— Preprint —
Accepted for publication at the SEAMS 2023. Final published version available at:
https://doi.org/10.1109/SEAMS59076.2023.00034

A Distributed MAPE-K Framework for
Self-Protective IoT Devices

Michael Riegler*f, Johannes Sametinger*’, Michael Vierhauser*
*LIT Secure and Correct Systems Lab
TDepartment of Business Informatics - Software Engineering
Johannes Kepler University Linz
Linz, Austria
firstname.lastname @jku.at

Abstract—Internet of Things (IoT) devices have become ubiq-
uitous in our everyday life, with security becoming an ever-
growing issue as more and more cyber-attack incidents being
reported, primarily due to deficiencies in existing security mech-
anisms. However, while, for example, cloud-based applications,
or industrial automation systems of systems possess significant
resources for monitoring health, and determining their status and
correct behavior at runtime, IoT devices operate with limited
hardware capabilities and under tight resource constraints,
making monitoring, analysis, and response activities a challenging
endeavor. Following the NIST Cybersecurity Framework, 10T
devices need to identify, protect, detect, respond, and recover from
cyber-attacks, unauthorized access, and other security threats. A
common way to provide self-adaptation to changing conditions
is the MAPE-K loop with four pivotal phases: Monitor, Analyze,
Plan, and Execute. This paper presents DSec4loT, a “Distributed
MAPE-K Framework for Self-Protective IoT Devices”. Our
framework leverages the idea of distributed MAPE-K patterns
and establishes a model for managing and controlling Self-
Protective IoT Devices. We evaluate our approach by simulating
port scans and performing adaptation activities. Results have
confirmed that DSec4loT can be easily applied to detect and
mitigate them.

Index Terms—IoT, Security, MAPE-K Loop, Self-Protecting,
Mode Switching

I. INTRODUCTION

The number of worldwide connected Internet of Things
(IoT) devices is projected to exceed 29 billion by 2030 [1]
— more than double compared to 2022. Example applica-
tions range from consumer internet and media devices [2],
smart grids [3]], [4f], inventory management, to connected
vehicles [5]]. The market value of industrial IoT platforms for
manufacturing will increase to 22.3 billion USD by 2025 [6].

In this context, security has been an ever-growing issue, with
more and more reported cyber-attacks, which can be primarily
attributed to inadequate security mechanisms. Security is one
of the biggest challenges for IoT networks [7], [8], with IoT
devices being used for Distributed Denial-of-Service (DDoS)
attacks as part of botnets, and dealing with network intrusion
and unauthorized access.

While cloud-based applications or industrial automation
systems possess significant resources for monitoring health
and determining their status and correct behavior at runtime,
IoT devices operate with limited hardware capabilities and
tight resource constraints, making monitoring, analysis, and

response activities a challenging endeavor [9]]. Depending on
the type of security issue, or system state, an analysis may
need to be performed locally on the device, or centrally by a
higher-level authority [10]. Following the NIST Cybersecurity
Framework [11]], IoT devices need to identify, protect, detect,
respond, and recover from cyber-attacks, unauthorized access,
and other threats. We need monitoring capabilities, but more
importantly, sophisticated mechanisms for analyzing infor-
mation from different sources, and subsequent (automated)
execution of appropriate actions to mitigate security threats.

To address these issues, and to deal with security threats
at various levels of granularity, we leverage self-adaptation
mechanisms [12] with the MAPE-K feedback loop [13]. In-
dustrial applications use MAPE-K for optimizing performance,
automating tasks, detecting potential threats, and protecting
systems [14]. Typically, these systems automatically perform
tasks to achieve a specific goal. In our work, we focus
on Security and the self-* aspect of protection [15], [16].
We propose a “Distributed MAPE-K Framework for Self-
Protective IoT Devices” (DSEC410T), building on the idea of
the distributed MAPE-K loop [17], leveraging these patterns
and establishing a model for managing and controlling in the
context of Self-Protective IoT Devices.

Our framework implements the four phases of the MAPE-K
loop: Monitor, Analyze, Plan, and Execute at a managing
(server) and IoT-device level. It consists of an Intrusion De-
tection and Prevention System (IDPS) on the IoT devices, and
a Complex Event Processing (CEP) engine on the server. The
framework provides capabilities to deploy and configure the
IDPS and the firewall, filters to observe events, constraints to
analyze events, and actions to adapt the behavior accordingly.
Self-protection in this context means that both the server and
the individual IoT devices can perform activities partly or fully
automated without human intervention.

We claim the following contributions:

e A self-protective solution for IoT devices that monitors
and mitigates online and offline attacks by sharing attacker
information and context-aware adaption of its behavior.

e The instantiation of a distributed MAPE-K loop in the
case of IoT environments and an empirical evaluation of the
applicability and performance of the adaptive solution with
one common attack type.

https://doi.org/10.1109/SEAMS59076.2023.00034

— Preprint —
Accepted for publication at the SEAMS 2023. Final published version available at:
https://doi.org/10.1109/SEAMS59076.2023.00034

In this paper, we present challenges and a motivating exam-
ple in Section [I[I} We then introduce our distributed framework
in Section and evaluate our approach by applying it to
a use case involving various IoT devices in Section
Finally, we discuss results, threats to validity, and related
work in Sections [V] — and conclude with future work
in Section [VIII

II. CHALLENGES AND MOTIVATING EXAMPLE

Securing IoT devices is challenging due to resource
constraints, such as limited storage, memory, CPU, and
power [18]], [19]. However, IoT devices are exposed to various
attacks, such as bots and automated attack scripts trying to
break into these devices and guess credentials with dictionary
and brute-force attacks [19]. Common countermeasures in
such cases are, for example, delaying login attempts, or
blocking accounts and IP addresses after several wrong at-
tempts [20]], [21].

Fig. |1| depicts a simple example. On the left side, the IoT
devices are managed independently (locally on the device
only), and do not share any information with a central server.
Implementing a basic security concept, attackers are blocked
on that device after two failed login attempts. However, with
no central managing authority, each IoT device stands alone,
and attackers can perform the same number of attempts on
each device (la-3a).

On the right side of Fig.|l} IoT devices share the attackers’
information with a higher-level authority, i.e., a server. The
server can consolidate information from multiple devices, and
thus recognize attacks from one attacker on multiple IoT
devices (1b-2b). Once an attack has been detected, the server
can inform other connected devices to automatically block
the attacker and prevent further attacks (3b). In the scenario
with three IoT devices (n = 3), sharing attackers’ information
halves the possible brute-force attempts from six (2 * n) to a
maximum of three. The results are even more severe in the
real world, where dozens or even hundreds of devices are
typically deployed. For example, with 100 devices (n = 100),
an attacker would have 200 (2 % n) attempts on stand-alone
devices. Sharing information limits attackers to only three
attempts, which means a reduction of 98.5% for n = 100.

The scenario is exacerbated when the attack is distributed,
and carried out by multiple attackers (DDoS) [22]. Blocking
them individually will no longer suffice, even if IoT devices
share attacker information. Each IP address can make three
attempts before it is blocked. So if we have 100 devices
(n = 100) and 100 coordinated attackers (¢ = 100), the
attackers have 300 (3 x a) attempts. If they focus on one
IoT device, the chances of brute-forcing a password are even
higher. Therefore, devices must be armed with multiple modes
that can be activated and switched on demand [23|], [24]]. Each
mode hereby provides specific functionality and has a specific
attack surface. The server, as well as the IoT device itself,
can trigger a mode switch. For example, in the Blocklist-
Mode, the device accepts connection attempts from any IP
address, but after two wrong attempts, the IP address is added

> Server
L]

(1a) (1b) 4‘ loT 1]4—
(2a) (2b)
(3b)

3a)

loT 1

;

Not sharing Sharing attacker

attacker information information

Fig. 1: IoT device example with information being shared
among devices, vs. not sharing information.

to the blocklist and banned from further attempts. Sharing
the attacker’s information with a server and other IoT devices
can enrich this mode. However, the blocklist may overflow if
there are hundreds or even thousands of blocked IP addresses.
Consequently, switching to the Allowlist-Mode, which allows
only predefined IP addresses to connect, changes the behavior
and the attack surface. This mode provides less flexibility but
more security.

Another aspect is represented by vulnerabilities [23[]. Once
detected, attackers can exploit them until a patch is provided
and installed. Analyzing the vulnerabilities’ status on individ-
ual IoT devices is impractical. On the one hand, we need to
detect local incidents and share them with a central server.
On the other hand, we can reduce the overall attack surface
by centrally collecting and analyzing information about local
incidents, vulnerabilities, and patches and by sharing this
information with connected devices. This strengthens the need
for distributed security. But for IoT devices, simply monitoring
and sending events to a server is insufficient. If an IoT
device has no connection, e.g., due to a deliberate attack, the
server cannot relay information and trigger a mode switch or
adaptation, yet the device should still be able to protect itself.

III. THE DSECc410T FRAMEWORK

Based on the challenges identified in Section we have
derived several requirements for adapting to security threats
and dynamic mode switching for IoT devices.

First, IoT devices require lightweight data exchange proto-
cols to forward information about potential attacks and attack-
ers. The server can analyze this information from multiple de-
vices, plan countermeasures, and send execution actions to all
connected devices. Then operators or IT security professionals
can make decisions on the server side (human-in-the-loop).
Furthermore, IoT devices must be able to detect and analyze
events and suspicious behavior independently, even offline or
without connection to the server. For this purpose, we employ
Event-Condition-Action (ECA) rules, where an event triggers
a rule, then the condition is checked, and if met, predefined
actions are executed. When the device regains connection, it
can forward any event that occurred in the meantime.

https://doi.org/10.1109/SEAMS59076.2023.00034

— Preprint —
Accepted for publication at the SEAMS 2023. Final published version available at:
https://doi.org/10.1109/SEAMS59076.2023.00034

A. Framework Overview

DSEC410T uses decentralized control patterns proposed by
Weyns et al. [17] at the server and IoT devices level, with
different levels of abstraction. We focus on self-protecting
activities and adopt a combination of the Hierarchical Control
FPattern (HCP) and IBM’s architectural blueprint [25]], which
separates the complexity of self-adaption into several layers.
Each IoT device hereby has its local environment, such as
a company or manufacturing network, while the server has
a more global/strategic perspective. To coordinate this, the M
and E components of the server interact with these components
at the IoT device level. Fig. 2] provides an overview of our
Self-protective IoT System Architecture.

e Managing Server: This building block implements the
four activities of the MAPE-K control loop and stores con-
straints and actions in an ECA rules-based Knowledge Base.
The Event Monitoring component collects events from the
Managed IoT Devices and forwards them to the Event An-
alyzer, which in turn checks them against specified rules and
provides information to the Action Planner if a condition is
fulfilled. As part of these global checks, it is necessary to
analyze not only individual events and the data attached to
them but, more importantly, streams of events and temporal
constraints, which are used to recognize patterns and detect
security issues across various resources or time. The Action
Planner considers the context, like the offline state, and selects
appropriate actions from the Knowledge Base to adapt the
Managed loT Devices to meet security goals and notifies
the Executor to execute those actions on all, on some, or
on only affected Managed IoT Devices. Examples of actions
include sending notifications to the administrator, executing
shell scripts, sending emails, sending HTTP requests, blocking
IP addresses, or starting/stopping services. The Managing
Server can also establish two-way communication with the
Managed IoT Devices to request their current state. Besides
that, the Managing Server leverages additional sources of
information such as Common Vulnerabilities and Exposures
(CVEs), and updates/patches of the used operating systems,
applications, and libraries from public databases like the
National Vulnerability Database [26].

e Managed IoT Device: Each IoT device also implements
the full range of MAPE-K control loop activities to prevent
delays and protect offline devices. Attacks, such as DDoS, may
lead to performance issues and disrupt the connection to the
server. DSEC4I0T focuses on IoT device level Log Monitoring
with an emphasis on security and self-protection. Dedicated
Filters, with specific characters or patterns from the Knowl-
edge Base, continuously observe the system logs, network in-
terfaces, and critical applications for suspicious entries. These
filters can log events at the hardware level, such as newly
attached USB devices, connected network cables, or frequent
restarts. At the software/system level, information related to
authentication errors (i.e., failed authentication attempts that
may occur locally or via the network), port scans, and HTTP
errors can be monitored and collected. We provide further

Self-protective loT System

Managing Server

Event Event Action Execution
M Monitoring Analyzing Planner
| Knowledge Base: Constraints, Actions
)
% monitor

CVEs Internet
Patches
] adapt —adapt
Managed loT Device
Log Log Action .
E ti
Monitoring | | Analyzing Planner xecution

| Knowledge Base: Filter, Actions, Configs, Modes |

affect

monitor

| Environment |

Fig. 2: DSEC410T Framework: A Self-protective IoT System
Architecture

examples of filters and their application in Section When
a filter is applied, the information is transformed into an event
and a dedicated message notifying the Log Analyzer. This
component reviews various sources of loT-device information
to monitor the frequency and source of suspicious log entries
and inform the Action Planner if limits w.r.t. maximal login
attempts are exceeded. The Action Planner selects predefined
countermeasures from the Knowledge Base and sends them to
the Executor. Countermeasures include blocking an IP address,
adapting configurations, switching the operating mode, or
rebooting the system, which may affect the device and its
environment.

e Transfer of Knowledge & Human-in-the-loop: One
important aspect when managing multiple distributed IoT
devices is the administration of local rules, conditions, and
actions. While this information has to be available locally
(to enable the device to perform tasks independently), we
administrate the knowledge bases for both the Managing
Server and the Managed IoT Devices on the Managing Server.
Filters, constraints, actions, configurations, modes, and other
settings can be created and maintained centrally. After tests
with single devices, we deploy them to the individual MAPE-K
loops of the IoT devices with infrastructure automation tools.
Another aspect is the integration of the human, e.g., a server
administrator or engineer. While preventing potential attacks
by blocking an attacker’s IP address has to be performed
automatically to avoid delays and efficiently react to attacks,
other actions may require human confirmation or input. Before
stopping a remotely Managed IoT Device and annoying cus-
tomers, the operator (human-in-the-loop) should confirm this
action. In the case of frequent events and precise knowledge
of the necessary actions, this process can be partly- or fully
automated.

https://doi.org/10.1109/SEAMS59076.2023.00034

— Preprint —
Accepted for publication at the SEAMS 2023. Final published version available at:
https://doi.org/10.1109/SEAMS59076.2023.00034

IV. EMPIRICAL EVALUATION

To demonstrate the applicability of our approach and assess
the potential benefits, we have conducted a case study where
we applied our DSEC4I0T framework for monitoring, analyz-
ing, and updating components in response to different security
threats. We followed the guidelines described by Runeson and
Hoest [27] for defining use case requirements and specifying
the evaluation setup and metrics. We explore the following
Research Questions (RQs):

RQI (Applicability): Can DSEC410T be used for defining
and executing realistic test scenarios, and what is the effort
required for creating and specifying them?

We investigate to what extent our framework can be used in
a realistic case study setting and assess the effort required for
creating and deploying monitoring components and specifying
server and IoT-side rules and adaptations.

RQ?2 (Performance): Is DSEC410T capable of detecting
different types of security issues, and how long does it take to
apply a countermeasure?

We assess the suitability for handling different types of
security issues, evaluating the performance to detect, analyze,
and respond to attacks.

Case Requirements: To assess DSEC410T’s general ap-
plicability and its performance, a suitable test scenario with
an appropriate infrastructure is necessary. This involves three
main components: (1) a Managing Server, (2) multiple Man-
aged IoT Devices connected to a network that can be subject
to potential attacks and security threats, and (3) simulation
of attacks as described in previous research [28]], [29]. Both
local and cloud analysis and execution of adaptations are
required, as well as logging and analyzing events to evaluate
the performed execution actions.

Selected Use Case: Based on these requirements, we
created ECA rules (cf. Table [) and discussed several test
scenarios for our DSEC4I0T framework at the IoT device and
managing server level. For each event, we specified the number
of wrong attempts and a monitoring window in the condition.
Additionally, we created actions to mitigate and prevent further
attacks, e.g., blocking the attacker’s IP, increasing the waiting
time, rebooting the system, and adapting security policies.

We selected port scans for our use case because attackers
typically use tools like Nmap [30] during the reconnaissance
phase [31] to scan for open ports on the network layer
and running services. Then, they search for any potential
service vulnerability to attack them. Timely and fast detection
and execution of appropriate countermeasures and necessary
system adaptations are of key importance. We utilize the
MAPE-K loop to monitor events related to security threats,
analyze them through specific conditions, and plan and execute
actions to mitigate and prevent further attacks.

Evaluation Settings: For our evaluation, we created a
testbed that simulates a network with multiple connected IoT
devices. For this purpose, we set up the test environment

TABLE I: IoT Device and Managing Server Test Scenarios
for our MAPE-K Security Framework

ID Event Condition Action

IoT Device Scenarios
DOl | Port scan > 2 attempts in 1 min block IP for 10 min
D02 | SSH login > 2 attempts in 5 min block IP for 5 min
Do3 | failure > 4 attempts in 1 hour | block IP for 1 hour
DO5 | TTY login > 2 attempts in 5 min waiting time
Do6 | failure > 4 attempts in 1 hour | reboot system
D08 | HTTP errors > 2 attempts in 5 min block IP for 5 min
D12 | Get/Lost con. every attempt adapt security

Managing Server Scenarios

> 2 attempts in 5 min block IP on all

SOL | Blocked IP from > 2 devices devices for 1 hour
10T changed . .

S02 public IP every attempt inform admin

containing five Raspberry Pi (RPi) 4 Model B (1.5 GHz quad-
core ARM Cortex-A72, 4 GB RAM, Ubuntu 22.04.1 LTS) and
three RPi Zero 2 W (1 GHz quad-core, 64-bit ARM Cortex-
A53, 512 MB RAM, Raspbian 11).

An RPi 4 was used as Managing Server running our Java
Server Application with the OpenJDK Runtime Environment
(build 18.0.2), including the MQTT-Broker (Eclipse Mosquitto
v2.0.11) [32] for monitoring events of the IoT devices and the
Esper CEP Engine (4.7.0) [33] to analyze events and check
constraints using the Event Processing Language (EPL). An-
sible (2.10.8) [34] was used for automation, orchestration and
executing actions. Another RPi 4 was used as Attacker. The re-
maining six RPis represent the Managed lIoT Devices and had
an OpenSSH-Server (8.4-8.9), Fail2ban (F2b) (0.11.2) [35]]
as local IDPS, and the Mosquitto Client Package (2.0.11) for
sending events installed and running.

Evaluation Metrics and Data Collection: For RQ1, we
measured the human effort to use the framework and analyzed
the applicability. We created a shell script to measure the
deployment and installation and executed it ten times to
calculate average values. For RQ2, we used common security
and penetration test tools on the Attacker Device. We built a
shell script to randomly select [oT devices, simulate attacks,
measure timestamps, and document results in a log file. We
subsequently analyzed the log files on the Attacker Device,
the IoT Devices, and the Managing Server, and measured
the duration for detection and response. To obtain more
precise results in milliseconds (ms), we altered the Rsyslog
configuration. Before each run, we updated the time on all
devices to ensure accurate measurements.

A. RQI: Applicability

We took the following measures to identify and respond to
port scans. To prevent additional attacks on the IoT device
during the reconnaissance phase, we propose discouraging
potential attackers who perform port scans by temporarily

https://doi.org/10.1109/SEAMS59076.2023.00034

— Preprint —
Accepted for publication at the SEAMS 2023. Final published version available at:
https://doi.org/10.1109/SEAMS59076.2023.00034

blocking their IP address for a specific duration (e.g., 10
minutes). Typically, requests during a port scan to unused
ports are answered by the system with closed or denied and
are not logged. To monitor these scans, we extended the IoT
devices firewall (iptables) with additional IP packet filter rules.
We created a user-defined chain PORTSCAN, appended it
to the bottom of the INPUT chain, and filtered and logged
every request to unused ports before we dropped it. Possible
attackers get no reply, but this mechanism allows us to monitor
the system logs with a regular expression filter, analyze port
scans, and identify the attacker’s IP address.

To plan and execute corresponding actions for blocking
and relaying the information to the server, we defined a F2b
jail (see LISTING [I). The configuration includes the filter
(portscan), the log path, and the actions to run if the conditions
are met. These are the log monitoring window (findtime) and
the number of found entries (maxretry).

Listing 1: IoT Device: Excerpt of an Fail2ban ECA Rule for
detection of and respond to Port Scans

straints (see LISTING [2)) were specified to analyze these events
and select blocked IP addresses that were blocked on more
than two different devices within five minutes. If the constraint
is violated, an Ansible playbook is executed to add the IP
address to the user-defined chain BLOCKLIST on the IoT
device’s firewall.

Listing 2: Server: EPL Constraint used with Esper to detect
IP adresses blocked on multiple hosts

NAME = SameBlockedIpFromMoreThanOneHost
CONSTRAINT =
select * from BlockedIpEvent.win:time (5 min)
group by ip having count (x) >= 2

— name: portscan
logpath: /var/log/kern.log
action: |

iptables-allports[blocktype=DROP]
publish_mgtt_message[topic="portscan",message
:"{\"ip\"Z\"<ip>\"}"]
offline-adaptation
maxretry: 2
findtime: 1m
bantime: 10m

If there is a match, F2b runs the pre-defined actions:
“iptables-multiport” to ban the IP temporarily for 10 minutes
(bantime), “publish_mqtt_message” to notify the server per
MQTT message, and “offline-adaptation” to check the con-
nection state to the server and make adaptions based on that.

Sharing Attacker Information: In order to support shared
attacker information from the Managing Server, we extended
the firewall of the IoT devices by creating a user-defined chain
BLOCKLIST. IP addresses on this list are blocked, and any
further access attempts are rejected.

IoT Device Offline Adaptation: If the server connection is
lost and attacks are ongoing, neither the automatic monitoring
and control solutions on the server nor an administrator can
intervene. Therefore, we have equipped the IoT devices with
self-protection methods, switching the devices to a more
restrictive mode and increasing the ban time exponentially for
each wrong attempt. If the number of banned IP addresses ex-
ceeds a predetermined value, the system switches to Allowlist-
Mode, and only trusted IP addresses are granted access. Once
the banned IP addresses fall below a certain value, the system
switches back to Blocklist-Mode. The administrator is notified
in both cases and can take further action.

Managing Server: Before we deployed the previously
described configurations and adaptions for the attack sce-
nario to all IoT devices, we manually tested the applicabil-
ity on a single device. The testing involved monitoring the
“portscan” topics with an MQTT Subscriber and creating a
“BlockedIpEvent” based on incoming messages. EPL con-

Results: With our custom Ansible F2b module, we could
reduce the basic configuration to 15 lines of code (LoC). The
initial automated deployment of the software, the configuration
files, and scripts to the seven IoT devices took less than 5 min
(approx. 30 sec per device), including updating time, installing
mosgqitto, configuring the firewall, and installing/configuring
F2b. Checking the deployment on all devices was much faster
and took only around 3 minutes. The human effort required
for implementation, testing, and creating filters, actions, con-
figurations, modes, and deployment to the IoT devices was
approximately 30 hours for one author.

Regarding RQ1 and the applicability of our DSEC4I0T
framework, we can conclude that we were able to create all
necessary artifacts for the portscan scenario and could reduce
the overall effort compared to configuring all nine IoT devices
manually. The deployment was reduced to less than 5 minutes.

B. RQ2: Performance

In RQ2, we assessed how well DSEC4I0T responds to
attacks by measuring the performance. We ran 100 port scans
on the IoT devices with our attacker script using Nmap 7.80
with a 60-second pause between each run. We examined the
logs on the Aftacker Device, the kernel logs and the F2b log
entries on the IoT devices, and the logs on the Managing
Server. Fig. [shows the average detection and reaction time.

Based on this comparison, we can conclude that our F2b
filter pattern detected all port scans. However, the monitoring
process exhibited a slight delay, with the F2b log timestamps
being 179ms behind the kernel log entries.

Initially, it took the attacker script 200ms per IoT device to
scan ten ports before getting banned. The IoT devices took, on
average, 86ms to monitor and analyze the port scan and 247ms
to plan and execute predefined actions (333ms in total). The

Port Scan

Check

Switch To Allowlist Mode B Detection

Reaction
mmm Switch

Attack / Mode

Switch To Blicklist Mode

0 50 100 150 200 250 300
Time [ms]

Fig. 3: Average Detection, Reaction, and Mode Switching
Time on the IoT Devices in Milliseconds

https://doi.org/10.1109/SEAMS59076.2023.00034

— Preprint —
Accepted for publication at the SEAMS 2023. Final published version available at:
https://doi.org/10.1109/SEAMS59076.2023.00034

attacker’s IP address was blocked via iptable rules, and their
information was forwarded to the server. Further attempts by
the attacker were unsuccessful, as the connection was blocked.
In 99 subsequent runs, the attacker script took 2s per IoT
device and could only scan two ports, before the recurring
attacker IP address was banned 221ms after the first monitored
port scan.

Sharing Attacker Information: We automatically for-
warded the attacker’s information from the IoT devices to
the server, which took an average of 102ms. Our Java Server
Application monitored the blocked IP event in 3ms, and the
CEP-Engine analyzed the EPL constraints in 4ms. After two
“blocked IP” events from different IoT devices, the constraint
was violated, and actions were planned and executed within
one millisecond. This involved running an Ansible playbook
to add the attacker’s IP address to the blocklist on all IoT
devices, which took another 13s. Following this, further attacks
on other IoT devices were denied.

IoT Device Offline Adaptation: We tested the offline
adaptation by changing the server IP address so that IoT
devices could not connect. Then we could retrace the switch
to the more restrictive mode on all IoT devices and the
adaption of the F2b configuration within 2s. After repeated
attacks, the ban time increased exponentially. However, this
adaptation increased the average processing time by 8ms. After
switching back to the original server IP, IoT devices switched
to the default mode in 2s. We also tested switching between
Blocklist-Mode and Allowlist-Mode and back on IoT devices
(500 runs), and found that it took an average of 206ms to
switch to Allowlist-Mode, 195ms to switch back, and 74ms to
check if the desired mode was already active (see Fig. [3). The
RPi Zero took twice as long as the RPi 4, presumably due to
limited hardware capabilities (RAM and CPU power).

Regarding RQ2 and DSEC4l0T’s performance, we can
conclude that we were able to automatically detect the attacks
and respond in a timely manner. By sharing the attacker’s
information, we could protect all other IoT devices within 14s
after the first attack. With adaptations, we could also protect
offline devices, and mitigate ongoing attacks by exponentially
increasing the ban time.

V. DISCUSSION

Our Self-protective IoT System is not only built for a one-
time task. With continuous MAPE-K loops on the server and
the IoT device, it can adapt and improve over time. Initially, IT
security professionals and operators may need to be involved
in monitoring, analyzing, planning, and executing to avoid
false alarms or overreactions. Using knowledge from past
security events can improve staff productivity, efficiency, and
effectiveness. As confidence in the system grows, suggested
actions can be delegated to our DSEC4I0T framework.

Our test scenarios in Section are just examples and
should be adjusted based on practical experience and the
specific use case. Simply banning IP addresses is not a
comprehensive solution to all security issues since attackers
may manipulate log files. To prevent business interruptions

and false positives, F2b allows configuring an ignore list for
IP/DNS, such as private networks and company DNS hosts.
Blocking specific countries is another way to mitigate attacks,
especially for businesses operating in a specific country. Coun-
try IP zone files can be used to allow or deny specific IP
addresses [36]. Additionally, setting rate limits for specific
connection types and services may reduce DoS attacks.

VI. THREATS TO VALIDITY

Like any other study, our work is subject to threats to
validity [|37]]. Decentralization can increase security risks [38]],
such as a malicious insider manipulating all IoT devices
connected to the server. However, our DSEC410T framework
includes onboard protection components and allows individual
devices to make adaptation decisions when the server is offline
or compromised. For our evaluation, we conducted a case
study in a research lab using realistic scenarios with commonly
available hardware and open-source software. However, our
approach may not be suitable for all environments or tech-
nologies. We plan to expand the scope and add vulnerability
scenarios to demonstrate generalizability. Further testing, such
as a user study, is needed to confirm usability.

VII. RELATED WORK

As security issues can cause system faults and vice-versa,
tactics and patterns for software robustness [39] are relevant
for our framework. Self-protective IoT devices should be
able to detect faults, recover from them, and prevent them
in the future. That corresponds to the idea of the MAPE-K
loop. Graceful degradation and reconfiguration, like mode
switching, can help achieve goals, provide core functionality,
and prevent system outages during an attack.

Witte et al. [40] propose the Attack-Fault-Trees modeling
approach to analyze security issues, while Yuan et al. [41]]
provide a taxonomy, patterns, and tactics for self-protecting
software systems, and propose the Architecture-Based Self-
Protection approach [42] for web applications. The Anomaly
Behavior Analysis Intrusion Detection System [43]], [44] is
used to detect known and unknown attacks in smart cyber
infrastructures. While their system focuses on attack detection,
our framework also considers attack reactions.

VIII. CONCLUSION

In this paper, we presented DSEC4I0T, a distributed
MAPE-K framework for self-protective IoT devices that mon-
itors and analyzes the device’s environment to plan and
execute actions for improving device and server security.
The framework’s knowledge base is updated for continuous
adaptation and improvement, making IoT devices and servers
more resilient to potential threats. Future work could use
Machine Learning to detect abnormal behavior and leverage
edge/fog computing for better performance and robustness.

ACKNOWLEDGMENTS

This work has partially been supported by the LIT Secure
and Correct Systems Lab and Linz Institute of Technology
(LIT-2019-7-INC-316), funded by the State of Upper Austria.

https://doi.org/10.1109/SEAMS59076.2023.00034

— Preprint —
Accepted for publication at the SEAMS 2023. Final published version available at:
https://doi.org/10.1109/SEAMS59076.2023.00034

[1

—

[2

—

[3

[t

[4]

[5]

[6

=

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

(16]

(17]

(18]

[19]

[20]

REFERENCES

Transforma Insights, “Number of Internet of Things (IoT) connected
devices worldwide from 2019 to 2030, by use case,” Statista, July
2022, Accessed: 2022-Dec-19. [Online]. Available: https://www.statista.
com/statistics/1194701/iot-connected-devices-use-case

Q. Wang, Y. Zhao, W. Wang, D. Minoli, K. Sohraby, H. Zhu, and
B. Occhiogrosso, “Multimedia IoT systems and applications,” in 2017
Global Internet of Things Summit. 1EEE, 2017, pp. 1-6.

A. Ghasempour, “Internet of Things in Smart Grid: Architecture, Ap-
plications, Services, Key Technologies, and Challenges ,” Inventions,
vol. 4, no. 1, p. 22, 2019.

M. Yun and B. Yuxin, “Research on the architecture and key technology
of Internet of Things (IoT) applied on smart grid,” in 2010 Int’l Conf.
on Advances in Energy Engineering. 1EEE, 2010, pp. 69-72.

Y. U. Devi and M. Rukmini, “Tot in connected vehicles: Challenges and
issues—a review,” in 2016 Int’l Conf. on Signal Processing, Communi-
cation, Power and Embedded System. 1EEE, 2016, pp. 1864—1867.
Json & Partners, “Size of the global market for Industrial
Internet of Things (IloT) platforms and apps for manufacturing
industries from 2017 to 2021, with a forecast through 2025
(in billion U.S. dollars),” Statista, 2022, Accessed: 2022-Dec-
19. [Online]. Available: https://www.statista.com/statistics/1339894/
global-industrial-internet-of-things- platforms-and- apps- market-size/

D. Evans, “The Internet of Things: How the Next Evolution of
the Internet Is Changing Everything,” Cisco IBSG, April 2011,
Accessed: 2022-Dec-19. [Online]. Available: http://www.cisco.com/
web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf

D. Airehrour, J. Gutierrez, and S. K. Ray, “Secure routing for internet
of things: A survey,” Journal of Network and Computer Applications,
vol. 66, pp. 198-213, 2016.

C. C. Sobin, “A Survey on Architecture, Protocols and Challenges in
10T,” Wireless Pers. Commun., vol. 112, no. 3, p. 1383-1429, Jun 2020.
D. Malani, J. Modi, S. Lilani, Y. Desai, and R. Dhanare, “Intrusion
Detection Systems for Distributed Environment,” in 20271 Third Int’l
Conf. on Intelligent Communication Technologies and Virtual Mobile
Networks, 2021, pp. 98-103.

M. Barrett, Framework for Improving Critical Infrastructure Cybersecu-
rity, Version 1.1. Gaithersburg, MD: US National Institute of Standards
and Technology (NIST), Apr 2018, no. NIST CSWP 04162018.

J. Kephart and D. Chess, “The vision of autonomic computing,” Com-
puter, vol. 36, no. 1, pp. 41-50, 2003.

P. Arcaini, E. Riccobene, and P. Scandurra, “Modeling and Analyzing
MAPE-K Feedback Loops for Self-Adaptation,” in 2015 IEEE/ACM
10th Int’l Symp. on Software Engineering for Adaptive and Self-
Managing Systems, 2015, pp. 13-23.

D. Weyns, I. Gerostathopoulos, N. Abbas, J. Andersson, S. Biffl,
P. Brada, T. Bures, A. Di Salle, P. Lago, A. Musil, J. Musil, and
P. Pelliccione, “Preliminary results of a survey on the use of self-
adaptation in industry,” in 2022 Int’l Symp. on Software Engineering
for Adaptive and Self-Managing Systems. New York, NY, USA:
Association for Computing Machinery, Aug 2022, p. 70-76.

S. White, J. Hanson, I. Whalley, D. Chess, and J. Kephart, “An archi-
tectural approach to autonomic computing,” in Int’l Conf. on Autonomic
Computing, 2004. Proc., May 2004, p. 2-9.

H. Psaier and S. Dustdar, “A survey on self-healing systems: approaches
and systems,” Computing, vol. 91, pp. 43-73, 2011.

D. Weyns, B. Schmerl, V. Grassi, S. Malek, R. Mirandola, C. Prehofer,
J. Wuttke, J. Andersson, H. Giese, and K. M. Go6schka, On Patterns
for Decentralized Control in Self-Adaptive Systems. Springer Berlin
Heidelberg, 2013, pp. 76-107.

T. Xu, J. B. Wendt, and M. Potkonjak, “Security of IoT systems:
Design challenges and opportunities,” in 2014 IEEE/ACM Int’l Conf.
on Computer-Aided Design, 2014, pp. 417-423.

F. Meneghello, M. Calore, D. Zucchetto, M. Polese, and A. Zanella,
“IoT: Internet of threats? A survey of practical security vulnerabilities
in real IoT devices,” IEEE Internet of Things Journal, vol. 6, no. 5, pp.
8182-8201, 2019.

M. M. Shurman, R. M. Khrais, and A. A. Yateem, “ToT denial-of-service
attack detection and prevention using hybrid IDS,” in 2019 Int’l Arab
Conf. on Information Technology, 2019, pp. 252-254.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

[33]

[34]

(35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

A. K. Goel, A. Rose, J. Gaur, and B. Bhushan, “Attacks, counter-

measures and security paradigms in IoT,” in 2019 2nd Int’l Conf. on
Intelligent Computing, Instrumentation and Control Technologies, vol. 1,

2019, pp. 875-880.

R. Vishwakarma and A. K. Jain, “A survey of DDoS attacking tech-
niques and defence mechanisms in the IoT network,” Telecommunication
systems, vol. 73, no. 1, pp. 3-25, 2020.

M. Riegler, J. Sametinger, M. Vierhauser, and M. Wimmer, “A Model-
based Mode-Switching Framework based on Security Vulnerability
Scores,” Journal of Systems and Software, vol. 200, 2023.

M. Riegler, J. Sametinger, and C. Schonegger, “Mode Switching for
Secure Edge Devices,” in Database and Expert Systems Applications
- DEXA 2022 Workshops, G. Kotsis et al., Ed. Cham: Springer Int’l
Publishing, 2022, p. 347-356.

IBM, “An architectural blueprint for autonomic computing,” Jun 2005,
Third Edition. Accessed: 2022-Dec-19. [Online]. Available: https:
/Iwww-03.ibm.com/autonomic/pdfs/ACBlueprintWhitePaperV7.pdf|
NVD, “National Vulnerability Database,” Accessed: 2022-Dec-20.
[Online]. Available: https://nvd.nist.gov.

P. Runeson and M. Host, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineer-
ing, vol. 14, no. 2, p. 131, Dec 2008.

J. Deogirikar and A. Vidhate, “Security attacks in iot: A survey,” in 2017
Int’l Conf. on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-
SMAC), Feb 2017, p. 32-37.

K. Chen, S. Zhang, Z. Li, Y. Zhang, Q. Deng, S. Ray, and Y. Jin,
“Internet-of-Things Security and Vulnerabilities: Taxonomy, Challenges,
and Practice,” Journal of Hardware and Systems Security, vol. 2, no. 2,
p. 97-110, Jun 2018.

Nmap.org, “Nmap: Network Security Scanner,” Accessed: 2022-Dec-2.
[Online]. Available: https://nmap.org

H. Sanghvi and M. Dahiya, “Cyber reconnaissance: an alarm before
cyber attack,” Int’l Journal of Computer Appl., vol. 63, no. 6, 2013.
Eclipse Foundation, “Mosquitto MQTT Broker,” Accessed: 2022-Dec-2.
[Online]. Available: https://mosquitto.org

EsperTech, “Esper - Complex Event Processing & Stream Analytics,”
Accessed: 2022-Dec-2. [Online]. Available: https://www.espertech.com

Red Hat, “Ansible,” Accessed: 2022-Dec-2. [Online]. Available:
https://www.ansible.com
Fail2Ban, “fail2ban,” Accessed: 2022-Dec-2. [Online]. Available:

https://www.fail2ban.org

IPdeny Project, “Ipdeny country block downloads,” Accessed: 2022-
Dec-3. [Online]. Available: https://www.ipdeny.com/ipblocks/

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering. Springer Berlin,
Heidelberg, 2012.

F. Quin, D. Weyns, and O. Gheibi, “Decentralized Self-Adaptive Sys-
tems: A Mapping Study,” in 2021 Int’l Symp. on Software Engineering
for Adaptive and Self-Managing Systems, 2021, p. 18-29.

R. Kazman, P. Bianco, S. Echeverria, and J. Ivers, Robustness. Pitts-
burgh, PA: Software Engineering Institute, Carnegie Mellon University,
2022, no. CMU/SEI-2022-TR-004.

T. Witte, R. Groner, A. Raschke, M. Tichy, I. Pekaric, and M. Felderer,
“Towards Model Co-evolution Across Self-Adaptation Steps for Com-
bined Safety and Security Analysis,” in 2022 Int’l Symp. on Software
Engineering for Adaptive and Self-Managing Systems, 2022, pp. 106—
112.

E. Yuan, N. Esfahani, and S. Malek, “A Systematic Survey of Self-
Protecting Software Systems,” ACM Transactions on Autonomous and
Adaptive Systems, vol. 8, no. 4, pp. 17:1-17:41, Jan 2014.

E. Yuan, S. Malek, B. Schmerl, D. Garlan, and J. Gennari, “Architecture-
based self-protecting software systems,” in Proc. of the 9th Int’l ACM
Sigsoft Conf. on Quality of Software Architectures. New York, NY,
USA: Association for Computing Machinery, Jun 2013, p. 33-42.

J. Pacheco and S. Hariri, “IoT Security Framework for Smart Cyber
Infrastructures,” in Proc. of the 2016 IEEE Ist Int’l Workshops on
Foundations and Applications of Self* Systems, 2016, pp. 242-247.

J. Pacheco, X. Zhu, Y. Badr, and S. Hariri, “Enabling Risk Management
for Smart Infrastructures with an Anomaly Behavior Analysis Intrusion
Detection System,” in 2017 IEEE 2nd Int’l Workshops on Foundations
and Applications of Self* Systems, 2017, pp. 324-328.

https://doi.org/10.1109/SEAMS59076.2023.00034
https://www.statista.com/statistics/1194701/iot-connected-devices-use-case
https://www.statista.com/statistics/1194701/iot-connected-devices-use-case
https://www.statista.com/statistics/1339894/global-industrial-internet-of-things-platforms-and-apps-market-size/
https://www.statista.com/statistics/1339894/global-industrial-internet-of-things-platforms-and-apps-market-size/
http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
https://www-03.ibm.com/autonomic/pdfs/AC Blueprint White Paper V7.pdf
https://www-03.ibm.com/autonomic/pdfs/AC Blueprint White Paper V7.pdf
https://nvd.nist.gov
https://nmap.org
https://mosquitto.org
https://www.espertech.com
https://www.ansible.com
https://www.fail2ban.org
https://www.ipdeny.com/ipblocks/

	Introduction
	Challenges and Motivating Example
	The DSec4IoT Framework
	Framework Overview

	Empirical Evaluation
	RQ1: Applicability
	RQ2: Performance

	Discussion
	Threats to Validity
	Related Work
	Conclusion
	References

