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Abstract

We introduce quantum utility, a new approach to evaluating quantum perfor-
mance that aims to capture the user experience by including overhead costs as-
sociated with the quantum computation. A demonstration of quantum utility by
a quantum processing unit (QPU) shows that the QPU can outperform classical
solvers at some tasks of interest to practitioners, when considering computational
overheads. We consider overhead costs that arise in standalone use of the QPU (as
opposed to a hybrid computation context). We define three early milestones on the
path to broad-scale quantum utility that focus on restricted subsets of overheads:
Milestone 0 considers pure anneal time (no overheads) and has been demonstrated
in previous work; Milestone 1 includes overhead times to access the QPU (that is,
programming and readout); and Milestone 2 incorporates an indirect cost associated
with minor embedding.

We evaluate the performance of a D-Wave Advantage QPU with respect to Mile-
stones 1 and 2, using a testbed of 13 input classes and seven classical solvers imple-
mented on CPUs and GPUs. For Milestone 1, the QPU outperformed all classical
solvers in 99% of our tests. For Milestone 2, the QPU outperformed all classical
solvers in 19% of our tests, and the scenarios in which the QPU found success
correspond to cases where classical solvers most frequently failed.

Analysis of test results on specific inputs reveals fundamentally distinct under-
lying mechanisms that explain the observed differences in quantum and classical
performance profiles. We present evidence-based arguments that these distinctions
bode well for future annealing quantum processors to support demonstrations of
quantum utility on ever-expanding classes of inputs and for more challenging mile-
stones.
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Figure 1: Subtasks associated with using a quantum annealing system. Input and output
formulations are marked in blue; subtasks in teal are associated with problem translation.
Tasks in orange correspond to access time, which is considered in Milestone 1. The orange
arrows identify network transmission overheads in a cloud-based service model.

1 Introduction

Annealing-based QPUs manufactured by D—Wavdﬂ are designed to heuristically solve
problems in combinatorial optimization. These systems operate within a declarative
problem-solving paradigm: rather than implementing a program to solve a given prob-
lem, the user reformulates the problem to match a solver already implemented in quan-
tum hardware and firmware. Reformulation creates subtasks, including translating the
original input X into a logical graph input G that matches the problem solved natively,
and minor—embeddingﬂ G to create a physical input P that matches the qubit connec-
tivity structure in the QPU.

Figure [1] illustrates these subtasks, which create overhead costs that increase total
computation time; the purely quantum component of this workflow is called an anneal.
Note that this diagram applies only to a sequential workflow that arises in standalone use
of the QPU. We do not consider hybrid computations, in which quantum and classical
components operate concurrently on distributed platforms, creating different workflows
and cost breakdowns.

We introduce the concept of quantum utility, which aims to capture quantum
performance as experienced by the user. A demonstration of quantum utility is an
affirmative answer to this question: Considering overheads, can the quantum system
outperform classical alternatives at some task of application interest? Quantum utility is
demonstrated when the quantum computation is fast enough to compensate for classical
overhead costs of using the quantum system.

!'D-Wave trademarks and registered trademarks used herein include D-Wave, Leap, Ocean, Chimera,
Pegasus, Zephyr, Advantage, D-Wave Two, D-Wave 2X, D-Wave 2000Q, and Advantage2. Intel and
Xeon are trademarks of Intel Corporation. NVIDIA and NVIDIA GeForce GRX are trademarks of
NVIDIA Corporation.

2In graph theory, an embedding maps a graph G to another graph P, and a minor embedding maps
G onto a minor of P (including P). Here we use both terms interchangeably to refer to the latter task.



A demonstration of quantum utility over a broad range of overheads and inputs must
wait upon some future date (see Section . In the meantime, we identify milestones
along the way: a milestone may be thought of as a test of quantum utility in a restricted
context associated with specific overheads. We define the first three milestones as follows.

Milestone 0, no overheads: A demonstration that the QPU outperforms clas-
sical solvers that read the same (physical) inputs, measuring quantum annealing
time. Section [l.1|reviews previous publications containing demonstrations of Mile-
stone 0. We do not explicitly address it here, except to point out that a demon-
stration of Milestone 1 or 2 implies a demonstration of Milestone 0.

Milestone 1, access time: A demonstration that the QPU outperforms classical
solvers reading the same (physical) inputs, when measuring QPU access time.
Access time includes a programming step that occurs at least once per input, an
anneal step that occurs once per output, and a read step that occurs once per
output. On the Advantage system tested here, programming imposes a lower
bound access cost of approximately 16 ms, before the first anneal can begin.

Milestone 2, indirect cost of embedding: A demonstration that the QPU,
which reads a larger physical input, can outperform a classical solver that reads a
smaller logical input, when measuring access time. That is, the minor embedding
step maps a logical input defined on an arbitrary graph G (with n nodes and m
edges), onto a physical input defined on a fixed hardware graph P (with ¢ qubits
and ¢ couplers), such that n+m < g+ c¢. This incurs both a direct cost to compute
the mapping (not considered here), and an indirect cost in the sense that classical
solvers may exploit a relative speedup due to this size differential.

Milestones 1 and 2 are arguably most important to achieving the above-mentioned
consensus on quantum utility, because the relevant overheads are unique to quantum an-
nealing and are common to most users’ experience. That is, depending on the envisioned
use case, the other overhead times in Figure [I| may be considered negligible or otherwise
irrelevant to a performance comparison. Section [4.3]describes some application scenarios
for which Milestones 1 and 2 might be considered sufficient to demonstrate real-world
quantum utility.

Section [2] describes our test setup. We evaluate performance of an Advantage QPU
with respect to Milestones 1 and 2, in comparison to seven classical solvers: two read
physical inputs P and five read general inputs G; three run on GPUs and four run
on CPUs. Our tests use 25 inputs each from 13 different classes. For each instance,
solvers must return a sample of s € {1,10,100,1000} independent solutions within a
time limit of ¢ € {.02,.05,.1,.2,.5,1} seconds (that is, allowing up to t/s seconds per
solution, depending on initialization overheads). A test scenario corresponds to a specific
combination of s and t.

We perform 247 tests combining 19 scenarios and 13 input classes, and rank solvers
according to the quality of solution samples returned. For each scenario and input class,



a win is awarded to a solver that finds solutions strictly better than the others. A fail is
awarded if the solver is unable to return a complete set of s solutions within time limit
t. Note that a few tests had multiple winners, and it is possible for a solver to neither
win nor fail a given test. Results are summarized below.

e Section [3.1] presents Milestone 1 results. The Advantage QPU wins in 99% of tests
(that is, all but 3 of 247). Some classical solvers fail in scenarios where t/s is
smallest.

e Section presents Milestone 2 results for eight input classes that have both pre-
embedded (G) and post-embedded (P) versions. We compare the QPU, reading
P, to five classical solvers, reading G, for a total of 152 tests in 19 scenarios. The
QPU wins in 19% of the tests. The tests where Advantage wins correspond to
largest n and smallest ¢/s; these are the same tests for which classical solvers most
frequently fail.

e Section [4] identifies some fundamental differences in the computational mecha-
nisms that drive quantum and classical performance, which explain the observed
contrary trends in quantum versus classical patterns of wins and losses. We present
evidence-based arguments that these fundamental differences bode well for demon-
strations of these two milestones on more varied types of inputs, as well as demon-
strations of more challenging milestones, using future annealing-based QPUs.

We remark that these results represent a watershed moment in the development of
quantum annealing processor technologies over the past decade. With the few exceptions
mentioned in Section [1.1} previous-generation QPUs were too small, and access times
too high, to support positive outcomes on milestone tests such as these. As discussed
in Section Advantage QPUs have reached a threshold of size and connectivity suf-
ficient to hold inputs that require more than 16 ms to be solved classically; as a result,
Milestones 1 and 2 (and beyond) have become feasible to test.

Nevertheless, these are just the first steps of a longer journey toward routine demon-
strations of quantum utility over a broad range of overheads and inputs. As discussed in
Section [2.1] our tests using a current-generation Advantage QPU are incomplete because
other input classes can be identified for which logical inputs remain too small to serve
as viable test candidates. See Section [5] for more about this point.

1.1 Previous Work

Figure [2] lists published papers that meet our criteria for demonstrating Milestone 0
(and in some cases Milestone 1): they measure both solution quality and computation
time, and report superior QPU performance on a significant proportion of inputs tested.
These results span a variety of application domains (including quantum simulation,
combinatorial optimization, and diverse sampling), input types, performance metrics,



Year Source QPU Milestone Metric Solvers ‘
2013 [44] D-Wave Two | 0*,1 A EX(1) HS (1) PS(1)
2015 [59] D-Wave 2X 0 B EX(2) HS(3)

2015 [35] D-Wave 2X 0,1 A HS(2)

2016 [12] D-Wave 2X 0, 1* C HS(1) MC(1)

2017 [41] D-Wave 2000Q | 0, 1 B HS(1)

2019 [36] D-Wave 2000Q | 0, 1 C&D HS(2) MC (2)

2019 [37] D-Wave 2000Q | 0,1 D HS(1)

2019 [48] D-Wave 2000Q | 0%, 1 B EX(3) HS(2) MC(1)
2020 [27] D-Wave 2X 0 B EX(1) HS(1)

2020 [24] D-Wave 2000Q | 0 B PS(2)

2021 [33] D-Wave 2000Q | 0, 1* E MC(1)

2021 [3] Advantage 0 C HS(3)

2022 [51] D-Wave 2000Q | 0 C HS(1)

2022 [58] (several) 0,1 C EX(1) HS(2) MC(1)
2022 [38] D-Wave 2000Q | 0 B PS(1)

Figure 2: Previous work demonstrating Milestones 0 and 1 using past- and current-
An asterisk marks a milestone that was not explicitly ad-
dressed but can be inferred from the published results. The Metric column refers to the
figure of merit used in the evaluation, and the Solvers column lists categories of classical

generation D-Wave QPUs.

solvers used for comparisons. Column entries are decoded in the text.



and classical competition: we consider such variety to be necessary to reaching consensus
about whether quantum utility has been demonstrated.

The QPU column refers to previous and current generation D-Wave QPUs, with
nominal qubit counts as follows: D-Wave Two (512), D-Wave 2X (1000+), D-Wave
2000Q (2000+), and Advantage (50004). The first three generations were based on the
Chimera connection topology, with 6 couplers per qubit; the Advantage generation of
QPUs is based on the Pegasus topology with 15 couplers per qubit.

In the Milestone column, an asterisk marks a milestone that was not explicitly mea-
sured in the paper but can be inferred from the results. For example, Milestone 1 implies
Milestone 0 because anneal time is always less than access time. Milestone 1 can be in-
ferred from Milestone 0 when a reported computational speedup is large enough (that is,
10,000-fold or higher) to easily account for access overhead times. Tasseff et al. [58] test
on several available D-Wave 2000Q and Advantage systems; they consider Milestones
0 and 1, as well as overhead costs of network transmission and queuing time, which
constitutes a milestone somewhere beyond Milestone 2. (Our Milestone 2 is not relevant
to their work because inputs are not minor embedded.)

The Metric column identifies the type of performance metric(s) used in each study,
as follows.

A Best solutions returned within a fixed time limit

B Better solutions faster, considering both solution quality and runtime
C Fastest time to an optimal solution

D Fastest time to sample all near-optimal valleys in the solution space
E Fastest convergence of solution samples to a target distribution

The Solvers column identifies categories of classical solvers tested in each work; num-
bers in parentheses refer to multiple versions of solvers within the category, as follows.

e Exact (EX) solvers guarantee to return optimal solutions if given enough compu-
tation time. When used in tests of heuristic performance that accept non-optimal
solutions (as with metrics A, B, D, E), these solvers report working solutions found
at earlier stopping times. Algorithms of this type include Branch-and-Bound, In-
teger Linear Programing, and Message Passing.

e Heuristic Search (HS) solvers typically start with a random candidate solution and
then iterate, making incremental changes to the candidate while seeking a downhill
path towards better-quality solutions. HS solvers vary according to, e.g., mecha-
nisms for choosing next-moves, strategies for escaping local minima, or the number
of multiple solution paths being pursued. HS solvers in the published works include
Greedy, the Hamze-de Frietas-Selby (HFS) method [17, 55], Simulated Annealing,
TABU search, Parallel Tempering, and population-based (genetic) methods.

e Monte Carlo (MC) search represents an important subclass of HS methods. An
MC solver performs a guided random walk to explore the solution landscape using



a probabilistic strategy that simulates a natural process. Variations of MC in the
published works of Figure [2linclude Markov Chain MC, path integral MC, quantum
MC, spin vector MC, and Wolff cluster MC. (The Simulated Annealing and Parallel
Tempering heuristics arguably belong to this paradigm, although implemented
solvers can vary widely in their fidelity to a natural model; our classification follows
authors’ nomenclatures.)

Problem Specific (PS) solvers read original inputs X for a specific problem domain,
rather than translated logical G or physical P graphs. The differential in problem
size between X and P, together with measurement of access time, would correspond
to a milestone somewhere beyond our Milestone 2.

Other empirical work. A number of papers that compare performance of D-Wave QPUs
against classical solvers are not included in Figure [2, for reasons briefly summarized
below.

1.2

e Several papers consider a performance metric known as quantum speedup [5, 20

29, 30, 39, 54, 66]. This body of work aims to evaluate how computation time
scales with problem size over a finite range. Scaling analyses look at the shape
of a curve showing computation time versus problem size, but reported times are
not intended to accurately reflect total computation times. Instead, these papers
typically report times for a core operation (the part that scales with n), and some
evaluate classical performance on a hypothetical parallel platform (dividing core
times by n). Furthermore, these papers look at QPU performance against the “best
available” classical solver, which involves extensive precomputation to optimize
solver parameters, contrary to the Fair Test policy described in Section [2.2.1
Lacking information about true computation times under realistic use scenarios,
we cannot determine whether Milestone 0 has been demonstrated in these papers.

Some papers compare quantum and classical solution quality — reporting both
positive and negative results — but omit computation times; others report com-
putation times but apply unequal levels of computational work [21], 23| 28, BT, 64].
Some negative results in these papers can be attributed to small QPU size, as
discussed in the introduction. In any case, without a way to calibrate computa-
tional work, we cannot determine which solvers would give superior results under
comparable use conditions; see Section [4| for discussion of this issue.

Overhead Costs of QA

This section describes two categories of overhead costs that are considered in our bench-
mark tests.
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Figure 3: Minor embedding. (a) General graph G. (b) A minor embedding of G onto a
Pegasus graph P. The highlighted black node in G is split into a chain of two nodes in P;
both the original node and the chain are connected to three neighbors (pink, green, red).
Each qubit in Pegasus is connected by couplers to 15 neighbors (fewer on boundaries).
Qubits and couplers that are unused in the embedding are shown in pale gray.



1.2.1 Minor Embedding

Milestone 2 considers an indirect cost associated with minor embedding as follows. The
Pegasus graph defines the qubit and coupler connectivity structure inside all Advantage
QPUs. The specific hardware graph inside any given QPU is a subgraph of Pegasus, due
to a small proportion of disabled qubits and couplers that do not meet specifications;
see Section for details about the system used in our tests.

Given an arbitrary logical graph G, minor embedding maps each node of G to a
chain of one or more connected qubits in the hardware graph. (Despite the name,
they need not be connected in a strictly linear sequence, and tree-like chain structures
are common.) Minor embedding is necessary for any G that is not a subgraph of the
hardware graph; in particular, minor embedding is useful for mapping high-degree nodes
of G onto limited-degree nodes of P. For example, a logical node x of degree 20 can map
to a two-node chain (ql,¢2), each of degree 10, plus an additional chain edge (q1,¢2)
tying them together. The chain strength J.nqin is a weight applied to all new chain edges
that are introduced by minor embedding. Our tests use a default chain strength that is
recommended by an Ocean system utility (more discussion below).

In Figure |3} panel (a) shows a graph G with n = 180 nodes and m = 270 edges,
totaling 450 components. Panel (b) shows G after being minor-embedded onto a Pegasus
graph containing ¢ = 248 qubits and ¢ = 338 couplers, totaling 586 components. Each
node in G is mapped to an equal-colored chain of one or more nodes in P; for example,
the oversized black node with three neighbors (green, orange, red) is represented by a
two-qubit chain in the embedding. In terms of total input size (nodes plus edges), the
embedded graph has 586 = 248 + 338 qubits and couplers, about 1.4 times larger than
G.

Minor embedding incurs two types of overhead costs: (a) the computation time to
find a mapping from G to P and apply it; and postprocessing time to unmap solutions
for P back to solutions for G (a direct cost that is not considered in this paper), and
(b) the indirect cost considered in Milestone 2, whereby classical solvers reading G' can
work on a smaller input of size (n,m), while the QPU works on a larger input of size
(¢,¢). Under the reasonable assumption that smaller inputs are easier to solve, this
size difference creates a potential runtime advantage for classical solvers relative to the
QPU. Our tests measure this difference by running all solvers for equal time limits, and
comparing solution quality with respect to the logical problem G, after QPU solutions
to P been untranslated back to solutions for G.

1.2.2 Access Time

Milestone 1 incorporates access time, which, in addition to purely quantum annealing
time, includes the time needed to transfer information on and off the quantum chip, as
follows.



First, when given a physical input graph P defined by weight vectors (h, J, Jehain ),
the QPU performs at least one progmmminﬂ step to map (h, J, Jehain) onto the analog
control system that drives qubit states during the anneal. On the Advantage_system4.1
QPU used in our tests, this operation takes tprogram = 16 ms. Multiple programmings
can be used to make small adjustments to the physical problem representation. In our
tests, reprogramming was applied for two reasons:

e For native inputs, each programming step applies a random spin reversal transform
(SRT). An SRT assigns the physical output states (up,down) of a subset of qubits
to be either (—1,+1) or (+1,—1). This random assignment counteracts certain
types of physical biases in the quantum hardware.

e For embedded inputs, each programming step increments or decrements chain
strength within a small range of values Jepain € [0.5z,...,22], where z is the
default chain strength suggested by an Ocean system utility.

In both cases, the modification can shift the distribution of sampled solution energies
higher or lower by a small amount. Multiple programmings have the effect of widening
the range of energies in the full set of sampled solutions, which may potentially move
sample minimums closer to ground states.

Second, after one anneal produces a solution to input P, a readout operation is
performed to move the solution off the chip. On the Advantage system used in our
work, treqq < 0.241ms. Smaller readout times can be observed when only a portion of
the chip is occupied by input weights, but our tests focus on large inputs and readout
times were fairly consistent. (Both programming and readout times include other low-
level operations not discussed here.)

Three annealing control parameters were varied in our tests: the number of pro-
grammings p, anneal time per solution tg,neqr, and the number of anneal-plus-readout
operations r. This works out to |r/p] solutions per programming, with the last batch
rounded up if necessary to meet a given time limit ¢. Access time to return r solution
to an input instance P is therefore measured as

laccess = P tprog +r- (tanneal =+ tread)- (1)

2 Experimental Setup

This section presents an overview of inputs, solvers, and performance metrics used in
our tests.

3Here, programming and readout are used as umbrella terms that include several subtasks. When ap-
plicable, subtask times are set to constant default values throughout, such as qpu-delay_time_per_sample
= 20 ps, which is performed during readouts.
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The Problem The Ising Model (IM) problem is defined as follows: given a graph G =
(V, E) on n nodes and m edges, together with real-valued weights h = {h;} (called fields)
on nodes and J = {J;;} (called couplings) on edges, assign spin values z; € {—1,+1} to
nodes so as to minimize the energy function

F(z) = Zhimi—i- Z Jijriz;. (2)

eV (i,4)€E

This problem is NP-hard when G is nonplanar [25]. In physics applications that
model natural phenomena, an optimal solution is called a ground state and non-optimal
solutions are called excited states. The Quadratic Unconstrained Binary Optimiza-
tion (QUBO) problem, more familiar to researchers in computer science and operations
research, is to optimize the same objective function (2), defined on binary variables
b; € {0,1} instead of spins. Under the trivial transformation z; = 2b; — 1, the objective
functions for QUBO and IM have equivalent cost spectra, except for a constant offset
that varies by instance.

Either formulation can be used as input to the QPU, and we generically refer to both
as binary quadratic models (BQMs). Our input generators construct BQMs of either
type, according to their motivating application domains.

2.1 Inputs

Figure [4] summarizes the 13 input classes that were selected for our study. Columns
labeled n and m show the number of nodes and edges in logical (pre-embedded) graphs;
column ¢ shows the number of nodes in the physical (post-embedded) graphs. The last
column shows the mean ratio of nodes in embedded versus unembedded versions of each
graph category, equivalent to mean chain length. Inputs are listed in decreasing order
by problem size n, and are grouped by the strategy used for embedding, as follows.

native Five input classes are generated directly on the Pegasus hardware graph in the
Advantage QPU; their logical and physical versions are identical. These are the
largest inputs in our tests, using nearly all available qubits and couplersﬁ

These inputs use weighting schemes (h, J) that have been identified as challenging
for classical and quantum solvers to cope with. The labels refer to corrupted biased
ferromagnets (CBFM) from [58]; native spin glasses (NAT1, NAT7) discussed in
[29]; frustrated tiles (TILE) [50]; and frustrated cluster loops (FCL) from [36].

4The Advantage_system4.1 QPU in our tests contains a small proportion of unused qubits and couplers
that did not meet quality standards and were disabled when the system came online. Active qubits and
couplers in the hardware graph number 5627 and 40279, representing yields of 99.77% and 99.49%
respectively, of the full Pegasus graph. Our tests use a subgraph of that hardware graph because of a
design limitation of our GPU-based native solvers, which ignore some irregularly-connected qubits on
the periphery.
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Name ‘ Embedding n m q L=gq/n ‘
CBFM native 5387 38751 | 5387 1.0
NAT1 native 5387 38751 | 5387 1.0
NAT7 native 5387 38751 | 5387 1.0
TILE native 5387 38751 | 5387 1.0
FCL native 5029 22030 | 5029 1.0
3DLAT custom 2688 7444 | 5376 2.0
BPSP heuristic 867 1211 | 3037 3.4
DREGO03 heuristic 754 1131 | 2856 3.8
SOCs heuristic 355 1053 | 1263 3.4
SOCu heuristic 399 1053 | 1263 3.4
SK clique 175 15225 | 2625 15
CDMA clique 175 15225 | 2625 15
DAIG clique 174 15051 | 2625 15

Figure 4: Our testbed of input classes. Input sizes (nodes n and edges m) correspond to
the largest graph of each class that can be reasonably embedded onto the QPU. Column
g shows the number of qubits used in physical (embedded) versions of these graphs.
In the last column, L denotes mean chain length. This is the mean ratio of physical
to logical problem sizes: for example, physical SK inputs have 15 times more variables
than logical SK inputs. Numbers with overlines are averages taken over the 15 randomly
generated graphs or embeddings in a given class.
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custom Graphs with regular lattice-like structures can exploit efficient custom embed-
ding techniques. Three-dimensional lattices (3DLAT), consisting of unit cubes
that share corner nodes, arise in scientific applications and simulations [19].

heuristic Four input classes with random and irregular connection structures are em-
bedded using the heuristic embedding tool minor miner available in D-Wave’s
Ocean SDK [2]. Labels refer to inputs for the Binary Paint Shop Problem (BPSP),
similar to those in [56]; random 3-regular graphs (DREGO03); and signed and un-
signed social network graphs (SOCs, SOCu) [16].

clique Three input classes are embedded using the busclique clique-embedding tool
available in Ocean SDK. They are: Sherrington-Kirkpatric (SK) graphs studied in
statistical physics [62]; inputs for the Code Division Multiple Access (CDMA) sig-
nal decoding problem; and dense Al graphs (DAIG), generated by a tool that “learns”
hard substructures of multiple application problems. This tool constructs inputs
such that n is always even.

Screening Inputs for Hardness Given an input graph G with n nodes and m edges, the
problem size n is the number of variables that are assigned solution values, and input
size k = n 4+ m is the number of graph components (node and edge weights) required
to fully specify the problem via formula (2). Problem size is a key indicator of input
hardness, in the sense that the space of solutions to be explored grows as 2". Input size
gives an upper bound on embeddability, since it must hold that n + m < g + c.

We performed a pilot study to identify interesting input classes for our benchmark
tests, prioritizing hardness, structural diversity, and application relevance. Our tests
require inputs that are both small enough to embed onto the Pegasus hardware, and
large enough that Milestones 1 and 2 are at least feasible to demonstrate. That is,
if the problem is so small or easy that classical heuristics can regularly find ground
states in less than the 16 ms lower bound on programming time — before the quantum
computation has a chance to begin — then there is no point in performing the test.
We argue that too-small or too-easy inputs are not interesting candidates for quantum
solution methods because they can be quickly solved classically, leaving little room for
improvement.

The native, custom-embedded, and clique inputs passed our screening criteria. We
included three clique-embedded input classes to represent this important boundary case;
among embedded graphs, these are the smallest in terms of problem size n but the largest
in terms of input size k.

For the remaining heuristic-embedded inputs, we applied a two-step screening pro-
cedure as follows.

1. We used the heuristic embedder to find a largest reasonable input size, selecting
K such that the median value (over 3 random trials) of maximum chain length

13



’ Name Label Inputs  Platform ‘
D-Wave advantage 4.1 QPU physical QPU
Simulated Annealing-Optimize SAo_native physical GPU
Simulated Annealing-Sample SAs native physical GPU

Random Random general CPU
Steepest Greedy Descent SGD general CPU
Simulated Annealing (Logical)  SA general CPU
Parallel Tempering (sequential) PTc general CPU
Parallel Tempering (parallel) PTg general GPU

Figure 5: Solvers in our benchmark study. The third column indicates whether the
solver reads physical or general inputs. The fourth column shows the type of platform
on which the solver runs.

(per trial) is in the range 15 < Ly, < 20, slightly higher than found in clique
embeddings.

2. The Greedy and SA heuristics were run on these largest input; if they could find
putative ground states — as indicated by agreement on the same minimum energy
over many random trials — within the 16 ms lower bound on programming time,
the candidate were omitted from our main tests.

As it turned out, the inputs rejected by this screening procedure were of sizes 175 < n <
355, both smaller and denser than those that passedE] Benchmark tests on moderately
dense graphs must await availability of larger and more-connected hardware graphs.

We consider the fact that eight embedded graph classes were identified as test can-
didates to be an encouraging sign of progress, since (with a few exceptions mentioned in
Section previous-generation QPUs have been too small for logical inputs of embed-
dable size to be considered viable candiates for the benchmarking tests in this paper.

2.2  Solvers

The table in Figure [5] lists the heuristic solvers in our study. The first three read only
physical inputs defined on the Pegasus hardware graph, which may be either native
or post-embedded versions of logical graphs. The remaining five solvers read general
graphs, which can be either pre-embedded logical inputs or native inputs. Both physical
solvers and one general solver (PTg) are implemented on GPUs; the remaining four
general solvers are implemented on CPUs.

®These included four variations on random Satisfiability inputs, and random k-regular graphs with
k > 10.
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Classical solvers The classical solvers all implement variations on the heuristic search
paradigm; these are sometimes called landscape-traversal methods, based on a popular
metaphor that envisions the solution space as a landscape defined over all possible so-
lutions xz, where the surface elevation at point x corresponds to the objective function
value defined by formula (2). A landscape-traversal solver starts at a random solution
point z and then moves step-by-step through the landscape, making incremental changes
to x by flipping one (or more) binary variables, while seeking lower ground. A local min-
imum is a valley surrounded by uphill moves; a global minimum is a valley of minimum
elevation.

Total work w corresponds to the number of iterations performed while moving about
the space; this is an upper bound on the total number of states visited, since some solvers
can repeat visits to the same states. More work is associated with longer computation
time (the exact relationship depends on the implementation), but tends to produce
better-quality solutions. Different solvers manage this tradeoff differently, as follows.

e The Random solver generates an initial solution and makes no effort to improve
it, so w = 0. This solver provides baseline measurements of the fastest runtimes
and worst-quality solutions among landscape-traversal heuristics.

e A greedy solver moves strictly downhill. At each iteration, the steepest gradient
descent (SGD) solver studied here considers all single-variable flips and selects the
one giving the largest improvement in (2), stopping and reporting the result when
no improvements can be found. Work w is determined by the number of visited
states between a random start and a nearby local minima, and solution quality
reflects the distribution of local minima reachable from random starts.

e Our simulated annealing (SA) solver has total work controlled by the user via
a num_sweeps parameter. The sweep loop iterates over n nodes when deciding
where next to step, so that w = n - num_sweeps. A temperature parameter 7 is
used to probabilistically decide which node is used for the next-step, which may be
uphill; 7 decreases with sweep count so that uphill moves become less likely over
time. This approach allows SA to escape local minima earlier in the computation,
becoming more strictly greedy in later stages.

e The SA-native solver is a GPU-based version of SA that parallelizes the sweep
loop by assigning n nodes to n CUDA cores, so that the computation of next-
step probabilities can exploit n-way parallelism. Note that the step itself is not
parallelized because the GPU can only be in one state at a time and computation
of next-state probabilities depends on the previous state; that is, parallelization
speeds up time-per-sweep, but the work /iteration loop is inherently sequential since
the computation can only be in one state at a time. This solver reads only Pegasus-
structured inputs. We implemented two versions: for SAo_native, parameters are
set to prioritize optimization (more rapid descent to a low-energy solution), and
for SAs_native, parameters are set to prioritize sample diversity (less likely to be
stuck in local minima).
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e Parallel tempering (PT) is based on SA but contains an extra loop to represent
R replicas of SA, each working on its own solution x, and operating at a constant
temperature 7,. At intervals, solutions are swapped among adjacent replicas (i.e.,
the replica at 7, swaps with 7,41 and 7,_1) to move the best candidate solutions
toward lower 7. The user parameter num sweeps controls the total number of
sweeps for all replicas. Over time, the number of replicas can grow or shrink
according to swapping frequencies; for a mean number of replicas R, total work
is equal to w = R - n - num_sweeps. We tested two implementations of PT: PTc
runs sequentially on a CPU; PTg parallelizes computations in the sweep and the
replica loops, and runs on a GPU.

Quantum annealing solver See [42] [61] for introductions to computation by quantum
annealing. Briefly, the QPU control system follows a time-varying Hamiltonian #(t) over
a time interval ¢ : 0 — t4nneal, tO create a smooth transition from an initial transverse
field Hamiltonian #;,;tia to a problem Hamiltonian H,,opem that corresponds to the
objective function (2). The qubits behave like a quantum particle process driven by
H(t), naturally seeking their collective ground state, which corresponds to an optimal
solution to (2) at the end of the anneal.

In landscape-traversal terms, the computation can be visualized as taking place on an
initially flat landscape (the transverse field), from which the problem landscape defined
by (2) gradually emerges. Rather than stepping point-by-point through this moving
landscape, the qubits exploit quantum superposition and entanglement to probabilis-
tically represent “all states at once,” in such a way that highest probabilities track
lowest-lying areas of the landscape as it evolves. At the end of the anneal, the classical
problem Hamiltonian H,ropien, dominates H(p): classical state is read according to those
final probabilities and returned as the solution.

Note that our classical conception of work does not translate well to the quantum
computation because qubits do not visit states one-by-one; indeed there are no iterations
to be counted. Instead, we modify our definition of work to match the natural quantum
unit of computational effort, and set w = tonnear-

In an ideal noise-free environment, if ¢,,n0q; 18 above a certain threshold time deter-
mined by the input, the qubits will finish in a ground state of the objective function (2)
with high probability [14], 146, 57]. In a real-world quantum system, noise and imprecision
of the analog control system can cause the qubits to move away from their ground state
and instead finish in a low-energy state of (2) [4, 65].

2.2.1 Fair Test Policy
The QPU, SA, and PT solvers offer several runtime parameters to the user, which can be

tuned to elicit best performance on specific input types. The question of how to design
a so-called fair test, which ensures equal parameter-tuning effort across all solvers, has
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received much attention in the optimization methodology literature [6, 13, 22] 26, [45].
The goal of fair testing is to ensure that outcomes can be replicated by practitioners;
Johnson [26] recommends that all tuning procedures be well-defined and algorithmic,
with tuning time included in reported runtimes.

Following this advice, we implemented a wrapper code for each solver that accepts

exactly three inputs — the instance (G or P), the sample size s, and the time limit ¢ —
and sets solver parameters to either fixed defaults or auto-tuned values according to code-
based policies, with auto-tuning included in measured runtimes. The most important
parameters, controlling work, were auto-tuned as follows.

2.3

e For Random and SGD, which offer no user parameters, the wrapper code simply

takes a maximum number of samples within the time limit ¢. A sample of s lowest-
energy results is subsampled from the full set during data analysis.

For the SA and PT solvers, best results come from maximizing work to meet (s, ).
The wrapper code sets the num_sweeps parameter to the maximum possible within
the per-solution time limit ¢/s, according to quick time-per-sweep estimate that is
performed once per solver per instance and re-used for all combinations of (s,t).
A separate procedure occasionally checks progress against the full time limit ¢ and
makes adjustments to num_sweeps if necessary.

For the QPU, maximizing anneal times to meet test limits of ¢ € [20...200] ms
is not possible under current (public access) policies, which support anneal times
in range tgnneat € [.0005,...,2] ms. Furthermore, we do not necessarily expect
best results from maximizing this parameter: experience suggests a law of dimin-
ishing returns whereby setting t,nneq; to higher values within its range yields no
perceptible improvements in solution quality.

Therefore our wrapper code aims to maximize quantum utilization with a de-
fault anneal time set to tgnneal = treadout, and default r set such that tprogram =
T (tanneal + treadout)- This time block is multiplied to meet a given test scenario
(s,t), with reprogramming steps as described in Section If this default set-
ting does not allow enough time for the required number of samples, then reads
are increased and programming steps are reduced; if this is still not, anneal time
is reduced. As with Random and SGD, if the QPU returns more samples than
needed in a given scenario, the s-best solutions are subsampled during analysis.

Performance measurement and analysis

We use one common test procedure to gather data for both milestones as follows. For
each of 13 input classes we generate 25 random instances. A native input has one version
that is sent to both logical and physical solvers; a logical input has a pre-embedding
version sent to logical solvers (Random, SGD, SA, PTc, PTg) and a post-embedding
version sent to physical solvers (QPU, SAo-native, SAs-native).
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For each input instance and each solver, we construct a test scenario (s, t), requesting
s = [1,10, 100, 1000] solutions to be returned within time limit ¢ = [.02,.05,.1,.2,.5,1]
seconds. Of 24 possible scenarios, we omit five because t/s is below the (amortized)
lower bound on QPU access time; thus, ¢/s is in range [.0002... 1] seconds in our tests.

In Milestone 1 tests using 13 input classes, all solvers read identical inputs: we
compare QPU performance to logical solvers on the five native classes, and to physical
solvers on all classes, and solution energies are calculated in the physical problem space.
In Milestone 2 tests using eight logical inputs, the five logical solvers read pre-embedding
inputs while the QPU reads their post-embedding physical versions. The physical solu-
tions returned by the QPU are mapped back to the logical solution space for evaluation;
broken chains are resolved using the default parameter setting chain voting = True.

Statistics of sample solution quality are calculated as follows.

e Let S(a,z,s,t) be a sample of s energies returned by solver a for instance x when
run for time limit ¢. Sample solution quality is measured by median sample
energy, denoted M(a,z, s, t).

e For each instance z, the target energy 7 () is the minimum energy observed in
all tests over all solvers and scenarios. This is not necessarily the optimal energy
for x.

e The relative error for solver a on instance x is the absolute scaled difference
between M(a, z, s,t) and T (z),

T (x) — M(a,x,s,t)]|
R(a,z,s,t) = T . (3)

Relative error is equal to zero when at least half of the sample energies found by a on
input x are equivalent to the target energy. When relative error is nonzero, R(a, z, s, t)
indicates how close the solver came to finding target energies.

3 Results

Figure [0] shows example results for three input sets from our tests: NAT1, 3DLAT, and
SK. These inputs all have spin-glass weight with fields h; = 0 and couplings chosen u.a.r.
from J;; € {—1,+1}. They represent three extremes of graph structures and sizes: the
native Pegasus graph (NAT1, n = 5387), among the largest tested; three-dimensional
lattices (3DLAT, n = 2688), the largest embedded graphs; and Sherrington-Kirkpatric
graphs build in cliques (SK, n = 175), among the smallest of embedded graphs.

Each row shows results for four test scenarios, corresponding to sample sizes s =
[1,10,100,100] at the time limit ¢ = .5 seconds. Each panel shows curves for median
relative error R(a,z,s,t) over 25 instances, sorted in increasing order and color-coded
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Figure 6: Performance results for the NAT1 (top), 3DLAT (middle) and SK (bottom)
input sets, for time limit ¢ = .5 seconds and sample sizes s = [1, 10, 100, 100]. Each panel
shows a plot of median relative error for 25 inputs from the set, sorted in increasing order.
These are symlog [53] plots with y on a logarithmic scale that switches to linear to expose
the critical region near y = 0: the apparent step functions are due to the switch of scale
and not indicative of discontinuities in the data.
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by solver: the rightmost point is the worst R returned by the solver over all 25 instances,
and the midpoint z = 13 is the median result over all instances.

These are symlog plots [53] with a logarithmic y-scale that becomes linear near y = 0,
which give the best view of outcomes in our rank-based analysis; the steps at low y are
due to the scale change and are not indicative of significant discontinuities in the data.

For each input class and scenario, we evaluate solver performance as follows.

e A win is awarded to a solver if its ECD curve is strictly below those of all other
solvers on at least half (13) of the instances. For example, the QPU wins against
all solvers on all four NAT1 scenarios. These wins are recorded for Milestone 1
because all solvers read the same physical inputs.

A win is also awarded to a solver that ties with other winning solvers on at least
half the instances. For example, in the first SK scenario (s = 1), SA, PTc¢, and
PTg share the win, but SGD does not because it ties in fewer than 13 instances.

A win for Milestone 1 is awarded to a physical solver that outperforms other
physical solvers reading embedded problems. For example, the QPU outperforms
both SAs_native and SAo_native in all SK scenarios.

o A fail is awarded if a solver cannot return all requested samples within the time
limit, on at least half the inputs tested; if it fails on all inputs the ECD line is
absent. For example, in the fourth NAT1 panel with s = 1000, all logical solvers
fail on all 25, and the three physical solvers succeed.

A solver that neither wins nor fails in a given scenario is said to compete.

3.1 Milestone 1: Physical Solvers and Inputs

Figure [7] summarizes Milestone 1 results, which consider cases where all solvers read the
same physical inputs: QPU versus logical and physical solvers on eight native inputs,
and versus physical solvers on five embedded inputs. Panel (a) shows tallies of QPU
wins over all 13 input classes in 19 scenarios, comprising 475 tests. The QPU clearly
dominates classical approaches, winning in all but 3 of 475 tests covering 13 input classes
and 19 scenarios (98.5 percent).

Panel (b) shows a tally of number of classical fails per input class in each scenario,
considering the five native inputs on which all seven solvers were tested. The number
of possible failures in any test scenario is between 0 and 7; each box shows the mean
number of fails per scenario, averaged over all five native inputs.

Here are some details.

e Nearly all of the QPU wins are solo wins: a few ties with SAo_native and SAs_native
were found in scenarios with large ¢/s (lower left corner), on the smallest (clique)
inputs in our tests.
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Figure 7: Panel (a): Number of wins or ties earned by QA in Milestone 1 tests, over
all scenarios and (physical) inputs. The maximum number of wins per scenario is 13,
the number of input classes tested. Panel (b): number of classical failures in tests using
physical inputs, averaged over all input classes. The maximum number of failures per
input class is seven or two, equal to the total number of solvers tested.

e The three cases where the QA does not win are near-ties versus SAo_native on

CDMA inputs. These inputs are distinguished from others in our testbed by
containing unusually high-precision Gaussian weights J, h. Higher precision poses
a challenge to quantum annealing due to finer gradations of elevation in the solution
landscape, which are harder for the QPU to distinguish.

Considering only classical solvers, the GPU-based SAo_native and SAs_native solvers
performed best overall, confirming the intuition that parallelism can boost perfor-
mance of the SA heuristicf| It is interesting to note that on these 5000-node
Pegasus inputs, GPU parallelism yields only about a 60-fold speedup over com-
parable CPU solvers; on previous-generation Chimera inputs, GPU solvers saw
133-fold speedups. This degradation in speedup relative to sequential solvers can
be attributed to the fact that parallel speedup is reduced by increased graph con-
nectivity: the Pegasus graph is nonbipartite with degree 15, whereas Chimera is
bipartite with node degree 6.

The upper right boundary where classical solvers are most likely to fail corre-
sponds to small ¢/s, below about 0.5 milliseconds. The physical solvers (QPU and
SA native) never failed in any scenario. Among the logical solvers, PTc¢ and PTs
failed most frequently.

SGPU solvers implemented in C4++ and CUDA, and run on an NVIDIA GeForce GTX 1080-Ti

processor with 3584 CUDA cores and 1582MHz processor clock speed. All CPU tests ran on a 3.30GHz
Intel Core i9-7000x CPU with 20 cores.
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Figure 8: Milestone 2. Panel (a) Number of QA wins (out of eight maximum) over all
logical inputs and scenarios. Panel (b) is the mean number of classical fails (out of five
maximum), averaged over eight input classes.

3.2 Milestone 2: Logical Solvers and Inputs

In Milestone 2 tests we consider performance on eight general input classes, for which
five logical solvers read smaller pre-embedding versions and the QPU reads larger post-
embedding versions of the same problems. (Performance of physical solvers versus the
QPU are considered in M1 test). Thus, at most eight wins and at most five fails can be
awarded per scenario.

Results appear in Figure |8 Panel (a) shows that the QPU wins in 28 of 152 cases,
or about 18% of problem scenarios. In other cases, the QPU competes (neither wins nor
fails). Panel (b) shows the mean number of classical fails per scenario per input class.
Although classical solvers do a better job overall in this milestone, it is interesting to note
that the scenarios where classical solvers can fail are all on the upper right boundary,
just as in Figure |7l Panel (a) shows that these are the same scenarios where the QPU
solver is most likely to win. Here are some details.

e The QPU is more likely to win, and classical solvers more likely to fail, in tests
involving small t/s. Furthermore, these outcomes are strongly correlated with
problem size. In Milestone 1, QPU wins nearly always when n > 5029. In Milestone
2, QPU wins occur on the three largest embedded input graphs: 3DLAT (n = 2688)
in 18 scenarios, BPSPh (n = 867) in 6 scenarios, and DREGO03 (n = 754) in 4
scenarios.

e Among classical solvers, SA was the sole winner in most cases. The exception is
scenarios with large t/s (lower left corner) and small n (e.g. clique problems), for
which many solvers shared the win. PTc and PTg failed most frequently at small
t/s, as in M1 tests.

e The GPU-based PTg solver never outperformed its CPU-based counterpart in
these tests; sometimes they tied, and sometimes PTc outperformed PTg. We
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Problem Fdges Input Size Chain Length
Graph Size n m K=n+m L=gq/n
Native 5387 38751 44138 1.0
3DLAT 2688 7444 10132 2.0
Clique 175 15225 15400 15

Figure 9: Sizes of three graph structures used in our tests.

attribute this outcome to the fact that algorithms for irregularly structured graphs
are notoriously challenging to parallelize effectively [9].

4 Discussion: What drives performance?

This section considers relationships between input properties and performance of classi-
cal and quantum solvers that explain some of the observations of Section 3| For simplic-
ity we focus on three graph structures (NAT1, 3DLAT, and SK), and on the Advantage
QPU versus three classical solvers (Random, SGD, and SA), all implemented on CPUs.
(The PTc solver, not shown here, was dominated by SA on NAT1 and 3DLAT inputs
and by SGD on SK inputs.)

Figure [J] shows some relevant size metrics for these graphs. Given a graph with n
nodes and m edges,

e Problem size n is the number of variables, which determines the size 2" of the
solution space to be searched, a key indicator of problem complexity.

e Input size K = n + m is the number of components (node and edge weights)
needed to fully specify the problem. This correlates with the size of a key data
structure (and a lower bound on computation time) for classical solvers, and with
the size of the embedded input on the QPU.

e Chain length L = ¢g/n is the mean ratio of problem size in logical and physi-
cal versions of each instance (although technically speaking native graphs do not
contain chains). Chain length serves to quantify the indirect overhead cost of
embedding that is considered in our Milestone 2 tests.

In terms of problem size, NAT1 is among the largest graphs in our study, 3DLAT is the
largest embedded graph, and SK is among the smallest of embedded graphs. 3DLAT is
about 15 times larger than SK in problem size, while SK is about 50% larger in input
size, with 7.5 times longer chains.

Figure [10] shows how solution quality converges towards optimality with increasing
computation time, with work controlled by the auto-tuning policies described in Section
The three panels are ordered bottom-up by increasing problem size. In each panel,
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the y-axis marks relative error R,, observed in 15 independent trials at geometrically-
increasing time increments ¢. Note that cases where the solver collects multiple samples
to fill the time limit, relative error here is the minimum energy found in the batch, not
the median energy as measured in Section [3] The shaded area marks the range of time
limits considered in that section.

These results showing sample minimums are consistent with results for sample me-
dians in Figure[f] On NAT1 (Milestone 1), the QPU outperforms classical solvers in all
scenarios, and SA fails in scenarios where time per sample is low (here when t/s < .006
seconds). On 3DLAT (Milestone 2), the QPU outperforms classical solvers when ¢/s < .1
sec; SA can win when ¢/s > .2 sec, but can fail when ¢/s < .02 sec. On SK inputs (Mile-
stone 2), QPU results are dominated by multiple classical solvers; but SA can fail when
t/s < .02 sec.

These three inputs have spin glass weights, with fields h; = 0 and edge weights
selected u.a.r. from J;; € {—1,41}; all solution energies are separated by multiples of
+2. Results for 3DLAT and SK are shown in the logical problem space, after physical
solutions from the QPU have been mapped back to the original input.

4.1 Classical Performance Drivers

Recall from Section that the classical solvers in our tests work to improve an initial
random solution by flipping one node at a time, while seeking lower-energy regions of
the solution space. The work parameter w equals the number of main-loop iterations
performed as a solver explores the space, which is an upper bound on the total number
of states visited. We consider the relationship between work, time, and solution quality
for these solvers.

First, Figure [L0]illustrates the normal expectation that computation time per unit of
work increases with input size K. Moving from bottom to top, the classical start-times
(leftmost data points) generally shift right, reflecting increasing costs to initialize data
structures, autotune parameters (if applicable), and return the first solution. For SGD
and SA, both start-time and time-per-iteration are proportional to K because these
operations require full traversals of the input data structure.

Second, the three classical solvers form a Pareto frontier ranging from least-time/worst-
solutions to most-time/best-solutions as follows.

e Random applies no work to improve the initial solution (w = 0). Here, R, follows
the extremal statistics (minima) of random solution samples that increase in size
with ¢. (Note that the distribution of solution energies for spin-glass inputs is
symmetric around zero: therefore, minima of small random samples are near zero,
which by formula (3) works out to R,, ~ 1 in all three panels.)

e SGD does more work than Random, resulting in later start times and better-
quality solutions. For any specific input, mean work per solution is constant,
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Figure 10: Convergence of minimum relative error with respect to computation time,
for three inputs and four solvers. These panels show results for 15 independent trials for
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reflecting the average traversal distance from a random initial solution to a nearby
local minimum. As with Random, the data points follow the extremal statistics of
increasingly large samples from the distribution.

e The SA work parameter num_sweeps is set to maximize work-per-solution while
respecting time limit ¢; increasing work allows SA to climb out of local minima
and continue its downhill progress.

Compared to the barely perceptible improvement of Random and SGD in the top two
panels, the SA strategy of increasing work is clearly a more effective use of the alotted
time. The difference is that increasing work allows SA to drive the center of location
of its sample distribution toward lower energies, whereas Random and SGD are stuck
sampling from fixed distributions created by constant work.

Also in the top two panels, we note that the gradual flattening out of the SA con-
vergence curve — in the sense that doubling work is much less effective at large w than
at small w — is not unexpected in the context of NP-hard problems. The existence
of an approximation method that achieves polynomial improvements in solution quality
with only polynomial extra work in the worst case (called an FPTAS), would imply that
P = NP [60].

The bottom SK panel runs contrary to these expectations, since both SGD and SA
converge quickly to putative optimal solutions, as indicated by agreement on the same
minimum energy (at R,, = 0) over many independent trials. In this case, SGD has no
problem finding ground states among the local minima that it samples, and SA needs
only a few sweeps to routinely find ground states. (Figure |§| shows that PTc and PTg
also performed well on SK inputs at higher ¢/s.)

This result is not surprising in the sense that any NP-hard problem class can contain
easy inputs that are amenable to greedy and heuristic search approaches. Although SK
inputs are hard enough to pass our screening tests of Section (needing more than 16
ms to find ground states in their sample medians), strong performance from several clas-
sical solvers suggests that the problem landscape is smooth, with relatively few obstacles
to impede progress toward ground states, or that ground states are unusually common,
or both. Determining whether these “easy” conditions are common to clique-like graph
structures or are simply artifacts of small problem size, is an interesting topic for future
study.

4.2  Quantum Performance Drivers
We now consider the relationship between work w = t, and solution quality R,, on the
Advantage QPU, and how that relationship is affected by input properties.

Note that nothing definitive can be concluded based on the shapes of the three
convergence curves in Figure for two reasons. First, by our auto-tuning policy
(Section [2.2)), anneal time is ¢, = 240 ps throughout most of the test range: these
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convergence patterns are due to increasing sample size, not increasing work. Second,
the data points are plotted according to access times rather than anneal times, which
distorts the true energy-versus-work relationship: an anneal-time plot would show QPU
start times at t, = 240 ps, about 750 times lower than minimum access time (16 ms),
and beyond the left edge of the plot field, thus demonstrating Milestone 0 on all three
inputs.

On the other hand, the wertical locations of QPU data points relative to classical
results are informative: QPU solution energies are dominated by both SGD and SA in
the bottom panel, intersect with SA in the middle panel, and lie strictly below the Pareto
frontier in the top panel. This reverse trend, by which QPU solution energies improve
relative to classical energies on increasingly large inputs and under fixed time limits,
outright contradicts any assumption that quantum computation time must necessarily
increase with problem size to ensure competitive results.

This divergence illustrates a fundamental distinction between quantum and classical
models of computation. As a popular quantum computing metaphor explains it: a
classical solver can represent one of 2" solution states with a register R of n bits that are
updated incrementally as the solver moves from state to state. In contrast, the quantum
solver can operate on a register () of n qubits, exploiting superposition and entanglement
to probabilistically represent all 2™ states simultaneously, and manipulating @ so that
the most desirable states are most likely to be observed at the end of the computation.
Since the quantum computation does not visit states one-by-one, the quality of solutions
it finds does not depend on how many states might be visited in a given time limit.

Indeed, since the QPU always operates on the full Pegasus graph of size ¢ + c,
irrespective of how many qubits and couplers are used to represent an input of size n+m,
there is no direct structural mechanism (such as a data structure being traversed) that
would require quantum computation time to vary with logical problem size.

Instead, models from statistical physics tell us that outputs from quantum anneal-
ing computations can be approximately characterized by a Boltzmann distribution with
effective temperature 7; lower effective temperature is associated with distributions re-
turning better-quality solutions. Effective temperature depends on three factors:

e Physical properties of the QPU (such as environmental noise and fidelity of analog
controls), which do not vary with input [4, [7, 47, 52} 65];

e Annealing parameters (such as anneal time and location of pauses in the anneal
path), which can have significant affect on solution quality [I5] 40} 63], but (with
two exceptions discussed below) were not varied in our tests.

e Properties of the physical inputs that determine landscape structure, such as the
range of weights (h, J) [29, 32 36l 50, [58].

Recall that by our auto-tuning policy, all annealing and input parameters were held
fixed, with two exceptions: during each (re)programming step, a random spin-reversal
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transform (an annealing parameter) was applied to native inputs; and a random incre-
ment/decrement of chain strength (an input property) was applied to embedded inputs.
Each such randomization can shift the location 7 of the Boltzmann distribution incre-
mentally higher or lower: thus, randomizing over multiple programmings has the effect
of spreading the aggregate distribution over a wider range. This explains the gradual
downward trend in minimum relative error R,, with larger samples at increasing time
limits, even though work is constant; however it does not explain the divergence in
performance relative to classical solvers.

Strong performance in our Milestone 1 tests suggests that whether a physical input
is native or embedded, 7 is consistently low enough for the QPU to outperform classical
solvers on all inputs tested.

We conclude that the observed pattern of quantum outcomes in Figure [10]is due to a
mechanism exposed by the unembedding step, when physical solutions are mapped back
to logical solutions and energies are calculated in the original problem space. Specifically,
we conjecture that quantum solution quality is negatively correlated with chain length
L = g/n: chain length grows inversely with n in our test design because embeddings
range from large-and-sparse (with short chains) to small-and-dense (with long chains).
We have observed, for example, that longer chains require stronger (larger magnitude)
chain weights —J.p4in, which could compress the logical problem scale in such a way
that logical solution quality degrades relative to physical solution quality. However, this
proposed mechanism does not correlate perfectly with observedperformance in general;
more work is needed to fully characterize and understand this phenomenon.

Finally, we note that this unembedding penalty is not necessarily prohibitively dam-
aging to logical solution quality. The bottom SK panel shows a clear horizontal point
stratification that correspond to the spectrum of optimal and nearest-optimal solution
energies for this input. Although the QPU did not find ground states in this particular
test, it found several solutions within fifth- or sixth-best overall. Relative performance
on SK inputs may be more due to classical “easiness” due to properties of small cliques,
than of quantum “hardness” due to long chains.

4.3  Test Scope

The specific numerical results reported in Sections [3| and [4] should not be considered
definitive, since they depend on the autotuning policies applied under our Fair Test
procedure (Section . Our study, which focuses on robust performance over a broad
variety of input types, considers parameter tuning to be type of computational overhead
that our test design attempts to minimize. Development of benchmark tests that consider
quantum and classical solver efficiency on specific problem domains, under comparable
levels of tuning effort, would be an interesting direction for future research.

We believe, however, that the observed general patterns of relative performance and
convergence, and our discussion of mechanisms driving those patterns, can be extended
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to other general-purpose heuristic methods that similarly do not exploit input-specific
assumptions. We believe this category of heuristics is the most appropriate comparison
group for our envisioned use case, which requires robust performance from general-
purpose BQM solvers deployed over the cloud.

As discussed in Section 2.1 some input classes were not included in our main tests,
because instances small enough to be embeddable on the Advantage QPU were too small
(and therefore too easy) for tests of Milestone 2 to be viable. Inputs from other applica-
tion domains, such as problems with global constraints, which carry higher translation
and embedding overhead costs than those studied here, could not be included for similar
reasons. Although such “too easy” inputs will always exist, we believe they are not
likely to arise in real-world applications, and ipso facto not interesting candidates for
demonstrations of quantum utility.

As mentioned in the introduction, we consider Milestones 1 and 2 to be most im-
portant for demonstrating quantum utility because the other overhead times in Figure
may be considered negligible or irrelevant, depending on the intended use case. For
example, the direct cost of minor embedding can sometimes be amortized over many
runs on same-structured graphs, such as: cliques, used in wireless network applications
[31]; regular lattice-like structures, used in materials simulation [34]; circuits, used in
fault detection [8, 49]; and maps, used in routing problems [111 [1§].

For another example, the overhead costs of network transmission may apply equally
to both quantum and classical solution methods, and use cases may prioritize either
network latency or throughput. For yet another, commercial users may prioritize per-
formance metrics unrelated to computation time, such as the dollar cost of incorporating
a given solution approach into an existing workflow.

In this context, application scenarios for which Milestones 1 and 2 might be consid-
ered sufficient to demonstrate quantum utility would have the following properties: (a)
they use large lattice-like inputs that can be directly mapped to the hardware graph
or else minor-embedded with short chains; (b) they require many independent solution
samples in short time frames; and (c) additional overheads in Figure 1] are not impor-
tant to the comparison. As it turns out, these criteria have been met by some research
applications in quantum materials simulation, where D-Wave systems have been shown
to outperform classical simulation solvers by several orders of magnitude [33].

5 Conclusions

We introduce quantum utility, an approach to quantum performance evaluation on op-
timization problems, that aims to capture the user experience by explicitly considering
overhead costs attached to the quantum computation. We identify three milestones
associated with specific categories of overheads, and present experimental results for
Milestones 1 and 2, which measure performance of an Advantage QPU against seven
classical solvers running on CPUs and GPUs, using a testbed of 13 input classes.
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Using a rank-based performance metric that identifies solvers outcomes as “wins” or

“fails”, we observe that the Advantage QPU wins in 99% tests of Milestone 1 and in
19% of tests of Milestone 2. Cases where the QPU wins are generally the same cases
where classical solvers most often fail, and are associated with largest problem sizes
n and smallest limits on time per solution ¢/s. Section [4| describes some fundamental
distinctions between classical and quantum performance mechanisms that explain these
performance differences.

We believe that our understanding of classical and quantum performance drivers
bodes well for continued progress towards the goal of demonstrating quantum utility
on broad categories of problems using future-generation QPUs. This belief is based on
early experience with a small prototype (500 qubits) of the Advantage2 systemm which
suggests that full-sized QPUs (7000 qubits) will hold larger inputs with more compact
embeddings (shorter chains), and will demonstrate technological improvements (better
noise suppression and larger energy scale) yielding lower effective temperatures[L, 10} [43].

Furthermore, access time overheads, which have slightly decreased over the past
decade as qubit counts have grown from 500+ on the D-Wave Two [44], to 5000+ on the
Advantage processor, are not expected to increase significantly in the foreseeable future.

Thus, replicating our Milestone 2 tests on the same and larger inputs, under identical
time constraints, should expose degraded classical performance (from traversing smaller
proportions of larger search spaces), and improved QPU performance (from lower effec-
tive temperatures and shorter chains), thereby increasing the variety of inputs and test
scenarios that see QPU wins and classical fails. As well, new types of input will pass
our hardness test (Section and qualify to enter the benchmarking arena. We look
forward to developing new benchmark tests incorporating broader varieties of inputs
and more challenging milestones using future generations of annealing-based quantum
systems.
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