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Abstract—Federated Learning is a modern decentralized ma-
chine learning technique where user equipments perform ma-
chine learning tasks locally and then upload the model pa-
rameters to a central server. In this paper, we consider a 3-
layer hierarchical federated learning system which involves model
parameter exchanges between the cloud and edge servers, and
the edge servers and user equipment. In a hierarchical federated
learning model, delay in communication and computation of
model parameters has a great impact on achieving a predefined
global model accuracy. Therefore, we formulate a joint learning
and communication optimization problem to minimize total
model parameter communication and computation delay, by
optimizing local iteration counts and edge iteration counts. To
solve the problem, an iterative algorithm is proposed. After that,
a time-minimized UE-to-edge association algorithm is presented
where the maximum latency of the system is reduced. Simulation
results show that the global model converges faster under optimal
edge server and local iteration counts. The hierarchical federated
learning latency is minimized with the proposed UE-to-edge
association strategy.

Index Terms—Time Minimization, Federated Learning, Mobile
Edge Computing.

I. INTRODUCTION

High-tech mobile devices and Internet of Things (IoT) are
generating a large amount of data [1]. These immense volumes
of data have incentivized high-speed development in big data
technology and Artificial Intelligence. Conventional Machine
Learning (ML) and Deep Learning (DL) methods require
devices to upload their data to a central server to develop a
global model. However, the threats involving leakages of, and
attacks on privacy-sensitive data demotivate users to upload
data from their user equipments (UE) to a central server
for computing. Fortunately, rapid development in computing
technology has spurred the age of Mobile Edge Computing
(MEC), in which the computing power of chips in mobile
devices is strengthening, facilitating more computing-intensive
tasks such as machine learning tasks. Computing processes
that were traditionally computed centrally at a server are
shifting to mobile edge devices. Decentralized ML, which
takes into account privacy concerns, has been coined Federated
Learning (FL) [2], [3] and this model training technique
involves user equipments or user-edge devices to perform ML
tasks locally, after which the locally trained model parameters
will be uploaded to a central server for global model parameter

aggregation. Globally aggregated models are then downloaded
by the UE, and that concludes a single round of FL. The
process mentioned above is repeated up until a stopping
criterion is met. The FL process facilitates devices to build
a shared model while preserving the data privacy of the users.

With the rapid development of Federated Learning, feder-
ated learning also faces challenges over wireless networks. It is
common for FL parameter transmissions to be undertaken by
numerous participating user equipments over resource-limited
networks, for example, wireless networks where the band-
width or power is limited. The repeated FL model parameter
transmission between user equipments and servers, therefore,
can cause a significant delay that can be as much or more
than the machine learning model training time, which impairs
the performance of latency-sensitive applications. Some of
these works acknowledged the physical properties of wireless
communication and proposed solutions such as analog model
aggregation over the air (over-the-air computation). These
analog aggregation techniques aim to reduce communication
latency by allowing devices to upload models simultaneously
over a multi-access channel [4]–[7]. Nevertheless, analog
model aggregation over the air would require stringent syn-
chronization conditions to be met. Another genre of papers
aims to minimize the overall FL convergence time (delay
in both communication and local device computation) by
allocating resources and solving optimization problems. Papers
such as [8], [9] established optimization problems which
optimize variables such as UE uplink bandwidth and devices
selection with the aim of minimizing FL convergence time.
Some other works proposed optimization problems with the
aim of reducing FL training loss. In [10], the authors proposed
a joint resource allocation and device scheduling optimization
problem with the aim to minimize training loss. Similarly,
the authors of [11] proposed an optimization problem with
the aim of minimizing training loss by a varying number of
local update steps between global iterations, and the number of
global aggregation rounds. However, these works focused on
energy consumption and machine learning model performance
but failed to consider delay minimization. [12] proposed a joint
transmission and computation optimization problem aiming to
minimize the total delay in FL, but it only considered the
traditional 2-layer FL framework. In [13], the edge server
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aggregation and edge model transmission delay are taken into
consideration, but they are not incorporated into the objective
function.

The challenges of minimizing the total delay in hi-
erarchical federated learning framework. Different from
traditional 2-layer FL, in hierarchical FL the total time is
determined not only by end devices, but also by edge servers.
To achieve a specific global accuracy, more local iterations
provide a more accurate local model while taking more local
computation time, but the cost can be mitigated by reducing
the number of edge aggregations. More edge aggregations may
reduce the demand for local computing, but it incurs more
communication delay. To tackle these problems, in this paper,
we formulate a joint communication and learning optimization
problem in order to find the optimal solutions for local training
iterations and edge aggregation iterations. We give an analysis
of the property of the proposed optimization problem.

Our work is novel and contributes to the existing
literature by:
• Proposing a 3-layer hierarchical FL time minimization

model, and setting up an optimization problem which
aims to minimize the hierarchical FL time by optimizing
the number of local UE computations, and the number of
local aggregations under given global accuracy.
• Considering the edge server model aggregation and edge

to cloud server transmission delay into our optimization
objective function. To the best of our knowledge, there
are no existing papers that utilize the edge server model
aggregation and edge-to-cloud server transmission delay
in the optimization objective function.
• Presenting a UE-to-edge association strategy that aims

to minimize the system’s latency. The results show that
the proposed UE-to-edge association strategy achieves the
minimum latency compared with other methods.

The rest of the paper is structured as follows. Section II
surveys related work. In Section III, we describe the system
model and give a framework for our hierarchical federated
learning system. The problem is then formulated in section IV,
followed by the analysis and the optimal solutions of the
optimization problem. In Section V, the numerical results
are shown and analyzed. Finally, we give a conclusion in
Section VI.

II. RELATED WORK

There have been a lot of efforts to improve and analyze the
performance of federated learning.

Three-layer hierarchical federated learning. Many stud-
ies considered 3-layer federated learning. In [13], the au-
thors introduced a hierarchical FL edge learning framework
in contrast to the traditional 2-layer FL systems proposed
by the other above-mentioned papers. We should note that
there are other papers which propose hierarchical architec-
tures for their FL training that have other aims apart from
those mentioned above. In [14], the authors studied hier-
archical federated learning with stochastic gradient descent
and conducted a thorough analysis to analyze its convergence

behavior. The works in [15] considered a client-edge-cloud
hierarchical federated learning system and proposed a novel
HierFAVG algorithm which allows edge servers to perform
partial model aggregation to enable better communication-
computation trade-off while allowing the model to be trained
quicker. The authors in [16] utilized a Stackelberg differential
game to model the optimal bandwidth allocation and reward
allocation strategies in hierarchical federated learning. [17]
utilized branch and bound-based and heuristic-based solutions
to minimize the data distribution distance at the edge level. For
IoT heterogeneous systems, [18]proposed an optimized user
assignment and resource allocation solution over hierarchical
FL architecture. It can be seen that hierarchical FL is a
promising solution that allows for the adaptive and scalable
implementation by making use of the resources available at
the edge of the network.

Delay minimization in federated learning. The conver-
gence time of FL was studied in many works. [8] jointly
considered user selection and resource allocation in cellular
networks to reduce the FL convergence time. FedTOE [19]
executed a joint allocation of bandwidth and quantization
bits to minimize the quantization errors under transmission
delay constraint. [20] proposed to reduce the FL convergence
time by reducing the volume of the model parameters ex-
changed among devices. [12] proposed a joint transmission
and computation optimization problem aiming to minimize
the total delay in FL. However, these papers mainly focus
on the resource allocation under the constraint of delay or
convergence time but they failed to consider how user equip-
ments themselves can reduce computation and communication
delay from the frequency of communication between them
and the edge servers while maintaining the required machine
learning accuracy. Besides, they only studied the traditional 2-
layer federated learning framework. In contrast to other papers,
[13] utilized a 3-layer, hierarchical model (UE-edge-cloud)
for the optimization problem which aimed to minimize the
weighted combination of FL convergence time and UE energy
consumption. While the authors of [13] did consider the edge
server aggregation and edge-to-cloud transmission delay in
their paper, they did not propose or incorporate these factors
into their proposed optimization objective function.

Novelty of our work. In this paper, we propose to minimize
transmission and computation delay between the cloud and
edge servers, and edge servers and UEs in a hierarchical FL
framework, by optimizing the number of local UE compu-
tations and the number of local aggregations. Although the
above-mentioned works considered the FL convergence time
minimization, they did not take the number of local compu-
tations and the number of edge aggregations into account.
In our work, under given accuracy, the proposed method is
able to find the optimal number of local computations, the
number of edge aggregations and the UE-to-edge association
strategy, thus providing an optimal global setting for 3-layer
hierarchical FL system.
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III. SYSTEM MODEL

We consider a hierarchical federated learning model con-
sisting of a cloud server S, a set M of M edge servers and a
set N of N user equipments (UEs) as shown in Fig. 1. Each
UE n owns a local data set Dn with size Dn.

A. Three-Layer Federated Learning Process

The hierarchical federated learning process between UEs,
edge and cloud is shown as follows. The procedure contains
five steps: local computation at UE, local model transmission,
edge aggregation, edge model transmission and cloud aggre-
gation.

1) Local computation: Let fn be the CPU frequency for
computation of UE n, and Cn be the number of CPU cycles
required for UE n to compute one sample data. Dn is the size
of local data set, then the time required in each iteration for
computation of UE n is

tcmpn =
CnDn

fn
. (1)

Let a be the number of local iterations for each UE to perform
in a single round of communication with the corresponding
edge server. In order to achieve a local accuracy θ ∈ (0, 1),
the number of local iterations a that each UE needs to run is

a = ζ ln
1

θ
, (2)

where ζ is a constant depending on the loss function [21].

2) UE-to-edge model transmission: After a local iterations,
UE uploads their local federated learning model to an edge
server. We introduce the indicator variable χn,m which rep-
resents the association between UE n and edge server m.
χn,m = 1 means that UE n uploads its local federated learning
model to edge server m. Otherwise, χn,m = 0. Each UE
can be associated with only one edge server. The user-server
association rule can be described as:

χn,m ∈ {0, 1},∀n ∈ N ,∀m ∈M,∑
m

χn,m = 1,∀n ∈ N . (3)

Let the set of UEs that choose to transmit their local feder-
ated learning model to edge server m be Nm. Without loss
of generality, orthogonal frequency division multiple access
(OFDMA) communication technique is adopted in this paper.
According to Shannon’s formula, the achievable transmission
rate of UE n and edge server m can be formulated as

rn,m = Bn log2(1 +
gn,mpn
N0

), (4)

where Bn is the bandwidth allocated to UE n, gn,m is the
channel gain between UE n and edge server m, and pn is the
transmission power of UE n, and N0 is the noise power. In
this paper, we assume the bandwidth is equally allocated to
all the UEs associated with the edge server. Note that the total
bandwidth each edge server m can allocate is B, so we have∑
n χn,mBn ≤ B,∀m ∈ M. Let dn denote the size of local
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Fig. 1: The architecture of the hierarchical federated learning
model.

model parameters. In wireless communication, downlink rate
is typically much higher than uplink rate. Thus, the time for
model downloads is negligible compared with computing time
and model upload time. Then, the time cost for transmission
federated learning model from UE n to edge server within one
round can be given as

tcomn→m =
∑
m

χn,m
dn
rn,m

. (5)

3) Edge aggregation: When edge server m receives the
model parameters transmitted from its associated UE Nm, it
obtains the averaged parameters ωm by

ωm =

∑
n∈Nm Dnωn

DNm
, (6)

where DNm :=
∑
n∈Nm Dn is the total size of data aggregated

at edge server m. Let b be the number of iterations for each
edge server to perform in a single round of communication
with the cloud. For simplicity, we use “edge iterations” to
represent the number of edge aggregations. To achieve an edge
accuracy µ, for convex machine learning tasks, the number of
edge iterations is given by [21]

b =
γ ln(1/µ)

1− θ
. (7)

From (7), it can be observed that b is affected by both edge
accuracy µ and local accuracy θ. γ is a constant related to
the loss function and required loss function. It can be given
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by γ = 2L2

β2δ [21] where δ is a constant which is related to
local training. When the model is required to be more accurate
(µ and θ are small), the edge needs to run more iterations.
The delay at edge server m in each iteration is shown to be
maxn∈Nm{atcmpn + tcomn→m}.

4) Edge-to-cloud model transmission: After b rounds of
edge aggregation, each edge server m ∈M uploads its model
parameters ωm to the cloud and downloads the global model
from the cloud again. The delay within one round can be
formulated as

tcomm→c =
dm
rm

, (8)

where dm is the size of model parameters at the edge server,
and rm is the transmission rate between edge server m and
the cloud.

In order to achieve a global accuracy ε, let the number of
communications between edge server and cloud be R(a, b, ε).
The global accuracy ε means that after t iterations,

F (ω(t))− F (ω∗) ≤ ε [F (ω(0))− F (ω∗)] , (9)

where ω∗ is the actual optimal global model.

5) Cloud aggregation: Finally, the cloud aggregates the
model parameters transmitted from the edge servers as follows:

ω =

∑
m∈MDNmωm

D
, (10)

where D :=
∑
m∈MDNm is the size of total data.

B. FL Model

In this work, we consider supervised federated learning.
Dn = {(xi, yi)}Dni=1 is the training set where xi ∈ Rd is the
i-th input sample and yi ∈ R is the corresponding label. Vector
ω is the parameters related to the FL model. We introduce the
loss function f(ω,xi, yi) that represents the loss function for
one sample data. For different learning tasks, the loss function
may be different. Loss function Fn(ω) on each UE n is given
by

Fn(ω) =

∑
i∈Dn fi(ω,xi, yi)

Dn
. (11)

Assumption 1. Fn(ω) is β-strongly convex and L-smooth. ∀n
and ∀ω,ω′ ∈ Rd:
Fn(ω) ≥ Fn(ω′) +

〈
∇Fn(ω′),ω − ω′

〉
+
β

2
‖ω − ω′‖2 ,

‖∇Fn(ω′)−∇Fn(ω)‖ ≤ L ‖ω′ − ω‖ .

The training process is to minimize the global loss function
F (ω), which can be formulated as

F (ω) =

∑N
i=1DiFi(ω)

D
. (12)

We utilize distributed approximate Newton algorithm (DANE)
[22] to train the FL model. DANE is one of the most popular

Algorithm 1 Hierarchical FL Algorithm

1: Initialize all user equipments (UEs) with parameter wn(0)
2: i← 1
3: while global accuracy ε is not obtained do
4: each UE computes∇Fn(ωn(i)) and sends it to the edge

server).
5: each edge server computes ∇F (ωm(i)) =

1
N

∑N
n=1∇Fn(ωn(i)) and broadcasts it to all the

UEs.
6: for each UE n = 1, 2, . . . , N in parallel do
7: update ωn(t).
8: end for
9: if i | a = 0 then

10: for each UE l = 1, 2, . . . , N in parallel do
11: communicate with its corresponding edge server

and edge server perform edge aggregation.
12: end for
13: end if
14: if i | ab = 0 then
15: for each edge server k = 1, 2, . . . ,M in parallel do
16: communicate with cloud and cloud perform aggre-

gation.
17: end for
18: end if
19: i← i+ 1
20: end while

communication-efficient distributed training algorithm which
is designed to solve general optimization problems. At each
iteration, DANE takes an inexact Newton step appropriate
for the geometry of objective problem. Stochastic gradient
descent (SGD) is widely utilized since the computational
complexity of SGD is low. However, it can only be used
where the requirement on accuracy is not strict. Besides,
SGD requires more iterations than gradient descent (GD). In
federated learning, the wireless communication resource is
valuable, so we use GD in UE local training. At each iteration,
each UE n updates its local model parameters. According
to (2), the UE needs to run a iterations to achieve a local
accuracy θ. After every a local iterations, each UE uploads
its local model to the corresponding edge server, and edge
server aggregates these models. Then after every b edge server
aggregations, the edge server uploads its model to the cloud,
and the cloud performs global aggregation. Table I summarizes
the notations.

IV. HIERARCHICAL FEDERATED LEARNING DELAY
OPTIMIZATION

In this section, we give a formulation of the proposed
problem followed by analysis and solutions.
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Table I: Meaning of Notations

Notation Description Notation Description

S cloud server M set of edge servers

N set of user equipments Nm
set of UEs that communicate with edge server

m

n a single user equipment m a single edge server

Dn UE n’s local data set Cn
number of CPU cycles for UE to compute

one input data

Dn size of local data set at UE n DNm
size of data under edge server m with set of

UE Nm

fn UE n’s CPU frequency variable dn size of local model parameters at UE n

tcmp
n time for computation each iteration at UE n tcomn→m

time for transmission from UE n to edge
server m

rn,m transmission rate of UE n and edge server m pn transmission power of UE n

Bn bandwidth that allocated to UE n gn,m
channel gain between UE n and edge server

m

χn,m indicator variable of UE-to-edge association B total bandwidth each edge server can allocate

a number of local iterations for UE in a round b
number of iterations for edge server in a

round

R(a, b, ε)
number of communications between edge

server and cloud tcomm→c
time for transmission from edge server m to

cloud

θ local accuracy µ edge accuracy

ε global accuracy N0 noise power

A. Problem Formulation

Given the system model above, we now formulate the
hierarchical federated learning time optimization problem:

min
a,b,χ,f ,p

R(a, b, ε) max
m∈M

{b max
n∈Nm

{atcmpn + tcomn→m}+ tcomm→c},

(13)
s.t. 0 < fn ≤ fmaxn , ∀n ∈ Nm, (13a)

0 < pn ≤ pmaxn , ∀n ∈ Nm, (13b)
χn,m ∈ {0, 1},∀n ∈ N ,∀m ∈M, (13c)∑
m

χn,m = 1,∀n ∈ N , (13d)∑
n

χn,mBn ≤ B,∀m ∈M, (13e)

a, b ∈ N+. (13f)

where atcmpn + tcomn→m is the time taken for UE n to perform a
iterations of local computation and one round of communica-
tion with edge server m. Thus, maxn∈Nm{atcmpn + tcomn→m}
is the time taken for one single round of communication
between all UEs and its corresponding edge servers, and
maxm∈M{bmaxn∈Nm{atcmpn + tcomn→m}+ tcomm→c} is the time
taken for a single round of communication between all edge
servers and the cloud. In the objective function, the total
delay of the entire federated learning task is minimized.
Constraints (13a) and (13b) are the maximum CPU frequency
and transmission power of UEs; constraints (13c) and (13d)

are the UE-edge server association rules; constraint (13e)
guarantees that the bandwidth of each edge server does not
exceed the upper bound limit; constraint (13f) specifies that
a and b are integers. This optimization problem falls into
the category of integer programming since a, b are positive
integer values. While integer programming is considered to
be an NP-hard problem [23], we could obtain sub-optimal
solutions by relaxing the integer constraints and allowing
a, b to be continuous variables, which are rounded back to
integer numbers later. According to (2), θ can be expressed
as θ = 1/e

a
ζ . According to (7), µ can be expressed as

µ = 1/e
b
γ (1−θ). The number of communications between edge

server and cloud R(a, b, ε) is given by:

R(a, b, ε) =
C ln( 1ε )

1− µ
. (14)

Substitute µ with µ = 1/e
b
γ (1−θ) and θ with θ = 1/e

a
ζ , we

get:

R(a, b, ε) =
C ln( 1ε )

1− e−
b
γ (1−e

− a
ζ )
. (15)

B. Analysis

In this section, we design an algorithm to solve the min-
max problem (13). By introducing new slack variables T and
τ , problem (13) is equivalent to the following optimization
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problem:

min
a,b,χ,T,τ ,f ,p

R(a, b, ε) · T, (16)

s.t. bτm + tcomm→c ≤ T, ∀m ∈M, (16a)
atcmpn + tcomn→m ≤ τm, ∀n ∈ Nm, (16b)
0 < fn ≤ fmaxn , ∀n ∈ Nm, (16c)
0 < pn ≤ pmaxn , ∀n ∈ Nm, (16d)
χn,m ∈ {0, 1},∀n ∈ N ,∀m ∈M, (16e)∑
m

χn,m = 1,∀n ∈ N , (16f)∑
n

χn,mBn ≤ B,∀m ∈M. (16g)

where T defines the time interval between each round of
communication between edge server m and the cloud, and
τm defines the time interval between each round of commu-
nication between UE n and edge server m. We should note
that constraints (16a) and (16b) confine the delay (aggregation
and communication to the cloud) at each edge server and the
delay (computation and communication to the edge server) at
each UE, respectively. To solve the optimization problem, we
decompose the problem into two sub-problems. Sub-problem
I solves the local iteration number a, edge iteration number b,
UE CPU frequency f and transmission power p. Sub-problem
II obtains the optimal UE-to-edge association.

C. Solution of sub-problem I

We will show that Problem (16) is a convex optimization
problem under given UE-to-edge association χ. To this end,
we present lemmas below.

Lemma 1. The reciprocal of a positive and concave function
is convex.

Proof. Let h(x) = 1
f(x) , where f(x) is twice differentiable.

Then the second order derivative of h(x) can be given by:

h′′(x) = −f
′′(x)f(x)− 2f ′2(x)

f3(x)
. (17)

Since f(x) is positive and concave, f(x) > 0 and f ′′(x) < 0.
Thus f ′′(x)f(x) − 2f ′2(x) < 0, and h′′(x) > 0. As a result,
h(x) is a convex function.

We have Lemma 2 below, which together with Lemma 1
shows that R(a, b, ε) · T is convex.

Lemma 2. 1
R(a,b,ε)·T is a positive and concave function.

Proof. The reciprocal of the objective of problem (16) is

1

R(a, b, ε) · T
=

1− e−
b
γ (1−e

− a
ζ )

CT ln( 1ε )
.

Let
f(a, b) = 1− e−

b
γ (1−e

− a
ζ ),

where a, b, ζ, γ are all positive numbers. Thus, 0 < e−
a
ζ < 1.

Then 0 < 1−e−
a
ζ < 1, and 0 < 1−e−

b
γ (1−e

− a
ζ ) < 1. Besides,

C, T, ln( 1ε ) are positive numbers. Therefore, 1
R(a,b,ε)·T > 0.

Then, we investigate the concavity of f(a, b). Let g(x) =
1− e−x, then f(a, b) can be expressed as

f(a, b) = g

[
b

γ
· g
(
a

ζ

)]
.

The second-order partial derivatives faa, fbb, fab can be given
by:

faa =
b

γζ

{
b

γζ
g′′
[
b

γ
g

(
a

ζ

)]
g′2
(
a

ζ

)
(18)

+
1

ζ
g′
[
b

γ
g

(
a

ζ

)]
g′′
(
a

ζ

)}
,

fbb =
1

γ2
g′′
[
b

γ
g

(
a

ζ

)]
g2
(
a

ζ

)
, (19)

fab =
b

γ2ζ
g′′
[
b

γ
g

(
a

ζ

)]
g′
(
a

ζ

)
g

(
a

ζ

)
(20)

+
1

γζ
g′
[
b

γ
g

(
a

ζ

)]
g′
(
a

ζ

)
.

Note that g (x) = 1− e−x, g′ (x) = e−x and g′′ (x) = −e−x.
Thus, g′′ (x) = −g′ (x). Then, faa, fbb, fab can be rewritten
as:

faa =
b

γζ2
g′
(
a

ζ

)
g′
[
b

γ
g

(
a

ζ

)][
− b
γ
g′
(
a

ζ

)
− 1

]
, (21)

fbb = −
[
1

γ
g

(
a

ζ

)]2
g′
[
b

γ
g

(
a

ζ

)]
, (22)

fab =
1

γζ
g′
(
a

ζ

)
g′
[
b

γ
g

(
a

ζ

)][
− b
γ
g

(
a

ζ

)
+ 1

]
. (23)

The Hessian matrix of f(a, b) is[
faa fab
fba fbb

]
. (24)

Since f(a, b) is twice differentiable, the Hessian matrix is
symmetric. That is, fab = fba. Next, we show that faa < 0
and faa · fbb − f2ab ≥ 0.

From g(x) = 1− e−x and g′(x) = e−x, we have for any x,
g(x) > 0 and g′(x) > 0. b > 0, γ > 0, so − b

γ g
′(aζ )− 1 < 0.

Therefore, faa < 0.

From (21), (22) and (23), it can be obtained that

faa · fbb − f2ab =
1

γ2ζ2
g′2
[
b

γ
g

(
a

ζ

)]
g′
(
a

ζ

)
·{

b

γ
g2
(
a

ζ

)[
b

γ
g′
(
a

ζ

)
+ 1

]
− g′

(
a

ζ

)[
1− b

γ
g

(
a

ζ

)]2}
.

(25)

It is clear that
1

γ2ζ2
g′2
[
b

γ
g

(
a

ζ

)]
g′
(
a

ζ

)
> 0.
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Next, we investigate the sign of

b

γ
g2
(
a

ζ

)[
b

γ
g′
(
a

ζ

)
+ 1

]
− g′

(
a

ζ

)[
1− b

γ
g

(
a

ζ

)]2
.

Let g
(
a
ζ

)
= t and b

γ = k, and then it can be expressed as

kt2(k − kt+ 1)− (1− t)(1− kt)2 (26)

=− kt2 + 2kt+ t− 1 (27)
=kt(2− t)− (1− t), (28)

where k > 0 and t ∈ (0, 1).Since kt is a relatively large
number, kt(2− t) ≥ (1− t). Therefore, kt2(k−kt+1)− (1−
t)(1 − kt)2 ≥ 0. Thus, faa · fbb − f2ab ≥ 0. Then Lemma 2
holds.

Lemma 3. Problem (16) under given UE-to-edge association
χ is a convex optimization problem.

Proof. The constraints (16a), (16b), (16c) and (16d) are con-
vex. Therefore, the convexity of problem (16) depends on the
objective function of problem (16). From Lemmas 1 and 2,
we can conclude that the objective function of problem (16)
is a convex function with respect to a, b.

The Lagrange function of problem (16) can be given by:

L(a, b,T,f ,p,λ,µ,β,ν) = R(a, b, ε) · T

+
∑
m∈M

λm(bτm + tcomm→c − T )

+
∑
n∈Nm

µn(at
cmp
n + tcomn→m − τm)

+
∑
n∈Nm

βn(fn − fmaxn )

+
∑
n∈Nm

νn(pn − pmaxn ), (29)

where λm and µn are Lagrangian multipliers associated with
the constraints (16a) and (16b). Then the dual function of
problem (16) is

g(λ,µ,β,ν) = min
a,b,T,f ,p

L(a, b, T,f ,λ,µ,β,ν).

According to the Karush-Khun-Tucker (KKT) conditions, the
optimal solution of problem (16) can be obtained by taking
the partial derivatives of Lagrange function L(a, b,f ,p,λ,µ)
with respect to variable a and b:

∂L
∂a

=− CTb ln(1/ε)e−
b
γ (1−e

− a
ζ )− aζ

γζ(1− e−
b
γ (1−e

− a
ζ ))

2

+
∑
n∈Nm

µnt
cmp
n = 0,

∂L
∂b

=− CT ln(1/ε)e−
b
γ (1−e

− a
ζ )(1− e−

a
ζ )

γ(1− e−
b
γ (1−e

− a
ζ ))

2

+
∑
m∈M

λmτm = 0. (30)

1) The optimal solution of local CPU frequency and trans-
mission power: From constraints (16a) and (16c), it can be
seen that it is always efficient to utilize the maximum CPU fre-
quency fmaxn ,∀n ∈ Nm. Besides, from constraints (16b) and
(16d), it can be seen that minimum time can be achieved if UE
uses the maximum transmission power pmaxn ,∀n ∈ Nm. So
the optimal solution of local CPU frequency and transmission
power can be given by f∗n = fmaxn , p∗n = pmaxn ,∀n ∈ Nm.

2) The optimal solution of local and edge iteration
times (a∗, b∗) within one round communication: Let A =
CT ln(1/ε) and Y = 1− e−

a
ζ , we can get:

a∗ =ζ ln

( ∑
m∈M λmτm

ζ
∑
n∈Nm µnt

cmp
n

+ 1

)
, (31)

b∗ =
γ ln

(
AY−
√

4AY
∑
m∈M λmτm+A2Y 2

2
∑
m∈M λmτm

+ 1
)

−Y
. (32)

3) Solution of T and τ : The optimal solution of a∗, b∗ have
been obtained under given accuracy ε. According to problem
(13), the optimal solution of τ and T can be given by:

τ∗m = max
n∈Nm

{a∗ · tcmpn + tcomn→m}, (33)

T ∗ = max
m∈M

{b∗ · max
n∈Nm

{a∗ · tcmpn + tcomn→m}+ tcomm→c}. (34)

4) Lagrange multipliers update: The Lagrange dual vari-
ables λ,µ,β,ν can be obtained by solving the Lagrange dual
problem of problem (16), which can be expressed as follows:

max
λ,µ,β,ν

g(λ,µ,β,ν), (35)

s.t. λ � 0,µ � 0,β � 0,ν � 0. (35a)

The Lagrange dual problem is a convex problem, which can
be solved by subgradient projection method. The subgradients
of g(λ,µ,β,ν) can be given by:

∇λm = b∗τ∗m + tcomm→c − T ∗, ∀m ∈M,

∇µn = a∗tcmpn + tcomn→m − τ∗m, ∀n ∈ Nm,
∇βn = fn − fmaxn , ∀n ∈ Nm,
∇νn = pn − pmaxn , ∀n ∈ Nm. (36)

Having obtained the subgradients of λm, µn, βn, νn, the La-
grange multipliers can be obtained by subgradients projection
method in an iterative method as follows:

λm(t+ 1) = λm(t)− η∇λm(t),

µn(t+ 1) = µn(t)− η∇µn(t),
βn(t+ 1) = βn(t)− η∇βn(t),
νn(t+ 1) = νn(t)− η∇νn(t), (37)

where η is the step size and t denotes the number of iterations.
The Lagrangian dual variables λm, µn, βn and νn is updated
according to the subgradients projection method in an iterative
way in (37). After obtaining the Lagrangian dual variables,
we substitute them into (30) to acquire the optimal value of
a and b. We then substitute the optimal solution of a and b

7
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Algorithm 2 Optimal solution of a, b and Lagrangian dual
variables

1: Initialize Lagrangian dual variables λ(0), µ(0), β(0) and
ν(0)

2: t← 0
3: while accuracy ε2 is not achieved do
4: update a, b in (31) and (32) using λ(t), µ(t), β(t) and

ν(t).
5: update Lagrangian dual variables λ(t + 1), µ(t + 1),

β(t+ 1) and ν(t+ 1) using (36) and (37).
6: t← t+ 1.
7: end while

into (37) to obtain the new Lagrangian dual variables in a
cyclic iterative method. Algorithm 2 explains the process. The
complexity of Algorithm 2 is O(K ln( 1

ε2
)) with accuracy ε2

by using subgradients projection method.

D. Solution of sub-problem II

In this part, we present the time-minimized UE-to-edge
association scheme. With the optimal a, b, f and p, the UE-
to-edge association problem is equivalent to the following
problem:

min
χ

max
n∈N
{atcmpn + tcomn→m}, (38)

s.t. χn,m ∈ {0, 1},∀n ∈ N ,∀m ∈M, (38a)∑
m

χn,m = 1,∀n ∈ N , (38b)∑
n

χn,mBn ≤ B,∀m ∈M. (38c)

By introducing a slack variable z, problem (38) can be
reformulated into an epigraph form as follows:

min
χ

z, (39)

s.t. atcmpn + tcomn→m ≤ z,∀n ∈ N , (39a)
χn,m ∈ {0, 1},∀n ∈ N ,∀m ∈M, (39b)∑
m

χn,m = 1,∀n ∈ N , (39c)∑
n

χn,mBn ≤ B,∀m ∈M. (39d)

We should notice that when the problem (39) reaches the
optimality, the maximum of the left-hand side of (39a) is equal
to z. Otherwise (i.e., the maximum of the left-hand side of
(39a) is less than z), we could decrease z since it would bring
a smaller objective value for (39).

Problem (39) is now a mixed integer linear programming
(MILP) problem, which can be solved by branch-and-bound
algorithm. However, the computational complexity of branch-
and-bound algorithm is exponential in general, and thereby
cannot be implemented in practice. To solve the UE-to-
edge association problem practically, we then propose a more
efficient algorithm.

In the proposed algorithm, we first identify the UEs with
the largest SNR for each edge server successively, under
the bandwidth constraint (39d). Since each UE can only be
associated with one edge server, we need to remove one
edge server if two edge servers are associated with one UE.
Specifically, let the set of UEs chosen by edge server m1 and
m2 beNm1 andNm2 . If a UE n is in bothNm1 andNm2 , then
the algorithm will compare the uplink channel SNR between
UEs that are not in Nm1

, Nm2
and edge server m1, m2,

denoted by {(n,m) | n ∈ N \(Nm1
∪Nm2

),m ∈ {m1,m2}}.
Then, the UE n′ and edge server m′ with largest uplink
channel SNR gn′,m′pn′/N0 are chosen. If m′ = m1, then we
remove UE n from m1 and associate n′ with m1. Otherwise,
we remove UE n from m2 and associate n′ with m2. The
above process proceeds until the last edge server finishes. The
main procedures of the proposed algorithm are summarized in
Algorithm 3. In each round, a maximum of B/Bn comparisons
are made. Hence, the complexity of proposed algorithm is
O(mB/Bn) in the worst case.

Algorithm 3 Time-minimized UE-to-edge association algo-
rithm

1: Initialize {χn,m} as empty and sort gn,mpn/N0 by m ∈
M.

2: for i ∈ {1, 2, ...,M} do
3: choose the Nm UEs with largest gn,mpn/N0, denote

the set by Nmi , set χn,i = 1,∀n ∈ Nmi .
4: while ∃ n, mj , χn,mi == 1 and χn,mj == 1 (i > j)

do
5: (n′,m′) = argmax

n∈N\(Nmi∪Nmj ),m∈{mi,mj}
gn,mpn/N0.

6: set χn,m′ = 0.
7: set χn′,m′ = 1.
8: end while
9: end for

V. NUMERICAL RESULTS

In this section, numerical experiments are conducted to
verify the performance of our solutions. The advantages of hi-
erarchical federated learning system over edge-based federated
learning system and cloud-based federated learning system are
investigated in [15]. Hence, in this paper, we focus on the
iteration counts of local UEs and edge servers under different
conditions, as well as UE-to-edge association.

A. Experiment Settings

For simulations, we consider a hierarchical federated learn-
ing system with multiple user equipments, edge servers and
one cloud server. The user equipments are deployed in a square
area of size 500 m × 500 m with the edge servers located in
the center and all the edge servers are deployed in an area with
the cloud server located in the center. For machine learning
tasks, we consider a classification task using standard dataset
MNIST. For the training model, we use LeNet. The constants
γ, ζ and δ are set to random integers between 1 to 10. For
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Fig. 2: Iterations under different global accuracy.

simplicity, we use the free-space path loss model in [24]. Then
with wavelength being the wavelength of the wireless sig-
nal and distance being the distance between UE n and edge
server m, it holds that gn,m = ( wavelength

4π×distance )
2. We set the

frequency at 28GHz so that wavelength = 3×108
28×109 = 3

280m.
Then gn,m = ( 3/280

4π×distance )
2. The maximum CPU frequency

fmaxn is 2 GHz, and maximum transmission power pmaxn is 10
dBm for each device. For the parameters in the optimization
problem regarding Assumption 1, L-smooth and β-strongly
convex, we follow the experiment setting in [7].

B. The optimal number of local computations and edge ag-
gregations

Firstly, we fix the number of UEs and edge servers. We
deploy 1 cloud server, and 5 edge servers and each edge
server is associated with 20 UEs. To achieve a given global
accuracy ε within minimum time, the local iterations and
edge iterations needed between two communication rounds are
shown in Fig. 2. As ε decreases (i.e., higher machine learning
model accuracy is required), a decreases while b increases,
and the value of a × b (the number of local iterations in one
cloud round) increases. It means that in order to obtain a more
accurate global model within minimum time, edge servers
need to run more edge iterations while UEs run fewer local
iterations within one communication round. In the simulation
experiment, we train LeNet on MNIST dataset with each edge
server associated with 10 UEs. It can be observed from Fig. 4
that under different required test accuracy, the optimal value
of a and b differs. For example, in Fig. 4, if the required
machine learning model accuracy is between 0.88 to 0.89, then
a = 35, b = 5 is the optimal value. If the required machine
learning model accuracy is beyond 0.92, then a = 30, b = 7
is the optimal value.

Next, we associate different numbers of UEs with each
edge server from 10 UEs to 100 UEs. To obtain a fixed
global accuracy in minimum time, the local iterations and

Fig. 3: Iterations under different numbers of UEs.

edge iterations needed are shown in Fig. 3. As the number of
UEs each edge server associates with increases, the number
of local iterations and edge iterations exhibit no visible trend.
That is because at the aggregation step, the weighted average
scheme balances the variance among all the UEs. In Fig. 6,
each edge server is associated with 20 UEs. It can be seen
from Fig. 6 that the optimal values of a and b are different
when we require different machine learning model accuracy.
Similar to the case when each edge server associates with 10
UEs, a = 35, b = 5 is the optimal value when the required
model accuracy is between 0.88 to 0.89. If the required model
accuracy is beyond 0.9, then a = 30, b = 5 is the optimal
value. It also verifies the observation that the optimal value
of local iteration counts and edge iteration counts have no
correlation with the number of UEs edge server associates.

C. The optimal UE-to-edge association

In this part, we test three different UE-to-edge association
strategies under the global accuracy requirement ε = 0.25.
They are the proposed method, the greedy algorithm and the
random UE-to-edge association strategy.

• Greedy algorithm : The greedy algorithm chooses the
UEs available with maximum SNR under the bandwidth
constraint for each edge server.

• Random UE-to-edge association: The random UE-to-
edge association assigns UEs to all the edge servers
randomly, under bandwidth constraint.

Fig. 5 illustrates the system’s maximum latency under different
numbers of edge servers. The number of total UEs is 100. It
can be found that the proposed method always achieves the
lowest latency under different numbers of edge servers. The
greedy algorithm always chooses the UEs with the maximum
SNR available, thus outperforming the random association. It
is noticed that when the number of edge servers is smaller, the
latency is higher. That is because when the number of edge
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Fig. 4: Test accuracy on MNIST w.r.t. the completion time
when each edge server is associated with 10 UEs.

Fig. 5: The maximum latency of 100 UEs under different
numbers of edge servers.

servers is small, UEs have few choices. More UEs have to
associate with edge servers whose SNR is high.

VI. CONCLUSION

In this paper, we have investigated the problem of latency
minimization in the setting of 3-layer hierarchical federated
learning framework. In particular, we formulated a joint learn-
ing and communication problem, where we optimized local
iteration counts and edge server iteration counts. To solve the
problem, we studied the convexity of the problem. Then we
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Fig. 6: Test accuracy on MNIST w.r.t. the completion time
when each edge server is associated with 20 UEs.

proposed an iterative algorithm to obtain the optimal solution
for local counts and edge counts. Besides, we proposed a
UE-to-edge association strategy which aims to minimize the
maximum latency of the system. Simulation results show
the performance of our solutions, where the global model
converges faster under optimized number of local iterations
and edge aggregations. The overall FL time is minimized with
the proposed UE-to-edge association strategy.
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