T. Dürschmid, G. A. Moreno, and E. Kang, “Synthesis-
based resolution of feature interactions in cyber-physical systems,” in
2020 35th IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2020, pp. 1090–1102.

[27] N. Siegmund, S. S. Kolesnikov, C. Kästner, S. Apel, D. S. Batory,
M. Rosenmüller, and G. Saake, “Predicting performance via automated
feature-interaction detection,” in 34th International Conference on Soft-
ware Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland,
2012, pp. 167–177.

[28] S. Apel, H. Speidel, P. Wendler, A. von Rhein, and D. Beyer, “De-
tection of feature interactions using feature-aware verification,” in 26th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE 2011), Lawrence, KS, USA, November 6-10, 2011, 2011, pp.
372–375.

[29] S. Apel, W. Scholz, C. Lengauer, and C. Kästner, “Detecting de-
pendences and interactions in feature-oriented design,” in IEEE 21st
International Symposium on Software Reliability Engineering, ISSRE
2010, San Jose, CA, USA, 1-4 November 2010, 2010, pp. 161–170.

[30] S. Apel, A. von Rhein, P. Wendler, A. Größlinger, and D. Beyer,
“Strategies for product-line verification: case studies and experiments,”
in 35th International Conference on Software Engineering, ICSE ’13,
San Francisco, CA, USA, May 18-26, 2013, 2013, pp. 482–491.

[31] W. Scholz, T. Thüm, S. Apel, and C. Lengauer, “Automatic detection of
feature interactions using the java modeling language: an experience re-
port,” in Software Product Lines - 15th International Conference, SPLC
2011, Munich, Germany, August 22-26, 2011. Workshop Proceedings
(Volume 2), 2011, p. 7.

[32] A. Classen, P. Heymans, P. Schobbens, A. Legay, and J. Raskin, “Model
checking lots of systems: efficient verification of temporal properties
in software product lines,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 1, ICSE
2010, Cape Town, South Africa, 1-8 May 2010, 2010, pp. 335–344.

[33] J. M. Atlee, U. Fahrenberg, and A. Legay, “Measuring behaviour
interactions between product-line features,” in 3rd IEEE/ACM FME
Workshop on Formal Methods in Software Engineering, FormaliSE 2015,
Florence, Italy, May 18, 2015, 2015, pp. 20–25.

[34] S. Apel, A. von Rhein, T. Thüm, and C. Kästner, “Feature-interaction
detection based on feature-based specifications,” Computer Networks,
vol. 57, no. 12, pp. 2399–2409, 2013.

[35] J. Whittle, P. Sawyer, N. Bencomo, B. Cheng, and J.-M. Bruel,
“RELAX: A language to address uncertainty in self-adaptive systems
requirement,” Requir. Eng., vol. 15, pp. 177–196, 06 2010.

[36] B. DeVries and B. H. C. Cheng, “Towards the detection of partial feature
interactions,” in Proceedings of the 14th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems SEAMS.
ACM, 2019, pp. 146–152.

[37] J. Li and K. Tei, “Done is better than perfect: Iterative adaptation via
multi-grained requirement relaxation,” in IEEE International Conference
on Requirements Engineering (RE), 2022.

[38] E. F. Camacho and C. B. Alba, Model predictive control. Springer
science & business media, 2013.

[39] V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. L. Sangiovanni-
Vincentelli, and S. A. Seshia, “Model predictive control with signal
temporal logic specifications,” in 53rd IEEE Conference on Decision
and Control, CDC 2014, Los Angeles, CA, USA, December 15-17, 2014,
2014, pp. 81–87.

[40] B. DeVries and B. H. C. Cheng, “Run-time monitoring of self-adaptive
systems to detect n-way feature interactions and their causes,” in Pro-
ceedings of the 13th International Conference on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS), 2018, pp. 94–100.

11

https://doi.org/10.1016/j.jss.2012.03.025
https://px4.io
https://www.gurobi.com

	Introduction
	Motivating Example
	Preliminaries
	Requirement Weakening
	weakSTL: STL with Weakening
	Semantics
	Instantiation
	Example

	Runtime Resolution Architecture
	Environment Model
	Weakening-based Resolution as MILP
	Minimal requirements
	Conflict resolution
	Optimization problem

	Implementation
	Simulator
	Environment Model

	Evaluation
	Experimental Design
	Organ Delivery Drone Case Study
	Surveillance Drone Case Study
	Experimental Result
	Organ delivery drone
	Surveillance drone
	Summary

	Performance Overhead
	Threats to Validity

	Related Work
	Limitations and Future Work
	References

