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Persistent homology, a powerful mathematical tool for data analysis, summarizes the shape
of data through tracking topological features across changes in different scales. Classical
algorithms for persistent homology are often constrained by running times and memory
requirements that grow exponentially on the number of data points. To surpass this problem,
two quantum algorithms of persistent homology have been developed based on two different
approaches. However, both of these quantum algorithms consider a data set in the form of
a point cloud, which can be restrictive considering that many data sets come in the form of
time series. In this paper, we alleviate this issue by establishing a quantum Takens’s delay
embedding algorithm, which turns a time series into a point cloud by considering a pertinent
embedding into a higher dimensional space. Having this quantum transformation of time
series to point clouds, then one may use a quantum persistent homology algorithm to extract
the topological features from the point cloud associated with the original times series.

I. Introduction

Topological data analysis (TDA) methods capture shape properties of data, and they have found
a number of applications from biology [1–6] to chemistry and materials science [7–11], and from clas-
sification and clustering for action recognition [12], and handwriting analysis [13], to classification
and clustering of signals [1, 12, 14–16]. Persistent homology is a powerful technique, on which TDA
relies, and summarizes nonlinear and high-dimensional data retaining useful information about its
shape.

The topological features discovered via persistent homology are displayed in a persistence di-
agram, and the efficient computation of such diagrams using packages such as Dionysus [17] and
Ripser [18] leverage certain properties of simplicial complexes to create persistence diagrams effi-
ciently [19]. However, these classical algorithms are not easily scalable and tend to deteriorate with
the increase in the number of data size. Indeed, a point cloud consisting of n points possesses 2n

potential subsets that could contribute to the topology, so the best classical algorithm for estimat-
ing these features with accuracy δ takes time O(2n log(1/δ)) and requires O(2n) bits to encode the
subsets [20].

To bypass the computational bottleneck, quantum algorithms for homology (fixed data resolu-
tion/scale) [21, 22], and more recently, for persistent homology (varying data resolutions/scales)
[23, 24] use a quantum random access memory (QRAM) to efficiently read a point cloud data set,
and encode it into pertinent quantum states. One then uses these quantum states to build member-
ship oracles that identify the features that are present at different scales. The main advantage of
these algorithms is that they use relatively small QRAMs of size O(n2), which only require O(log n)
calls to access the data [25], as opposed to classical algorithms that need memories of size (O(22n).
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These quantum algorithms make use of membership oracles to determine which objects are
present at a certain scale. The oracles are simply subroutines that take into consideration a perti-
nent triangulation of point cloud data, called simplex and a positive number ε encoded into qubits
and return a qubit in state |1〉 if the simplex is present at scale ε, or a qubit in state |0〉 otherwise.
On the other hand, the membership oracles that exist in the literature so far are merely restricted
to simplicial complexes built from point cloud data sets.

In this paper, a quantum TDA algorithm is proposed by providing a membership oracle for time
series. Indeed, a QRAM is queried to access the time series, and a quantum version of the Takens’s
delay embedding theorem [26] is established for transforming a time series into a point cloud while
preserving the relevant topological information. In turn, the oracle is plugged into the quantum
algorithm for persistent homology [23] to study time series and their behavior (periodic, chaotic,
etc.) by analyzing their corresponding point cloud.

This paper is organized as follows. Section II introduces the background information like the
Takens’s delay embedding, and summarizes classical and quantum algorithms for TDA. Section
III details our novel membership oracle as well as the quantum TDA algorithm for time series.
Section IV shows two implementations of the quantum algorithm to time series data sets, and
finally, Section V concludes with a brief discussion of our results.

II. Background

A. Delay Embedding

Consider a time series xt for t = 1, 2, ..., T . The Takens’s delay embedding of the time series xt
is given by the vector

vi = (xi, xi+τ , . . . , xi+(d−1)τ ) (1)

for i = 1, ..., T − τd, where d is the dimension of the point cloud, and τ is the delay parameter. The
Takens’s delay embedding theorem guarantees that the map from the time series to point cloud is
an embedding and as such all the relevant topological information is retained [26]. The parametric
choices of the dimension, d, and the delay, τ, has been widely discussed in the literature, e.g. see
[27] and references therein. For example, the time series is typically embedded into a d = 2, 3,
space, and the delay parameter may be selected based on the autocorrelation.

B. Vietoris-Rips Filtration and Persistent Homology

An oriented k−simplex or simplex of dimension k is the collection of all convex combinations
formed by (k + 1) ordered and linearly independent vertices, a few examples are shown in Fig. 1
such as vertices, edges, triangles, tetrahedrons. They are written as the ordered list of their vertices,
and a subset of this list is called a face of the simplex.

Homology studies simplicial complexes and chain complexes. A simplicial complex is a collection
of simplices such that the faces of any simplex in the complex are also in the complex and the
intersection of any two simplices in the complex is also a simplex in the complex. A commonly
used simplicial complex is the Vietoris-Rips (VR) complex, which at scale ε is defined by all the
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FIG. 1: Simplices of dimensions k = 0, 1, 2, 3.

simplices with a diameter of at most ε. So, a simplex σ is in the complex Sε if and only if all the
pairwise distances between its points are less than ε. On the other hand, the chain complex of Sε

over Z3 = {−1, 0, 1} is the collection of formal sums of simplices in Sε with coefficients in Z3.
Classical algorithms encode the VR complex and chain complex, then compute its correspond-

ing boundary matrix, and finally diagonalize it to extract topological features like the number of
connected components, holes, voids, and k dimensional holes in general.

Algorithms for persistent homology consider instead a filtration or nested sequence of VR com-
plexes Sε0 ⊆ · · · ⊆ SεN and analyze a boundary matrix in which the simplices are ordered according
to the sequence [20]. Persistence diagrams are used to display the results of these algorithms. Points
on the persistence diagram (b, d) represent the number of k dimensional holes born at scale b that
disappear at scale d.

C. Quantum TDA Algorithms for point cloud data

The quantum algorithms appeared in [23, 24] established for the first time a quantum implemen-
tation for computing the persistent homology of a point cloud to reveal its topological properties
across different scales. The study in [23] defines a linear map, the persistent Dirac operator, which
tracks topological features across a pair of different scales. The persistent Dirac operator is a gener-
alization of the Dirac operator established in the algorithms of [21, 22], which cannot track features
across different scales/resolutions, and therefore they cannot obtain any persistent information.
The work in [24] builds a block-encoding of the persistent combinatorial Laplacian and uses the
quantum singular value transformation to extract the persistent topological features.

All of these quantum algorithms use a QRAM to store and access the data efficiently, they encode
the points of a cloud as qubits and use superpositions to represent complexes. They also rely on
a membership oracle to identify the simplices that are present at a certain scale and construct
projections onto the corresponding VR complexes.

III. Quantum Methodology for Time Series

A. Encoding Data and Simplices

Consider a discrete time series xt, t = 1, 2 . . . , T , such that T > 0 is an integer. The data are
stored in a QRAM, allowing for their quantum parallel access. The QRAM maps a quantum state
|t〉|0〉 to the state |t〉|xt〉 where |xt〉 is a state normalized to reflect the value xt. Such states can be
encoded using O(log2 T ) qubits.
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Recall that the point cloud relates to the time series via the vectors vi given in Eq. (1). We use
T − τd qubits to encode these points so that any simplex σ formed with these points is represented
by a quantum state |σ〉, with the qubits corresponding to points in the simplex in state |1〉, and all
other qubits in state |0〉. A balanced superposition of the states represents the maximal simplicial
complex S. Define Z3 = {−1, 0, 1}. Using these quantum states as a basis of the generated Hilbert
space over Z3 encodes the chain complex needed to extract the desired topological features.

B. Quantum Delay Embedding

Considering the time series data xt, along with the embedding parameters, the dimension, d,
of the space to which the times series is embedded, and the delay parameter, τ , one may check
for membership in a simplicial complex by first computing the distances between points vi in the
embedded point cloud, defined in Eq. (1). The distance between two points vi and vj of the delay
embedded time series is given by

D(vi, vj) = max
0≤t<d

|xi+tτ − xj+tτ |. (2)

With the ability to create quantum states encoding the values xt, we can construct a quantum cir-
cuit that takes input states of the form |t1〉|t2〉|0〉 and returns the output state |t1〉|t2〉

∣∣|xt1 − xt2 |2〉,
where the last register contains an estimate of the difference between xt1 and xt2 . To obtain an
estimate with accuracy δ it is necessary to make O(δ−1) calls to the QRAM and O

(
δ−1(log2 T )2

)
[21, 25]. Moreover, this circuit can also operate in quantum parallel.

Notice that a simplex σ is in the VR complex Sε if and only if for each pair of vertices vi and vj
in the simplex, D(vi, vj) ≤ ε, where the distance, D, is defined in Eq. (2). Being able to compute
the difference |xt1−xt2 | allows us to create an oracle Oε that verifies if the difference |xt1−xt2 | ≤ ε.
Such an oracle takes as input the state |t1〉|t2〉|1〉 and returns the state |t1〉|t2〉|aε〉, where

aε =

{
1 , |xt1 − xt2 | ≤ ε
0 , |xt1 − xt2 | > ε

(3)

Given a simplex σ encoded as the quantum state |σ〉, where the qubits in state |1〉 correspond
to the vertices of σ, we can make repeated calls to the oracle Oε to check if the simplex belongs to
the VR complex at scale ε. In particular, we need to verify the inequality for all t1 = i + tτ and
t2 = j + tτ with 0 ≤ t < d and i < j such that vi and vj are vertices of σ, where d and τ as in Eq.
(1) must be chosen according to the data. The vertices vi, vj are obtained from the quantum state
|σ〉, and they correspond to the qubits in state |1〉. One concludes that σ is in Sε if all the calls to
the oracle Oε yield an output with the last qubit in state |1〉. However, if at least one of the calls
returns an output with the last qubit in state |0〉, it means the simplex is not yet present at that
scale.

To that end, for fixed d, and τ, a membership oracle Oεd,τ is constructed such that it acts on a
quantum state |σ〉|1〉 according to

Oεd,τ |σ〉|1〉 =

{
|σ〉|1〉 , σ ∈ Sε
|σ〉|0〉 , σ /∈ Sε . (4)
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The membership oracle, Oεd,τ , makes at most dk(k + 1)/2 calls to the oracle Oε in order to
determine whether a simplex σ of dimension k is present in the VR complex at scale ε.

C. Quantum Algorithm for Persistent Homology

Having established a membership oracle Oεd,τ , defined in Eq. (4), allows to consider a quantum
persistent homology algorithm for time series. First, one uses T − τd qubits to represent the point
cloud points, vi, defined in Eq. (1), which result from the embedding. Then, a simplex σ is
represented by the quantum state |σ〉, where the qubits corresponding to the vertices of σ are in
state |1〉, and all others are in state |0〉. The boundary map ∂ is essential to extract the topological
features and it can be encoded using Pauli X operators, which are switches that change state |0〉
into state |1〉 and vice versa.

The operator given in Eq. (5) maps a simplex |σk〉 of dimension k into a superposition of the
(k − 1)-simplices that conform its boundary, which are none other than the simplices obtained by
removing each of the vertices in σk,

∂k|σk〉 =
k∑
l=0

(−1)lXil |σk〉. (5)

Given two fixed scales ε ≤ ε′, the membership oracle in Eq. (4) is used to implement the
projection operators, P ε and P ε

′
, onto the subspaces that encode the VR complexes Sε and Sε

′
.

The boundary operator and the projections are in turn used to build a persistent Dirac operator

Bε,ε′

k =

−ξI ∂ε,εk 0

∂ε,ε†k ξI ∂ε,ε
′

k+1

0 ∂ε,ε
′†

k+1 −ξI

 , (6)

where ξ is an integer that is chosen according to the particular data at hand, and ∂ε,ε
′

k+1 is used to

denote P ε∂k+1P
ε′ .

The parameter ξ in Eq. (6) is an eigenvalue of the persistent Dirac operator and its eigenspace
corresponds to the kernel of a generalization of the graph Laplacian [23]. In particular, the multiplic-

ity of this eigenvalue is the persistent Betti number βε,ε
′

k , which counts the number of k-dimensional
holes in the point cloud that persist from scale ε up to at least scale ε′.

To estimate a persistent Betti number, the quantum phase estimation algorithm is performed
on the persistent Dirac operator as in [23] to derive the following probability distribution

P(p) =
1

N

∑
λs

1

M

sin2 πlλs

sin2 π(lλs−p)
M

, (7)

where λs are the eigenvalues of the persistent Dirac operator in Eq. (6) and N its dimension, while
l and M are parameters to be chosen according to the data.

Next, one may use the Eq. (7) directly to estimate the persistent Betti numbers. Notice that if
l and M are large enough, each of the terms in the sum in Eq. (7) is either equal to 1, if p = lλs,
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or very close to 0, if otherwise. Therefore P(p) of Eq. (7) is proportional to the multiplicity of λs
at p = lλs and 0 everywhere else. The desired persistent Betti number is then given by

βε,ε
′

k = NP(lξ), (8)

where the parameters l and M were chosen according to the eigenvalues of the persistent Dirac
operators from Eq. (6). Indeed, the parameter l was picked as the inverse of the gap between ξ
and the closest eigenvalue, then M was chosen as a power of 2 larger than the greatest eigenvalue
(in norm) of the persistent Dirac operator times l.

In order to obtain all persistent Betti numbers at various scales and represent them onto per-
sistence diagrams, one needs to consider an increasing sequence of scales ε0 < ... < εn, chosen
according to the data. Then one implements the aforementioned quantum methodology to obtain
the persistent Betti numbers for each pair εi, εj with 0 ≤ i ≤ j ≤ n. Since the estimations are
independent, this can be done in parallel. Finally, once we have all possible Betti numbers, and
the scales, which appear and disappear, one may depict them onto persistence diagrams. Indeed,

if µε,ε
′

k denotes the number of k−dimensional holes that appear in scale ε and disappear at scale ε′,
we have µ

εi,εj
k = β

εi,εj−1

k − βεi,εjk −
(
β
εi−1,εj−1

k − βεi−1,εj
k

)
, where βk is defined in Eq. (8) for various

scales.

IV. Results

Two time series are considered to discover their shape properties. The first data is a simulated
periodic discrete time series, and the second is a segment from an electroencephalography (EEG)
measurement of a brain taken while the subject listened to music [28]. In both cases the task is
to employ the quantum framework of Section III by first embedding the time series into a point
cloud using the quantum delay embedding, and then examining the topological features of the
corresponding embedded point clouds using the quantum persistent homology algorithm.

A. Periodic time series example

Consider the discrete time series based on the periodic function sin(2πt). Using a delay d =
2, τ = 1, the time series is embedded into the 2-dimensional point cloud as shown in Fig. 2. Notice
that this function has one maximum (or minimum) per period, which translates to one hole in the
corresponding embedded point cloud, constructed by the quantum Taken’s delay embedding.

To construct the persistence diagram, an increasing sequence of twenty-five different scales
starting at ε0 = 0.0 < ε1 = 0.1 < · · · < ε24 = 2.4 with step size 0.1 taken into account. Using
the quantum persistent homology algorithm, the persistent Betti numbers of dimensions 0 and 1
for each possible pair of scales are computed, and depicted in Fig. 4. As expected, a single one
dimensional hole exists due to periodicity, and this is born at scale 1 and died at scale 2. On the
other hand, the number of connected components, which is initially four, is reduced to one when
the one dimensional hole is formed at scale 1.
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FIG. 2: (a) The graph of sin(2πt) (blue line) along with a discrete time series (orange dots) given
by t = 0, 1/4, 1/2, 3/4, 1. (b) The point cloud obtained by Takens’s delay embedding using τ = 1

and d = 2.

FIG. 3: Vietoris Rips complexes of the embedded point cloud associated with the sinusodial
signal of Fig. 2 at scales (a) ε1 = 1.2, the points are pairwise connected, which results in a hole in
the middle; and (b) ε2 = 2.2, the points become totally connected and the hole disappears. The

blue squares are the balls of diameter εi around each point.

B. An electroencephalogram example

A segment of fifty measurements from an electroencephalogram (EEG) signal while the subject
listened to music is considered in Fig. 5.

The point cloud obtained using the quantum delay embedding algorithm for a delay τ = 8 and
d = 2 is shown in Fig. 5. Next, the persistence diagrams are constructed using the quantum
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FIG. 4: Persistence diagram for the time series in Fig 2. The horizontal axis marks the scales at
which the topological features are born, while the vertical axis marks the scales at which they

disappear. The size of the dots represents the number of features that appear and disappear at
the same scales. Finally, the orange dots along the vertical axis represent the connected

components, while the blue dots closer to the diagonal line are the one dimensional holes.

FIG. 5: (a) A segment of an EEG signal measured while the subject listened to music [28]. (b)
The point cloud obtained by the Takens’s delay embedding using τ = 8 and d = 2.

persistent homology algorithm for an increasing sequence of scales εk = k, for k = 0, . . . , 15. The
persistence diagram of dimensions 0 (connected components) and 1 (holes) are depicted in Fig.
6. In this case one may see a number of small one dimensional holes that appear and disappear
very quickly indicating that the segment of the signal is not periodic. The number of connected
components is reduced quickly as shown by the large circles near the origin. Nevertheless, a few
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FIG. 6: Persistence diagram for the time series in Fig 5. The horizontal axis states the scales at
which the topological features are born, while the vertical axis marks the scales at which they

disappear. The size of the dots represents the number of features that appear and disappear at
the same scales. Finally, the orange dots along the vertical axis represent the connected

components, while the blue dots closer to the diagonal line are the one dimensional holes.

survive past scale 6 which indicates the presence of clusters in Fig. 5 (b).

V. Conclusion and Discussion

This paper makes possible for the first time, the topological data analysis of a time series by
providing a quantum delay embedding of a time series into a point cloud. We introduced a new
membership oracle for time series data, by changing the way in which the data is stored in the
QRAM, and how it is used in the quantum topological data analysis algorithms to construct the
relevant linear operators. The membership oracle provided here is for Vietoris-Rips complexes, but
it is possible that a similar approach could be extended for other types of complexes dependent
on the the data. For example, lazy witness complexes are similar to VR complexes and retain
the same topological characteristics, but in order to check for membership it suffices to consider
only a subset of the vertices. This could further reduce the amount of resources that the quantum
algorithm requires to extract the persistence information, and we plan to examine this in the
future.
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