arXiv:2301.03715v1 [quant-ph] 9 Jan 2023

Quantum Text Encoding for Classification Tasks
Preprint of paper that appeared in International Workshop on Quantum Computing
IEEE/ACM 7th Symposium on Edge Computing (SEC), Seattle, WA, December 8, 2022. Pages 355-361.
Official version at https://doi.ieeecomputersociety.org/10.1109/SEC54971.2022.00052

Aaranya Alexander
IonQ, Inc.
aaranya@ionqg.com

Abstract—This paper explores text classification on quantum
computers. Previous results have achieved perfect accuracy on
an artificial dataset of 100 short sentences, but at the unscalable
cost of using a qubit for each word.

This paper demonstrates that an amplitude encoded fea-
ture map combined with a quantum support vector machine
can achieve 62% average accuracy predicting sentiment using
a dataset of 50 actual movie reviews. This is still small,
but considerably larger than previously-reported results in
quantum NLP.

Index Terms—Quantum NLP, Quantum Kernels, QSVM

1. Introduction, Motivation, and Outline

Quantum natural language processing (QNLP) is a new
field, which in 2022 is theoretically advanced and nascent
in quantum implementation. Quantum mathematical models
have been used since the early 2000’s in language-related
fields such as information retrieval [!], [2] and cognitive
science [3], and by 2010 deliberately quantum-theoretical
approaches to combining logical and distributional seman-
tics led to the development of the Distributed Compositional
Categorical model of [4] (subsequently shortened to Dis-
CoCat). This and related techniques including tensor net-
works, Frobenius algebras, and density matrices have been
used to design systems that have demonstrated quantitative
successes on various language tasks (for surveys see [5],
[6]). As a source of scientific models and theories that have
successfully been implemented, QNLP has become quite
advanced.

By contrast, only in the past two or three years has it
been possible to run QNLP programs on actual quantum
computers. In 2020, experiments were run using 6-qubits
[7], demonstrating successful compilation of short sentences
into quantum circuits to give 83.3% classification accuracy.
Since then, less sophisticated but more accurate classifica-
tion results have been obtained at the cost of using more
qubits (8 or 11) [8], and this work has also demonstrated
small examples of circuits used as part of natural language
generation and disambiguation. So QNLP is nascent, in that

Dominic Widdows
lonQ, Inc.
widdows@iong.com

the programs implemented on quantum computers are very
small and young.

Similar situations are typical today in quantum informa-
tion processing: the field has produced striking theoretical
results since the 1980s and 1990s, and quantum computers
that can implement these ideas are only just becoming
available. The pace of development is fast — for example,
at IonQ alone, systems have progressed from the 11 qubit
machine evaluated by [9] to regularly running jobs with 20+
qubits [10]. The key scaling property of quantum memory
is that the number of variables doubles with each additional
qubit: so in theory, 10 qubits corresponds to a kilobyte, 20
to a megabyte, and 30 to a gigabyte, and it is easy to see that
with 50 to 100 addressable qubits, the gap in scale between
quantum and classical NLP could be closed.

However, adapting even relatively simple NLP models to
use these resources requires work. One strategy would be to
wait for theoretical systems like the ‘bucket brigade’ proto-
col of [11] to be fully available, at which point implementing
memory-intensive processes should be much simpler —
but many opportunities may be forgone in the meantime,
including the opportunity to influence the design of memory
access, and to deliver useful intermediate-scale systems. An
alternative more hands-on approach is to try and get the best
results we can with current systems, to use this process to
inform the design of useful intermediate-scale systems as
soon as possible, and to cooperate directly with hardware
engineering to enhance both machines and applications to-
gether. So far this approach has demonstrated that accurate
classification can be performed using quantum hardware on
a very small dataset, but with the memory requirement of at
least one qubit for each salient word [8]. This method would
not scale to a significant vocabulary without thousands of
qubits — but if a more space-efficient method can be
used to store and combine word-topic weights, the memory
requirement could be much smaller.

This motivates the search for more space-efficient text
encoding techniques to use in QNLP tasks, which is the
topic of this paper.

This paper outlines the results of the preliminary study
into space-efficient quantum encodings for binary text classi-
fication. The new research focuses on the implementation of

https://doi.ieeecomputersociety.org/10.1109/SEC54971.2022.00052

encodings to enhance the Quantum Support Vector Machine
(QSVM) classification method. First, the performance of
different quantum classifiers are revisited, and the theory
behind the quantum enhancement to the QSVM is explored.
Further sections compare results across different encodings
of text data in both quantum and classical methods.

2. Background: Quantum Machine Learning
and Classification

2.1. Supervised and Quantum Machine Learning

The experiments in this paper follow the pattern of many
machine-learning approaches to classification tasks. The task
is to determine whether a piece of text is about a particular
topic (e.g. food vs. computing), or demonstrates a particular
sentiment (e.g. good vs. bad). The system is given training
examples where the correct label is provided, and then
evaluated by seeing how often it assigns the correct label to
test data not used in training. The use of annotated training
and test data makes this a supervised learning approach [12].

Quantum machine learning has risen in potential in
recent years due to development of quantum algorithms with
space-efficiency and speedup compared to their classical
counterparts. As described in [13], ‘quantum machine learn-
ing’ could refer to the use of quantum models on classical
hardware with classical data, and this category covers most
of the successes of QNLP to date. The new area for quantum
computing is the opportunity to apply quantum processing
to classical data, and the experiments in this paper fall into
this category.

Quantum algorithms make necessary trade-offs between
space-efficiency, accuracy, and code complexity. For exam-
ple, encoding data densely in a quantum state may bring
difficulty in extracting information without disturbing the
system, and often requires complicated circuits to perform
data manipulation. However, space-efficient quantum algo-
rithms in the realms of image classification and statistical
datasets have shown to be promising in limiting extreme
trade-offs between efficiency, accuracy and space [14] [15].
This also emphasizes the need for investigation of such
methods in text datasets.

2.2. Featurizers and Classifiers

Many machine learning systems for classification today
follow the pattern of featurizing then classifying. Various
featurizers and classifiers are used in this paper, and de-
scribing them in the way can help to understand system
architectures more easily.

2.3. Featurizers

A featurizer (sometimes called an encoder) takes an
input such as an image or text file and maps it to a list of
weights of salient features, which can be seen as a vector.
These could be explicit features, such as the proportions

of red, green, and blue in an area of an image, or implicit
learned features, such as coordinates produced by a principal
component analysis. There are many ways to map text
datasets to feature vectors, ranging from counting the num-
ber of times each word occurs in each document (used since
at least the 1960’s), to using a neural network trained to map
text to vectors (with a goal of predicting as many missing
words as possible). The family of neural network methods
has become large and includes word-based models such as
Word2Vec [16] and contextual methods such as BERT [17]
that featurize and combine fragments of words. Such text-
to-vector featurizers are often referred to as encoders, and
their output vectors are often called embeddings.

2.4. Classifiers

A classifier takes an input and maps it to a class label
(or several). That is a very general description, and could
be implemented in many ways. The benefit of the featurizer
/ classifier patter is that the input to a classifier is typically
reduced to vectors: in terms of types and interfaces, instead
of mapping anything to a class label, a classifier can be
implemented that maps a vector of floating point values to
a class label.

2.5. Datasets Used in this Paper

Lambeq Dataset. The first dataset used in this work is the
70 training and 30 development and test sentences used for
topic classification experiments by [7], and subsequently
released as an open source package called Lambeq [18].
The sentences are artificially generated to use a small fixed
vocabulary, to follow predictable syntactic patterns, and each
comes with a binary topic label, ‘0’ indicating computing
and ‘1’ indicating food, as in these examples:

1 man prepares meal
0 skillful woman debugs program .

The vocabulary used is too small to be representative of
natural language, but this is still a useful and appreciated
contribution to the QNLP community, because it enables use
to quantitatively evaluate results on a dataset that is small
enough to be loaded on today’s quantum hardware.

IMDB Dataset. The second, more complex set is taken from
50,000 archived IMDB movie reviews to be classified as
either positive or negative reviews [19]. The average number
of words in a review is between 228 and 229. Sentiment
classification for this dataset is more difficult, because it
is real user-generated text with varying degrees of good
and bad, and many different aspects of a movie, some of
which might be described positively and others negatively.
Nonetheless, the reviews are published in positive and neg-
ative directories, and thus each review comes with a binary
sentiment label.

2.6. Text Preprocessing

The datasets used are all English language and were
preprocessed using simple methods. The Lambeq dataset can
be perfectly tokenized just by splitting on whitespace char-
acters, while the IMDB dataset has more of the vagaries of
normal natural language. All of the experiments in this paper
that used the IMDB dataset used a version of Word2Vec
[16] to encode words as vectors, which also provides basic
elements of tokenizing and normalizing English, in this case
including splitting on whitespace, removing punctuation,
though not automatically lowercasing.

3. Bag of Words Approach

One of the simplest families of classification methods
are Bag of Words (BoW) approaches. In such methods, the
features for each word are just added together — other
conditional dependencies between features (such as those
arising from word-order) are ignored. For a set of training
documents with a known classification, the BoW classifier
keeps a score per encountered word, where the score is
proportional to the frequency of a word in each topic. These
scores can be stored classically in a word-topic matrix. For
new training documents, the classifier sums the scores of the
words in the training set, and the topic with the highest score
is deemed the class of the document. In the naive quantum
implementation (Figure 1), the relationship between a word
and a topic is encoded with single qubit rotations in the
training phase. Then, a common phase adding circuit is
performed on “combined” topic qubits to sum the scores
of words, and measured to classify the sample.

This can be seen as a featurizer / classifier pattern, with
two very simple parts. The featurizer uses classical memory
to map a text to vector for each topic, by mapping each
(word, topic) pair to a particular qubit. The classifier adds
the coordinates for each qubit belonging to the correspond-
ing topic into a single combined value for that topic.

football, music : —

football, sports : Rx (35) fr

guitar, music :

guitar, sports : — Tt

music, combined : —+ R

sports, combined :

music measurement :

Sp()l'f,S measurement :

train word-topic
relations with rotations

measure to classify
compute words the test sample

from a test sample

Figure 1. QBoW trained on two words, football and guitar, into topics,
sports and music. Classification of a sample containing the word football

(sl

This quantum BoW circuit achieved 100% accuracy for
the Lambeq dataset, the first such result reported on a

quantum computer. However, it is extremely unscalable as
it requires a qubit per (word, topic) combination, and addi-
tional qubits to hold each overall topic score. It follows that
a goal in overcoming the bottleneck of quantum scalability
is to improve the qubit encoding of the words in addition
to the means of classification.

4. Support Vector Machines

Support Vector Machines (SVMs) classify arbitrary vec-
tors by mapping training vectors to higher-dimensional
spaces, and determining a class boundary which is used to
classify new test vectors [20]. Figure 2 demonstrates three
important cases of vector datasets that can be helped by the
SVM. In a well-separated, linear, binary problem, classical
fitting methods can confidently find an optimal hyperplane
between the classes. However, as complexity of the data
increases, exact nonlinear boundaries with large margins
are difficult to achieve. Thus, the SVM first maps the data
onto an enlarged feature space with a feature map, so the
classes may be more easily distinguished. After application
of the feature map, a kernel matrix is generated to store the
relationship of support vectors with each other before being
passed into the SVM for fitting.

a) b)

/' Optimal Hyperplane

T T T T T
40 05 00 05 10

x1

Figure 2. a) Well-separated, linear feature space [21] b) Low margin, non-
linear boundary [20] c¢) Multi-dimensional boundary after feature space
enlargement of b) [20]

Quantum SVM classifiers have been proposed to harness
higher-dimensional Hilbert spaces as feature spaces, and
use known quantum computation methods to calculate the
kernel [22]. The division of labor between classical and
quantum processes is described in detail by [13]. The key
insight is based on recognizing a similar structure between
kernel methods and quantum processes. Kernel method
bring a key optimization to the process by computing a
predicted similarity between two high dimensional vectors
by applying an appropriate kernel similarity function to
lower-dimensional counterparts, thus avoiding the need to
calculated the mapping into the higher dimensional space
explicitly. Quantum circuits work well for exploring this
higher-dimensional space, finding the pairwise similarities
between different training instances that are then used as
entries in the kernel matrix, which can then be used to
train an SVM classifier using entirely classical computing.
As such, the QSVM describes a hybrid quantum-classical
method, where classical vectors are mapped to quantum
states with a quantum feature map.

The quantum kernel can be efficiently calculated from
the encoded quantum vectors, and then passed into the

@ : [Ry (alpha[3)) |-{ Ry (alpha[4]) | Ry (alpha[5]) [Ry (alphal6]) F—
Ry (alpha[1]) I 1 I {

Ry (alphal2) |
a2 - —{Ry (alpha[0])} 7)| I I I I

Figure 3. Amplitude encoding circuit with 3 qubits

R

%—

[1 2

.0 0
o ¢ — —

@ Y circuit-211 [cirenit-214 dg

B

3

Figure 4. Kernel value estimation circuit with 3 qubits

classical SVM. The feature map is applied to the |0)" state
as a function of Z, and then its conjugate is applied as a
function of y. The kernel value is estimated by executing
this circuit over a number of shots, R. The fraction of
occurrences where the ‘0’ string is measured corresponds
to the estimated kernel value.

K(G,3) = [(0"| U} o Uiy [07) 12 = [{(6()|o(@)) 7 (1)

For example, a 7-dimensional amplitude feature map can
be encoded with the 3-qubit circuit of Figure 3. Such an
operator for & is then concatenated with a corresponding
inverse operator for ¢/, and the estimated kernel value is
given by the proportion of |000) outcomes measured. (These
circuits were constructed and run using the Qiskit package
[231.)

The QSVM has been successfully implemented for clas-
sification of non-text datasets, with comparable accuracy to
its fully classical analog [15] [14]. The main limitation of
the QSVM concerns the design of the quantum feature map.
For an n-qubit feature map, the accessible enlarged feature
space is of size 2", which is exponentially greater than what
is possible with n-bits of classical space [22]. This quantum
map must also manipulate the feature vectors so that the
kernel matrix elements represent a classifiable relationship
between vectors, and have reasonable complexity to be
executed over many shots.

4.1. Simple QSVM for Text Classification

In an initial experiment using the Lambeq dataset, a
QSVM classifier was coupled with the use of Word2Vec
embeddings as features (described above). Sentence vectors
are generated for each sentence by computing a Word2Vec
embedding for each word, then averaging all the words in
a sentence. This part is all done classically. These feature
vectors were then passed to the QSVM for training, and
used by the QSVM for classifying new sentences. Using 8
dimensions and one qubit for each dimension, an accuracy of
90% was achieved [8]. The quantum memory requirement is
thus one qubit per dimension rather than one qubit per word.
As a general rule, embedding dimensions tend to be a few
hundred, ranging from default values of 300 for Word2Vec
and 768 for BERT.

5. Text Encoding in Feature Maps

5.1. One-Hot Encoding Feature Map

The Pauli Gate feature maps are the most widely used
in QSVM experiments for their low depth and adequate
complexity. The second-order Pauli-Z evolution circuit (ZZ
Feature Map) performs a non-linear mapping from n fea-
tures to n qubits, analogous to a “one-hot” encoding [24].
In this case, it uses minimum space-efficiency achievable
for a quantum feature map (n-to-n mapping), but obtains a
quantum advantage due to the inability to simulate the ZZ
feature map classically at larger scales.

An initial smaller-scale experiment was carried out using
the IonQ simulator. For the Lambeq dataset, the classifica-
tion accuracy peaked at 97% for 7-dimensional feature em-
beddings (Figure 5). The exponential increase in processing
time with the number of qubits is infeasible for realistic NLP
data; seven qubits for each inner product calculation scales
poorly given the simplicity and low size of the Lambeq
dataset compared to real text datasets.

ZZ Feature Map Performance on Lambeq Dataset Classification Timing

1.0 30

—— Total Processing Time
-- Training Time (40 files)
Testing Time (30 files)

0.9 25

c
o
3038 20
o
o -
a £
c £
o 0.7 ~— 15
8 g
S 5
= =
@
E 0.6 10
(9]
0.5 5
0.4 0

4 6 8 4 6 8
Number of Qubits Number of Qubits

Figure 5. Classification Results on Lambeq Dataset Using One-Hot Encod-
ing Feature Map

5.2. Amplitude Encoded Feature Map

Quantum computing is appealing for several applications
due to the potential dense encoding schemes for data into
a qubit. Recent work in theoretical formalisms for dense
encodings and computations are abundant, ranging from
amplitude encodings to simultaneous amplitude and phase
combined states. Most encoding schemes have few low-
depth state preparation methods, although it is a primary
focus of current research. Moreover, the ability to extract or
manipulate encoded features to perform a text classification
task becomes more complicated the denser the encoding.

To investigate the performance of dense encodings in
QNLP classification, this work takes a baseline approach
with the simplest amplitude encoding scheme for a binary
classification task (Equation 2).

|word) = py |classy) + pa |classs) 2)

Building off of the one-hot encoding approach, it is pos-
sible to densely encode the feature elements to represent an
n-dimensional Word2Vec vector in log,(n) qubits. Using the
feature vector encoding as a feature map focuses specifically
on developing an idea of text classification performance with
a full dense encoding implementation.

To map the Word2Vec vectors to the quantum state
in Equation 4, the divide and conquer state preparation
method developed by [25] was implemented. This amplitude
encoding feature map consists of a series of controlled-Y
rotations applied on the |0'°82(™)) state. Execution of this
feature map for kernel estimation will be comparable to a
classical linear kernel that takes the dot product of the each
pair of vectors. It is emphasized that results from this map
may not provide a quantum advantage, but acts as a means
to draw conclusions on classification of densely encoded
text data.

Ugz) = CRy(f(28))...CRy(f(x1)) 3)
Ug(z) [000) = 21 |000) + 2 [001) ... + 25 [111) (4)

6. Classification Results

The results described here were obtained using the IonQ
simulator. The results of the encoded feature map in the
QSVM are outlined in Figure 6, for the Lambeq dataset.
The amplitude encoding not only exceeds the classification
accuracy of the ZZ feature map, but it also reached 100%
classification in just four qubits and lower processing time.

Performance of Feature Maps on Lambeq Set Classification Timing

12

—— ZZ Feature Map
—— Amplitude Encoding Feature Map

o o
@ ©

"
@ °

°
3
Time (min.)

Classification Precision
°
&
IS

—e— ZZ Feature Map
—e— Amplitude Encoding Feature Map

0.4 0
2 4 6 8 10 2

Number of Qubits

3 4 5
Number of Qubits

Figure 6. Comparison of Feature Maps on Lambeq Set

Performing further testing with the IMDB dataset, the
classification accuracy varied considerably with each itera-
tion. There remained cases with both the ZZ feature map
and the amplitude encoded map where classification did
not improve at all with increased features, where some
sets peaked at 75% accuracy for three or four qubits. To
corroborate the poor performance, analysis of the IMDB
random dataset with the classical SVM (CSVM) and Bag of
Words was performed with over several iterations and varied
file size. Both failed to achieve greater than 80% accuracy
and overall achieved under 60% accuracy for datasets with
greater than 100 files (Figure 7).

20 files, Range: 0-50%
600 600
500 500

50 files, Range: 60-80%

0.00 0.25 0.50 0.60 0.70 0.80

100 files, Range: 45-75%

100 50
80 40
60 30
40 20
20 I 10 I
0 o - - - -
045

0.50 0.65 0.75 040 043 048 050 053 060 063 065

200 files, Range: 40-65%

Number of Iterations

500 files, Range: 50-60%

2
10
14
12 8
10 6
8
6 4
4 2
: , 1 N
0 0
).

050 051 0.52 0.53 059 060 054 056 057 059 060 061

1000 files, Range: 54-61%

Classification Accuracy

Figure 7. CSVM Performance Distributions using IMDB Dataset

To model a more targeted scenario, smaller Movies
collections were made by taking reviews from the minimum
number of movies to meet the desired test and train set
size, in an attempt to reduce niche vocabulary and improve
the quality of the training. The Movies dataset filtered
for smaller training and testing vocabulary achieved more
consistent trends with different sizes of file sets. Improve-
ments in classification accuracy merited increase in kernel
estimation shots; the effect of the different shot numbers on
the kernel accuracy is shown in Figure 8.

For 50 files, 10,000 shots were sufficient to achieve
decent results, where the systems were trained using 40
files, and tested with 10 files. Average performances for the
CSVM and two QSVM maps are outlined in Table 1 for 20
different 50-file samples. The Amplitude Encoded QSVM
correctly classified up to 8, 9 and 10 test files on select
samples using three, four and five qubits respectively. This
is a leading result for classification of real case text samples,
of such a feature space, and of this complexity. Over all of
the samples, a high classification score (70% or higher) was
attained 26% of the time for both QSVM maps, and 36% of
the time for the CSVM. Moreover, the Amplitude Encoded
feature map outperformed the alternatives 80% of the time
when it attained a high classification score. This indicates
that the densely encoded feature map is often the best choice
for the select samples it performs well on.

7. Discussion

The results on the Lambeq set are promising for the
functionality of incorporating denser encodings into QSVM
feature maps. There are several key factors behind the over-
all poor accuracy on the IMDB reviews, first and foremost
being that the reviews were real text samples incorporating
sentiment and colloquial language structure. Conversely, the

0] 3 L}
i I
s — 5-.-.*.. i R P i g
. . i i [L
510 10 F 10
£ 1 1 |
s IER I | i 15 | N |
g] 'i o o i d
% 20 1 20 l . 20 171
w25 Bl 2s 5 = ol 25 i
& - - - - -;- S -y .j. J—" =
= 304 o = 30 . “u| 30 n "
" . o 4 e -
35 35 . 1 B 3 b o— - -
& 4 ! e JRLES s S o o
5

0 5 10 15 20 25 30 35
Index of train vector

Figure 8. Comparison of a) 1000 shot kernel, b) 10 000 shot kernel with

1015 20 25 30 35

¢) true kernel.

0 5 10 15 20 25 30 35

TABLE 1. CLASSIFICATION RESULTS FOR 50 FILES OF THE MOVIES
SET (10 000 SHOTS, AVERAGED OVER 20 SAMPLES)

Word2Vec CSVM ZZ using n Amp. Enc.
Embedding qubits using n
Dim. (n) qubits
2 0.57940.124 0.52640.156 0.56340.122
3 0.61540.160 0.56340.169 0.53740.153
4 0.56840.184 0.568+0.152 0.621+0.132
5 0.61140.180 0.57440.200 0.579+0.164

Lambeq dataset uses controlled skeleton sentences with
basic grammar, and 200x lower word to sentence ratio
than the reviews datasets. Other variational-based quantum
methods, like a quantum self-attention neural network from
[26] report similar trends with sentiment classification, and
word to sample ratios. Such a neural network achieves up to
85% classification on a separate IMDB sentiment analysis
set with no more than 12 words per sample, and 100%
reached only on synthetic datasets.

Further, QSVM kernel estimation changes the results
with several iterations. This is an expected result due to
the probabilistic nature of performing computations and
measurements with quantum circuits. It introduces more
questions with regard to the feasibility of using delicately
encoded quantum states, and the necessary shots needed
to achieve accurate kernel estimates. The shot increase for
the Movies dataset with only 50 files achieves a decent
result and processing time, but this cost may become more
apparent as quantum text datasets become larger. We can
compare the work of [27] that investigated using amplitude
encodings in a variational quantum circuit for binary clas-
sification. Accuracies of 75% and 67% were reported for
datasets on diabetes patient specifications and sonar signal
data, respectively. Such results were achievable with five
iterations of the feature map and 100 epochs, and still under-
performed compared to the traditional variational quantum
classifier. This suggests that competitive results coming from
densely encoded data suffers still from increased complexity
and reduced accuracy across many datasets.

The non-linear trends in embedding size to classification
accuracy highlights the potential unpredictability of classi-
fying natural language datasets versus artificial or non-text
datasets. Optimum performance may be unique to specific
text samples and datasets, as well as the type of task.

QNLP research is at the beginning of even generating

these questions, and the varied results from each refined
dataset is encouraging to develop a systematic approach to
improving quantum classification further.

8. Conclusions and Further Work

The intricacy of completing quantum text classification
tasks stems from the nuances of natural language, and the
complicated challenge of encoding this in quantum memory.
The results demonstrated in this paper are a preliminary
attempt to investigate the functionality of denser encodings
in QSVMs, and the connections between word-vector maps
and classification possibility. So far we have been able to
achieve 100% accuracy on the Lambeq text classification
dataset, and 62% average accuracy on a more realistic
dataset of 50 movie reviews.

It is clear that a quantum encoded feature map can
classify text sets in simulation, but so far for small and
carefully targeted samples. The most obvious next steps
include running these workflows on QPU resources: these
experiments are underway (and are expected to be included
when this paper is presented).

The focus on binary classification is another simpli-
fication that has made this work more tractable initially
but is clearly a limiting restriction. Standard methods for
extending SVMs to m classes include building m one-vs-
rest classifiers, or other collections of pairwise classifiers
that can be combined to make m-way decisions. This may
be a natural next step for quantum classification work. A
more imaginative conjecture would be that the geometry
of particular quantum feature spaces lends itself to new
opportunities for separating the space into m topological
components, an avenue we have yet to pursue.

As stated, the text preprocessing was so far simple, and
typically carried out during the initial word vector encoding
step. The impact of these choices on results has so far
not been investigated. A more ambitious proposal would
be to find ways to perform more of the distributional vector
encoding on quantum computers, as begun by [7], [&].

There are many interesting avenues to pursue that can
push towards quicker improvement of QNLP and quantum
machine learning methods. This work addresses primarily
space-efficiency, and aims to incentivize work regarding
text encoding schemes, robust state preparation methods
and algorithms for working with text data. Moving forward,
investigations are in progress to determine patterns between
feature map construction and its effect on text data mapping,
with error analysis both in and out of simulation. Further
work to develop a complete view of the trade-off between
space, simplicity, and processing time is necessary to make
an objective opinion on the potential of classification in
QNLP.

References

[1] C.J. Van Rijsbergen, The Geometry of Information Retrieval. Cam-

bridge University Press, 2004.
[2] D. Widdows, Geometry and meaning. CSLI Publications, 2004.

(3]

(4]

(3]

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(7]

[18]

[19]

(20]

(21]

D. Aerts, T. Durt, A. Grib, B. Van Bogaert, and R. Zapatrin,
“Quantum structures in macroscopic reality,” International Journal
of Theoretical Physics, vol. 32, no. 3, pp. pp—489, 1993.

B. Coecke, M. Sadrzadeh, and S. Clark, “Mathematical foundations
for a compositional distributional model of meaning,” CoRR, vol.
abs/1003.4394, 2010.

D. Widdows, K. Kitto, and T. Cohen, “Quantum mathematics in
artificial intelligence,” Journal of Artificial Intelligence Research,
vol. 72, pp. 1307-1341, 2021.

R. Guarasci, G. De Pietro, and M. Esposito, “Quantum
natural language processing: Challenges and opportunities,”
Applied Sciences, vol. 12, no. 11, 2022. [Online]. Available:

https://www.mdpi.com/2076-3417/12/11/5651

R. Lorenz, A. Pearson, K. Meichanetzidis, D. Kartsaklis, and
B. Coecke, “QNLP in practice: Running compositional models of
meaning on a quantum computer,” arXiv preprint arXiv:2102.12846,
2021. [Online]. Available: https://arxiv.org/abs/2102.12846

D. Widdows, D. Zhu, and C. Zimmerman, °“Near-term ad-
vances in quantum natural language processing,” arXiv preprint
arXiv:2206.02171, 2022.

K. Wright, K. M. Beck, S. Debnath, J. Amini, Y. Nam, N. Grzesiak,
J.-S. Chen, N. Pisenti, M. Chmielewski, C. Collins et al., “Bench-
marking an 11-qubit quantum computer,” Nature communications,
vol. 10, no. 1, pp. 1-6, 2019.

TonQ Benchmarking, “Algorithmic qubits: A better
single-number metric,” 2022, https://ionq.com/posts/
february-23-2022-algorithmic-qubits, accessed 2022-09-19.

S. Arunachalam, V. Gheorghiu, T. Jochym-O’Connor, M. Mosca, and
P. V. Srinivasan, “On the robustness of bucket brigade quantum ram,”
New Journal of Physics, vol. 17, no. 12, p. 123010, 2015.

A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras,
and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent
Systems. O’Reilly Media, 2019.

M. Schuld and F. Petruccione, Machine Learning with Quantum
Computers. Springer, 2021.

T. Li, X. Huang, and Z. Yao, 2021. [Online].
https://indico.cern.ch/event/855454/contributions/4598429/

Z. Shan, J. Guo, X. Ding, X. Zhou, J. Wang, H. Lian, Y. Gao,
B. Zhao, and J. Xu, “Demonstration of breast cancer detection using
QSVM on IBM quantum processors,” 2022. [Online]. Available:
https://doi.org/10.21203/rs.3.1rs-1434074/v1

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estima-
tion of word representations in vector space,” arXiv preprint, vol.
arXiv:1301.3781, 2013.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language understand-
ing,” arXiv preprint, vol. arXiv:1810.04805, 2018.

D. Kartsaklis, I. Fan, R. Yeung, A. Pearson, R. Lorenz, A. Toumi,
G. de Felice, K. Meichanetzidis, S. Clark, and B. Coecke, “lambeq:
An Efficient High-Level Python Library for Quantum NLP,” arXiv
preprint arXiv:2110.04236, 2021.

A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,

Available:

“Learning word vectors for sentiment analysis,” in Proceedings of

the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies. Portland, Oregon, USA:
Association for Computational Linguistics, June 2011, pp. 142-150.
[Online]. Available: http://www.aclweb.org/anthology/P11-1015

B. C. Boehmke and B. M. Greenwell, “Hands-on machine learning
with R,)” in Support Vector Machines. Github, 2021. [Online].
Available: https://bradleyboehmke.github.io/HOML/svm.html

V. Salunkhe, “Support vector machine (SVM),” Jul
2021. [Online]. Available: https://medium.com/@viveksalunkhe80/
support-vector-machine-svm-88f360ff5f38

[22]

[23]

[24]

[25]

[26]

[27]

V. Havlicek, A. Corcoles, K. Temme, and other authors., “Supervised
learning with quantum-enhanced feature spaces,” Nature, vol. 567, no.
7747, pp. 212-567, 2019.

M. S. ANIS, Abby-Mitchell, H. Abraham, AduOffei, R. Agarwal,
G. Agliardi, and other authors, “Qiskit: An open-source framework
for quantum computing,” 2021.

F. Orazi, “Quantum machine learning: development and evaluation
of the multiple aggregator quantum algorithm,” Ph.D. dissertation,
University of Bologna, 2022. [Online]. Available: http://amslaurea.
unibo.it/25062/

I. F. Araujo, D. K. Park, F. Petruccione, and A. J. da Silva, “A
divide-and-conquer algorithm for quantum state preparation,” Nature
Scientific Reports, vol. 11, no. 1, p. 6329, 2021.

G. Li, X. Zhao, and X. Wang, “Quantum self-attention neural
networks for text classification,” 2022. [Online]. Available: https:
/larxiv.org/abs/2205.05625

D. Maheshwari, D. Sierra-Sosa, and B. Garcia-Zapirain, “Variational
quantum classifier for binary classification: Real vs synthetic dataset,”
IEEE Access, vol. 10, pp. 3705-3715, 2022.

https://www.mdpi.com/2076-3417/12/11/5651
https://arxiv.org/abs/2102.12846
https://ionq.com/posts/february-23-2022-algorithmic-qubits
https://ionq.com/posts/february-23-2022-algorithmic-qubits
https://indico.cern.ch/event/855454/contributions/4598429/
https://doi.org/10.21203/rs.3.rs-1434074/v1
http://www.aclweb.org/anthology/P11-1015
https://bradleyboehmke.github.io/HOML/svm.html
https://medium.com/@viveksalunkhe80/support-vector-machine-svm-88f360ff5f38
https://medium.com/@viveksalunkhe80/support-vector-machine-svm-88f360ff5f38
http://amslaurea.unibo.it/25062/
http://amslaurea.unibo.it/25062/
https://arxiv.org/abs/2205.05625
https://arxiv.org/abs/2205.05625

	1 Introduction, Motivation, and Outline
	2 Background: Quantum Machine Learning and Classification
	2.1 Supervised and Quantum Machine Learning
	2.2 Featurizers and Classifiers
	2.3 Featurizers
	2.4 Classifiers
	2.5 Datasets Used in this Paper
	2.6 Text Preprocessing

	3 Bag of Words Approach
	4 Support Vector Machines
	4.1 Simple QSVM for Text Classification

	5 Text Encoding in Feature Maps
	5.1 One-Hot Encoding Feature Map
	5.2 Amplitude Encoded Feature Map

	6 Classification Results
	7 Discussion
	8 Conclusions and Further Work
	References

