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Abstract—We study the problem of optimal sampling in an
edge-based video analytics system (VAS), where sensor samples
collected at a terminal device are offloaded to a back-end server
that processes them and generates feedback for a user. Sampling
the system with the maximum allowed frequency results in the
timely detection of relevant events with minimum delay. However,
it incurs high energy costs and causes unnecessary usage of net-
work and compute resources via communication and processing
of redundant samples. On the other hand, an infrequent sampling
result in a higher delay in detecting the relevant event, thus
increasing the idle energy usage and degrading the quality of
experience in terms of responsiveness of the system. We quantify
this sampling frequency trade-off as a weighted function between
the number of samples and the responsiveness. We propose an
energy-optimal aperiodic sampling policy that improves over the
state-of-the-art optimal periodic sampling policy. Numerically, we
show the proposed policy provides a consistent improvement of
more than 10% over the state-of-the-art.

Index Terms—Event detection, energy minimisation, edge com-
puting, optimal sampling, aperiodic sampling, feedback systems

I. INTRODUCTION

Features of the next-generation mobile networks like the

releases 15 and 16 of 5G-NR brought with it an increased

interest in realising real-time services and applications [1]. For

instance, URLLC (ultra-reliable low latency communication)

targets sub-millisecond end-to-end delay demanded in an

industrial setting. Within the class of such delay and latency-

sensitive applications, a subgroup of new applications that

process snapshots of reality and provide feedback either to de-

vices or humans are receiving an increasing amount of recent

research attention. Some examples of such feedback systems

are human-in-the-loop applications such as augmented reality,

wearable cognitive assistants (WCA) [2], [3], and ambient

safety. Another example from the domain of cyber-physical

systems (CPS) is in the context of automated fault detection,

where the acoustic data is processed for vibration analysis

to potentially initiate some maintenance, safety or emergency

procedures [4]. A typical characteristic of these applications

is that the feedback quality depends on the timely capture and

processing of the state changes via these snapshots, whereas

the state changes themselves can be random events. Therefore,

an efficient sampling of the application is essential in these

systems. It is even more emphasised by the recent trend of

remotely placing most of the processing logic of such feedback

systems in edge computing facilities connected with direct

wireless links. Such a placement leverages supposedly ubiq-

uitous real-time compute capabilities, however, with an added

cost for offloading compute tasks in terms of communication

delays and energy consumption.

We investigate systems that employ sampling to monitor a

process but only respond to a subset of samples that result in

system changes, such as a new augmentation towards a human

user in a WCA. These samples are associated with some events

of importance, referred to as essential events. Other samples

do not contain information on such essential events and are

ignored. Following the detection of an essential event from

a sample, feedback is generated, and the system transits to

the next state where it begins monitoring for an essential

next event. The trade-off that we study relates to the strategy

applied to sample the process. Ideally, one aims to have a

system that samples the process only once – immediately

after the event completion. However, the a priori information

about the event completion required for such a system breaks

the causality and makes it infeasible. In any feasible system,

the sampling is done with some sampling policies, which

only have a statistical idea about the event completion times.

Any policy that uses more frequent sampling ensures that the

crucial event is timely captured. However, it also results in the

capture of insignificant samples of the process, squandering

energy, communication bandwidth, and compute cycles. In this

work, we examine approaches that enable the prompt capture

of relevant system changes in an edge-based feedback system

while also minimising overall energy usage.

Event detection from control theory literature typically

looks at event-triggered control where an event occurs when

the sensor detect that a reading has crossed a threshold [5].

However, these studies are not applicable to our case because

they do not rely on any necessary assumptions regarding the

amount of the data being communicated, the requirement of

feedback for control, or the remote processing and detection of

events. Works like [6]–[9] that contains these assumptions are

mostly based on the quickest detection of the events. Many

of them do not take the aspect of energy consumption into

consideration, a perspective which is becoming increasingly

important. Those that consider this aspect mostly come from

the video analytics and surveillance domain where multiple

strategies to reduce energy usage are discussed. These include

optimising sensor topologies [10], optimising video coding

and transmission techniques [11], forcing sensor cooperation
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[12], and selective frame transmission or sensor activation

[13], [14]. In contrast, we reduce the data generated at the

sensors by statistically determining the optimum sampling

instants, thereby reducing the total amount of data in the

communication and processing pipeline.

A different but well-studied approach to saving energy

is offloading the sensor data. By making wise offloading

decisions for the samples, the disadvantage of an increased

delay accumulated up on a large number of samples during

offloading is somewhat mitigated. [15], [16]. This includes

binary decisions [17]–[20], partial offloading decisions [21],

[22], and stochastic decisions [23]. While these works focus

on the sensor side of the system but not on the total energy

usage which is simply shifted to the edge device. However,

our work implements a framework for minimising the total

energy usage of the system by reducing the number of samples

collected, transmitted and processed.

In our previous works, we have extensively studied the

efficient capture of essential events in a video analytics system

(VAS) and a general cyber-physical system (CPS) using an

optimal periodic sampling [24], [25]. The VAS in our research

is motivated by the WCA from [2], [3] where a human task

progress is monitored continuously by a video stream pro-

cessed at a remote server for the detection of a predefined task

completion. The feedback generated after the task completion

is used to assist a human user in continuing with the remaining

tasks that together complete a whole process. The energy-

optimal periodic sampling policies that we proposed provided

considerable improvement in energy efficiency over a baseline

policy considered. However, an obvious unanswered question

that was kept aside for future research in these works was the

potential for further improvement by removing the periodicity

constraint and looking at the class of more generic aperiodic

sampling policies.

In this work, we propose an optimal aperiodic sampling

policy that can further reduce energy usage in an edge-based

feedback system. To find this policy, we retain a large portion

of the system model but remove those parts that mandate the

periodicity of the sampling policy under consideration. This

forces us to follow completely different mathematical tools

and approaches. We use a two-step approach where we first

solve for the optimum sampling instants given the time of

the first sample, and then find the optimum first sampling

instant using an efficient algorithmic approach. The idea of

such an approach is adapted from the checkpointing literature

in computing systems [26]. In this work, we prioritise Rayleigh

distribution in our mathematical formulations. This is because,

past works on WCA [2], [3] and our own distribution fitting

using task completion time dataset from [3] suggest that the

task completion times follow Rayleigh distribution.

The key contributions of our work are listed below.

1) We propose an energy-optimal aperiodic sampling policy

for a general distribution of task completion times.

2) We prove the convergence of the two-step solution

approach for Rayleigh distributed task completion times.

3) Using simulations, we show that the energy usage under

the optimal aperiodic policy is lower by 10% compared

to that under the optimum periodic sampling policy.

The rest of this paper is organised as follows. In the next

section, we discuss the system model. Section III contains the

solution and convergence proof followed by the simulation

results in Section IV. We conclude in Section V.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider an edge feedback system consisting of a

terminal and a back-end server (referred to as simply terminal

and server from here on), that together monitor a random

process via sampling it. The sensor at the terminal captures

and sends the samples to the back-end server for processing.

For example, in the WCA system studied in [3], [27], the

user is asked to complete a predetermined set of tasks – for

instance, assembling a set of Lego pieces – and the essential

events correspond to the completion of each task. Each of these

tasks takes a random amount of time for completion. An image

sensor (which is the terminal or in the terminal) takes images

(or video frames) of the user activity and sends them to the

back-end for processing via a wireless channel. Immediately

after the essential event, the process (or the human user in

the above example) transitions to a temporary state where no

more events are expected. The next sample drawn after this

transition point – referred to as a successful sample – will

trigger an event detection at the back-end’s processor which

then provides feedback to the terminal indicating the task

completion. The reception of this feedback marks the start of

a fresh monitoring cycle and the process continues. Only the

successful sample results in the generation of feedback, while

all other samples are discarded at the back-end. The time taken

from the start of a monitoring cycle to the event occurrence is

referred to as time to event or TTE, and the time between this

event and the reception of the corresponding feedback at the

terminal is referred to as Time to feedback or TTF. In Fig. 1,

we show the timing diagram corresponding to one monitoring

cycle of such a system.

Sampling the system to detect an event is controlled by a

sampling policy which is a set of sampling instants denoted

by {C=, = ≥ 1}. This includes both the successful sample that

triggers the feedback as well as all the discarded samples taken

during the TTE. The TTE and the total number of samples are

denoted by the random variables T and S, respectively. The

TTF consists of a random wait time W between the event

occurrence and the immediate next sample, a deterministic

processing delay gs of the successful sample, and a two-

way communication delay denoted by 2gc. Let a realisation

of W be F. It is important to note that the processing and

communication of the successful sample alone contributes to

the TTF, while that of the discarded samples occur during the

TTE occur within the TTE. The terminal device enter into an

idle mode when not performing any transmission or reception,

incurring an idle power consumption of %0 (typically much

less than %c). In this work, we assume for the sake of

simplicity that the total power consumption %c is the same
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Fig. 1: Timing diagram of an arbitrary monitoring cycle.

S number of samples W wait time

T time to event (TTE) C= =th sampling instant
gc communication delay gs processing delay
%c communication power %0 idle power
E energy penalty 5X ( ·) PDF -

�X ( ·) CDF - �̄X ( ·) CCDF of X

TABLE I: Table of notations.

at both the terminal and back-end during transmission and

reception of samples or feedback. We also assume that the

communication delay gc is the same in both directions, and

that the processing delay at the back-end is smaller than the

sampling interval. The latter assumption adds simplicity by

avoiding duplicate sampling after the event completion. Let

5- (.), �- (.), and �̄- (.) denote the PDF, CDF, and CCDF of

random variable - , respectively. The notations are summarised

in TABLE I.

As discussed in the previous section, an ideal policy samples

the system immediately after the occurrence of an event so that

there is exactly one sample and the wait F=0. However, such

a policy is infeasible given the randomness of the TTE. Thus,

one has to settle with a policy that finds a balance between

the expected number of samples E[S] and the expected wait

E[W] to minimise the total energy consumption. Each sample

consumes energy in terms of communication and processing,

and idle energy is expended during the wait F. We quantify

this energy usage as a function of the sampling instants {C=}

and find a set that minimises the expected energy usage. Note

that, T is a system property whereas S and W – are derived

from T through the selection of {C=}. We can compute the

energy E required at the terminal to detect an event as [25]

E = (S + 1)g2%2 + (T +W + gs + 2gc − (S + 1)g2)%0

= Sgc (%c − %0) +W%0 + (T + gc + gs)%0 + gc%c .

Here, the terms except the first two containing the random

variables S or W have constant expectations for a fixed

distribution of T . Thus, these terms are irrelevant to the energy

optimisation. Define energy penalty E
(

{C=}
)

or simply E as the

expectation of Er, the relevant components of energy, where

Er = Sgc (%c − %0) +W%0.

⇒ E = E(Er) = UE[S] + VE[W], (1)

where U = gc(%c − %0) and V = %0 are constants. Here,

UE[S] and VE[W] corresponds to the energy wasted per

discarded sample and the additional energy expended for

waiting, respectively. In this work, we study the optimisation

problem to find the optimum policy Π
∗ such that,

Π
∗ : {C∗=} = arg min

{C∗
=
}

E
(

{C=}
)

. (2)

In practice, the solution is computed once prior to starting

the sampling, for a given distribution of the TTE. This

computation can be done as part of the admission control

procedures at the back-end or at the sensor – if it is capable

of it. The proposed solution does not involve any additional

signalling overhead because of this one-time a priori compu-

tation. Furthermore, it is interesting to note that, the following

mathematical analysis can be applied not only to optimise

energy but also to optimise other metrics written in the form

(1), simply by adapting the constants U and V.

III. OPTIMAL SAMPLING

In this section, we find the optimum set of sampling instants

{C∗=} for a given TTE distribution. First, we find {C∗=, = ≥ 2}

recursively for a given C1 and then find C∗
1

using an algorithm,

an approach inspired from [26]. Next, we demonstrate and

prove the convergence of the algorithm. Although most of

the following analysis is valid for a general TTE distribution,

we give specific focus to the relevant Rayleigh distribution

for proofs, wherever necessary. Recall from section I that the

relevance of Rayleigh distribution is motivated by previous

works on WCA as well as from distribution fitting.

A. Recursive Solution

Define C0 = 0 and recall that U and V are the penalty weights.

If the TTE realises at T = C such that C= < C ≤ C=+1, we have,

Er

(

{C=} | T = C, C= < C ≤ C=+1
)

= U(= + 1) + V(C=+1 − C).

⇒ E = E(Er) =

∞
∑

==1

∫ C=

C=−1

(

U= + V(C= − C)
)

5T (C) dC. (3)

It is trivial that the sequence of sampling intervals dictated by

the sampling instants should be strictly positive. Furthermore,

we observe that E does not converge when this sequence C=−

C=−1 is increasing in nature [26]. Thus, we restrict the set of

sampling instants to a set that satisfies the conditions of

(0) positive sampling intervals : C=+1−C=>0, and (4a)

(1) decreasing sampling intervals : C=+1−C=<C=−C=−1. (4b)

The sequences of sampling intervals – or equivalently, sam-

pling instants – that satisfy these conditions are referred to as

valid sequences. It is interesting to note that the condition (4b)

is satisfied for the optimum samples of any general distribution

that is a Pólya frequency function of order 2 [26], [28]. One

easy check for such distributions is the increasing nature of

the hazard function 5T (C)/�̄T (C) which is true for a Rayleigh

distribution, thus confirming the existence of a solution. Now,

we differentiate (3) with respect to C= and equate them to zero

for all =. To find the derivative, we use the Leibniz rule for

integration, where only the =th and (=+1)th terms of (3) produce

a non-zero result.
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Thus we have,

m

mC=
E
(

{C=}
)

=
m

mC=

∫ C=

C=−1

(

U= + V(C= − C)
)

5T (C) dC

+
m

mC=

∫ C=+1

C=

(

U(= + 1) + V(C=+1 − C)
)

5T (C) dC

= U= 5T (C=) +

∫ C=+1

C=

V 5T (C) dC −
(

U(= + 1) + V(C=+1 − C=)
)

5T (C=)

= V
(

�T (C=) − �T (C=−1)
)

− 5T (C=)
(

U + V(C=+1 − C=)
)

.

Equating the derivative to zero gives,

C=+1 = C= +
�T (C=) − �T (C=−1)

5T (C=)
−
U

V
, ∀= ≥ 1. (5)

The solution for a Rayleigh distributed TTE can be obtained

by substituting the corresponding CDF and PDF in (5). That is,

C=+1 = C= +
f2

C=

(

exp
( C2

=
−C2

=−1

2f2

)

− 1
)

−
U

V
, ∀= ≥ 1. (6)

In general, this condition is not sufficient for optimality, but

only necessary. However, for a given value of C1, (6) provides a

unique set of {C=, =≥2} and hence this necessary condition is

sufficient here for determining the optimum sampling instants

for a fixed C1. Thus, this recursion reduces the dimension of the

search space of the optimum sampling instants from infinity

to one and we just have to search for C∗
1

– the optimum C1.

B. Optimum C1

Let C= (C1) be the =th sampling instant and {C= (C1)} be the set

of all sampling instants generated using (6) by an arbitrary C1.

Also, let E(C1) := E
(

{C= (C1)}
)

). To find C∗
1
, we start with

a discussion on the nature of these sequences of sampling

instants given by (6). Before the analytical discussion, we first

illustrate their typical behaviour using Fig. 2 where we plot

a few sequences {C= (C1)} versus = for a Rayleigh distributed

TTE with `=1 s. We consider the first 15 samples and use
V/U = 21, the reason for which will be explained later in

section IV. Adjacent lines show the sequences obtained with

consecutive C1 in the chosen list of C1 from 577 ms to 590 ms

that differ by 0.5 ms. We can see that the sequences with

smaller C1 violate (4a) as n goes to 15 and the graph starts

Fig. 2: Evolution of {C=} with = generated by the recursion (6)

using different values of C1. Two sequences valid upto ==15

(C1=582 ms and C1=582.5 ms) are highlighted with bold lines.

to decrease continuously. Similarly, the sequences with larger

C1 close to 0.59 s eventually violate (4b) and the graph goes up

towards infinity. In this illustration, only two sequences with

C1=582 ms and C1=582.5 ms (highlighted with bold lines) are

valid up to ==15, even though more sequences are valid for a

lesser =. It can be inferred that a sequence {C=} generated using

(6) by any C1 may not a valid sequence and that the validity

may be very sensitive to small changes in C1. In the following,

we establish a few characteristics of these sequences.

Lemma 1. Consider a Rayleigh distributed TTE with param-

eter f. If C
(1)

1
and C

(2)

1
are two finite starting sampling instants

such that C
(1)

1
< C
(2)

1
, then we have C= (C

(1)

1
) ≤ C= (C

(2)

1
), ∀= ≥ 2.

Proof. The partial derivative of C=+1 can be obtained from (6).

mC=+1

mC=
= 1 +

f2

C2=

( C2=

f2
exp

( C2
=
−C2

=−1

2f2

)

− exp
( C2

=
−C2

=−1

2f2

)

+ 1
)

= 1 + exp
( C2

=
−C2

=−1

2f2

)

−
f2

C2=

(

exp
( C2

=
−C2

=−1

2f2

)

− 1
)

.

Assume that the partial derivative
mC=+1
mC=

is non-positive. That is,

(

C2=

f2

)

exp
( C2

=
−C2

=−1

2f2

)

+ 1

exp
( C2

=
−C2

=−1

2f2

)

− 1

≤ 1

⇒

(

C2= − C
2
=−1

2f2

)

exp
( C2

=
−C2

=−1

2f2

)

+ 1

exp
( C2

=
−C2

=−1

2f2

)

− 1

< 1 (7)

Let G =
C2= − C

2
=−1

2f2
⇒

G (4G + 1)

(4G − 1)
< 1. (8)

However, we can easily see that
G (4G+1)
(4G−1)

>2, ∀G, thus forming

a contradiction and invalidating the initial assumption. Hence,

mC=+1

mC=
> 0, ∀= ≥ 1. (9a)

⇒
mC=+1

mC1
=

=
∏

8=1

mC8+1

mC8
> 0, ∀= ≥ 1. (9b)

The proof can be easily completed using (9b). �

We claim using Lemma 1 that, if a sequence with a partic-

ular C1 violates (4a) and starts to decrease in value, so does

any other sequence with a smaller value of C1. Similarly, if a

sequence with a particular C1 violates (4b) and starts to increase

towards infinity, so does any other sequence with a larger

value of C1. This claim can be supported using the following

arguments. Let {C= (Ĉ1)} violates (4b). That is, C= (Ĉ1)→∞ for

some large n. Now assume a C1 > Ĉ1. According to Lemma 1,

this implies that C= (C1) ≥ C= (Ĉ1), ∀=≥2. As a result, C= (C1)→∞

for some large n thus implying a violation of (4b). This same

argument can be extended for those sequences that violate (4a).

In other words, it is the smaller values of C1 that generate a

sequence potentially violating (4a), and it is the larger values

of C1 that generate a sequence potentially violating (4b). We

write this formally in the below corollaries.
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Corollary 1. If {C= (Č1)} violates (4a), so does {C= (C1)},∀C1< Č1.

Similarly, if {C= (Ĉ1)} violates (4b), so does {C= (C1)}, ∀C1 > Ĉ1.

Corollary 2. If {C= (Č1)} violates (4a) and {C= (Ĉ1)} violates

(4b), then C= (Č1) ≤ C= (Ĉ1), ∀= ≥ 1.

We use Algorithm 1 which is inspired by the bisection

algorithm to compute C∗
1
. We start the algorithm by assigning

the lower and upper limits to two arbitrary Č1 and Ĉ1, as in the

corollaries. The limits are then repeatedly updated whenever

the sequence generated by the bisection variable becomes

invalid; based on whether (4a) is violated, or (4b). We will

now discuss the optimality of C∗
1

obtained using the algorithm.

Proposition 1. The result of the algorithm E∗ is arbitrarily

close to the infimum achievable energy penalty, given the

bounded differentiability of E with respect to C1.

Proof. Define an invalid C1 as a C1 that generates an invalid

sequence using (6). It is clear from the corollaries that any C1
smaller than a C1 violating (4a) or any C1 larger than a C1 violat-

ing (4b) is invalid. Hence, an invalid C1 cannot exist between

two valid C1. In other words, the set {C1 : {C= (C1)} is valid} con-

taining C∗
1

forms a non-disjoint interval. Thus the initial search

space [C= (Č1), C= (Ĉ1)] of the Algorithm 1 contains C∗
1

within

it. As a result, the bisection-inspired algorithm exponentially

converges to C∗
1
, and a bounded differentiablity of the energy

penalty suggests that lim
C1→C∗

1

E(C1)=E(C
∗
1
). �

Checking the bounded differentiability of E analytically is

hard due to the recursion involved. However, we have verified

it using simulations, when the TTE is Rayleigh distributed.

Until now, we have discussed about infinite length sequences

of sampling instants. However, the definition of a finite-length

Algorithm 1 Algorithm to find optimum sampling instants.

Initialise the range of optimising variable, Č1 and Ĉ1;

Initialise stopping criterion C=̄.

=← 1 ; C0 ← 0 ; C1 ← (Č1 + Ĉ1)/2 ;

while C= ≤ C=̄ do
{% Bisection iteration to find optimum C1}

=← 1 ; C1 ← (Č1 + Ĉ1)/2 ;

while 1 do
{% Recursion to find {C∗= =≥2} for the current C1}

C=+1 = C= +
f2

C=

(

exp(
C2
=
−C2

=−1

2f2 ) − 1
)

− U
V

;

if C=+1 − C= < 0 then
Č1 ← C1 ;

break
else

if C=+1 − C= > C= − C=−1 then

Ĉ1 ← C1 ;

break
end

end

=← = + 1 ;
end

end

C∗
1
← C1 ; E∗ ← E(C1) ;

valid sequence is tied with an =̄ below which the validity is

maintained and is necessary for practical purposes. An invalid

sequence can be made valid by considering only a finite part

of it, with a length less than =̄. For instance, the two valid

sequences in Fig. 2 has =̄ >15. We use this threshold == =̄ to

terminate the algorithm such that the probability of the TTE

taking a value above C=̄ is as low as one wants.

To further take care of a potential TTE realisation greater

than C=̄ (however small it may be), we can adapt the policy

by allowing one final sample at a very large C, after the

termination of the algorithm. For this purpose, we choose a

small enough probability value n such that the realisations of

the TTE above �̄−1 (n) >> C=̄ can be neglected. Note that,

C=̄ and n are fixed a priori by the user irrespective of the

initial value C1 or the algorithm, whereas =̄ is obtained by

the algorithm for a given C1 and C=̄. Define Ê as the error

in the expected penalty incurred as a result of stopping the

algorithm at C=̄ and not considering a potential TTE realisation

of T ∈ (C=̄, �̄
−1 (n)) for optimisation. That is,

Ê = P
(

C=̄ < T ≤ �̄−1 (n)
)

·
(

U + VF̂
)

,

where F̂ is the wait when C=̄ < T ≤ �̄−1 (n). Note that

F̂ ≤ �̄−1 (n) − C=̄

⇒ Ê ≤
(

�̄ (C=̄) − n
) (

U + V(�̄−1(n) − C=̄)
)

.

For instance, a decent C=̄ > 6` and a very small n = 10−22 for

a Rayleigh distributed T give us Ê ≤ 6(U + 2V`) × 10−13.

This is negligible compared to the typical penalty values.

Note that, Ê depends on n and C=̄ but not on the algorithm

or =̄. One can repeat the algorithm until either = = =̄ or until

C
(2)

1
−C
(1)

1
comes below the computation precision of the system.

Recall the illustration in Fig. 2 where the valid C15≈2.8 s with

�̄T (2.8) ≈0.002. For n =10−22, this results in Ê ≤0.0037.

IV. PERFORMANCE COMPARISON

In this section, we illustrate the working and performance

of the proposed optimal sampling policy Π
∗ in minimising E.

We compare the resultant E with that obtained using a baseline

policy Πb and the state-of-the-art optimal periodic policy Πp

– all applied on a practically relevant VAS mentioned in

section II. The characterisation of the VAS is motivated by

the Google Glass [29] and from the WCA experiments in

[3]. These experiments use a frame size around 300 kB (that

is, a resolution of 640 × 480) and observe a mean task time

of 4.846 s. Google Glass use an 802.11ax transmitter which

provides a data rate of 400 Mbps which results in a 5.85 ms

communication delay for each of the 300 kB frames. Note that

with the terminal located in the proximity of the edge, this

contribution of propagation delay is negligible. Furthermore,

the Google Glass consumes a power of 334mW and 2960mW

during active/screen-off and video chat, respectively. We take

these power figures as the idle power %0 and the commu-

nication power %c for our simulations, respectively. These

characterisations give us an V/U ratio of 21.7. For the policy

Πb, we choose a sampling interval of 83.3 ms which is also

motivated by the mean sampling interval of the WCA system

5



Fig. 3: Energy penalty obtained on a VAS by the optimal

policy compared with that of an optimum periodic policy for

different mean values of the Rayleigh distributed TTE.

Fig. 4: Percentage penalty reduction achieved on a VAS by

the proposed policy over the baseline policy and the optimum

periodic policy for different mean values of the Rayleigh TTE.

in [3]. Note that, these are the same characterisation that we

used in our previous work [25] and we reuse them here for

consistency.

In Fig. 3, we compare E obtained with Π
∗ and Πp by plot-

ting it against the mean of the Rayleigh distributed TTE. We

can see that the proposed policy Π
∗ is consistently performing

better than Πp. We did not include the baseline policy Πb in

this illustration because, with the large energy improvement

already gained with Πp over Πb, the improvement achieved on

top of that by Π
∗ would have been less apparent. Nevertheless,

the additional energy reduction achieved by the proposed

policy cannot be undermined. For instance, at ` = 5 s we see

a 9.8% energy penalty reduction attained by Π
∗ over Πp. To

illustrate the increased energy efficiency, in Fig. 4 we plot

the penalty reduction attained by Π
∗ over Πb and Πp. The

improvement in energy efficiency achieved by Π
∗ continuously

increases with ` over Πb, whereas over the optimal periodic

policy it stabilises at around 10%.

We have observed that for various mean values, the percent-

age decrease in energy penalty achieved by using Π
∗ over Πp

is stable at around 10%, irrespective of the ratio V/U. In other

words, the proposed policy outperforms the state-of-the-art by

a constant amount irrespective of the communication power %c

and delay gc of the application, which is the only parameters

apart from the idle power that affects the optimisation. We

Fig. 5: Percentage penalty reduction achieved on a VAS by the

proposed policy over the optimum periodic policy for different

values of communication delay gc and power %c.

show this in Fig. 5by plotting the percentage penalty reduction

versus the gc and %c for VAS with a Rayleigh distributed TTE

of mean 4.84 s. We can see the constant 10% improvement

discussed above.

V. CONCLUSION

We considered an edge-based video analytics system (VAS)

that captures essential events via sampling. We proposed an

energy-optimal aperiodic sampling policy using a two-step

iterative approach. The first step analytically finds the optimum

sampling instants for a given time of the first sample and

the second step finds the optimum first sampling instant.

We proved the convergence of the two-step approach and

illustrated the consistent performance improvement of the

proposed policy over a baseline policy and the state-of-the-

art optimal periodic policy.
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