
A Quantum-Classical Hybrid Method for Image
Classification and Segmentation

Sayantan Pramanik†, M Girish Chandra∗, C V Sridhar†, Aniket Kulkarni†, Prabin Sahoo+, Vishwa Chethan D V†,
Hrishikesh Sharma∗, Ashutosh Paliwal†, Vidyut Navelkar†, Sudhakara Poojary†, Pranav Shah†, Manoj Nambiar∗

†TCS Incubation ∗TCS Research +TCS Manufacturing and Utilities
{sayantan.pramanik, m.gchandra, sridhar.cv, aniket.k, prabin.sahoo, v.dv2, hrishikesh.sharma, ashutosh.paliwal,

vidyut.navelkar, sudhakara.poojary, pranav.shah, m.nambiar}@tcs.com

Abstract—Enormous activity in the Quantum Computing area
has resulted in considering them to solve different difficult prob-
lems, including those of applied nature, together with classical
computers. An attempt is made in this work to nail down a
pipeline consisting of both quantum and classical processing
blocks for the task of image classification and segmentation in
a systematic fashion. Its efficacy and utility are brought out by
applying it to Surface Crack segmentation. Being a sophisticated
software engineering task, the functionalities are orchestrated
through our in-house Cognitive Model Management framework.

Index Terms—quantum computing, variational quantum clas-
sifiers, q-means, data encoding, ansatz, measurement, quantum
software development life cycle, computer vision, image classifi-
cation, image segmentation, crack detection

I. INTRODUCTION

Image Segmentation and Classification is an extensively re-
searched area with applications spanning across domains. Be-
cause of its importance, many classical approaches exist. With
the emerging scenario of Quantum Computing, there is thrust
to explore them in these tasks, either for a possible speed up
or better some of the aspects, like, using a smaller number of
training examples, more accuracy etc. One more aspect which
is getting settled is the fact that even when improved quality
and good enough sized quantum computers are available in the
future, both quantum and classical computing work and “coop-
erate” together to solve useful real-life problems. Keeping this
hybrid-architecture in mind, this paper attempts to suggest a
possible pipeline of classical and quantum processing blocks
to achieve image segmentation and further classification of
these segments. In particular, we consider the classification
and segmentation of Kaggle Surface Crack Data and in the
process, suggest a rather generic pipeline to accomplish the
task, taking into account the limitations of number of qubits
and depth of the quantum circuits at present into account.
The results obtained confirm the expected functionality of the
proposal accompanied with quantitative metrics reinforcing its
usefulness. Further, with different processing models (machine
learning as well as others) of both quantum and classical
variety working together, the software aspects involved in
putting the pipeline into action are definitely complex. In order
to negotiate this aspect and “productize” this software solution
in the future, our exclusive Cognitive Model Management

Fig. 1: Generic pipeline for segmenting cracks in images,
which involves the three steps highlighted in the simple
flowchart.

(CMM) framework and OpSense tool are utilized to facilitate
a systematic execution of the whole workflow.

In Section II, the big picture of the pipeline is briefed;
Section III touches upon the data set considered; Section IV
covers the details of various models in considerable detail,
including segmentation, classification and optimization. Before
providing comparative results, fully classical approaches are
mentioned in Section V, followed by Section VI on results.
There is a small section on Future Tasks (Section VII). Section
VIII brings out our initiation into the Quantum Software
Engineering pivoted on CMM and OpSense.

II. OVERALL PIPELINE

As shown in Fig. 1, the problem of crack detection and
segmentation has been addressed in three steps:

1) The first step involves classifying the images to detect
whether it contains a crack or not. If it is found not
to contain any anomalies, then the subsequent pipeline
may be terminated for that particular input image.

2) After classification, the images which are identified to
have cracks in them are segmented into two different
clusters. Depending on the size and resolution of the
images, this could prove to be a time-consuming and
computationally-intensive step, which need not be un-
necessarily wasted on images which do not have any
cracks. Hence the requirement of the first classification
step. Further, clustering being an unsupervised algo-
rithm, is expected to make the pipeline generic and
transferable to other data sets for similar problems,
without the requirement of retraining.

3) Once the clusters have been identified in an image, the
different regions can be classified to check which of
them actually correspond to cracks.

ar
X

iv
:2

10
9.

14
43

1v
2

 [
qu

an
t-

ph
]

 5
 D

ec
 2

02
1

Different parts of the pipeline have been expounded upon
in greater detail, along with more technical arguments, imple-
mentation steps and results, and subtleties in Sec. IV.

III. THE DATASET

The data set in question, namely the Surface Crack data
set, is a set of 40, 000 low-resolution images that are openly
available-to-all via Kaggle [1]. Each image is 227 × 227, 3-
channel RGB, accompanied with a binary label which iden-
tifies whether it contains a crack or not. The entire data set
has been evenly-balanced between images with and without
cracks, available as two folders named ”Positive” and ”Neg-
ative” with 20, 000 images in each. It must be noted that the
images that fall under the ”Negative” label do however contain
dents, discolouration, and other forms of aberrations which
are sometimes difficult to differentiate from actual cracks.
Other surface patterns and textures exist in instances from both
classes. Representative images, one from each folder, can be
found in Fig. 2.

(a) An image without any cracks
in it, labelled ”Negative”

(b) An image with a crack

Fig. 2: Examples of images with and without cracks.

IV. DETAILED PIPELINE AND INTERMITTENT RESULTS

An bried overview of the pipeline was presented in Sec.
II, the components of which have been dissociated into more
granular steps in Fig. 3. The process starts with the image
classifier, for which features are extracted from the images
using a pre-trained deep learning architecture (such as VGG16
[2] trained on the ImageNet data set, and stripped of its final
classification layer). Considering the simplicity of the data set
this approach is being tested on, it was concluded that using
more complicated feature-extractors would be overkill. The
VGG16 model extracts 4096 features from each image which
require too many qubits to encode into a quantum circuit
using angle-embedding, or too deep circuits if amplitude-
embedding is used instead. Better classical-to-quantum data
encoding techniques are presently being researched [3] to
find an appropriate trade-off between circuit-depth and qubit-
requirement.

Keeping the limitations of presently-available simulators
and quantum processors in mind, the dimensionality of the
features obtained from VGG16 was reduced from 4096 to the

order of 10. Specifically, within the scope of this work, Prin-
cipal Component Analysis (PCA) has been used to reduce the
4096 features to just 4, which were then passed on to the first
quantum image classifier for training and inference purposes.
This is similar to the Classical+Quantum approach proposed
in [4]. Alternative approaches that use quantum computing for
feature extraction and classification have also been proposed
[4]–[6] that have been explored, but not implemented within
the context of this work. Further, quantum classification can
also be achieved through algorithms other than variational
quantum classifiers, such as quantum versions of support-
vector machines (QSVM) [7] post the feature-extraction stage.

Following image classification, the task of image segmen-
tation has been attempted through a quantum counterpart of
the k-means algorithm, known as q-means [8]. Additional
methods of image clustering such as graph-cuts [9] which
model the pixels of an image as vertices of a graph and
edges formed by pixel intensities of n-nearest neighbours, and
image segmentation by Quantum Hadamard Edge Detection
(QHED) [10] also serve as interesting and viable approaches.
As already discussed, all of the individual regions detected
through image segmentation are passed on for another round
of classification which uses the same techniques described for
the aforementioned image classifier. The regions identified as
cracks are highlighted as such in the original image, which
concludes the process of crack segmentation 1.

A. Segmentation by Quantized k-means

Given a set of data points, each consisting of d-dimensional
feature vectors, it is often necessary to segregate them into
k different baskets, The ith data point is given by vi =
{v1i , v2i , . . . , vdi }, i ∈ [N]; and the baskets are characterized by
cluster centroids, which themselves are d-dimensional vectors,
cj = {c1j , c2j , . . . , cdj}, j ∈ [k]. One starts with arbitrary
guesses of the k centroid vectors and the pairwise absolute
distance between each cluster centroid and data point is
calculated: |d(vi, cj)|. The ith data vector is assigned to the
cluster to which it is situated closest. Having allocated each
data point to a cluster, the centroids themselves are updated by
taking the average of corresponding features of each vector in
the cluster. The process is repeated to convergence to obtain
the final clusters and centroids.

1) q-means: A quantum equivalent of the k-means algo-
rithm, aptly dubbed q-means, has been proposed in [8] which
performs in poly-logarithmic complexity with respect to N ,
compared to being linear in N for the classical implemen-
tation. The algorithm, though, comes with the caveat the
it employs the use of a QRAM [11] to achieve the said
improvement in performance. QRAM has been an area of
active research over the recent years, but is not something
that is available for immediate use. In this paper, we have

1All experiments portrayed in this paper were developed on AWS Braket
SDK, simulated on Braket’s Local Simulator running on a generic personal
computer with an Intel 10th generation i5-10310U processor with integrated
graphics and 16GB of RAM. All quantum circuit diagrams were generated
using Q-circuit [36].

Fig. 3: Detailed pipeline to solve the problem of crack segmentation in images. The green-coloured boxes are steps for which
quantum algorithms have been implemented and utilized. The steps in the shaded box correspond to image segmentation and
classifying the detected regions.

attempted to circumvent this problem by using a somewhat
naive strategy which works as a placeholder in the NISQ-era
[12] until such memory units are available. Until such time,
although a speed-up over classical techniques is not apparent,
the exercise serves as a proof-of-principle which will be ready
to provide benefit in the near future.

2) Distance Metrics: The cornerstone operation in classical
k-means and quantum q-means algorithm is the calculation
of distances between cluster centroids and the data vectors.
The most common distance-metric of choice is the Euclidean
distance DE between two points in d-dimensional space. In
the quantum-regime, Euclidean distance calculation is done
by expressing the data vectors and centroids in the form of
statevectors, and an affine transform of the modulus of inner
products between them give the requisite distance values:

D2
E(|x〉 , |y〉) = |(|x〉 − |y〉)|2 = (〈x| − 〈y|)(|x〉 − |y〉)

= 2− 〈x|y〉 − 〈y|x〉
= 2− 2 〈x|y〉

(1)

where the entries of |x〉 and |y〉 being real-valued, 〈x|y〉 =
〈y|x〉. |DE | and D2

E having the same monotonicity, the later
can be used as a way to quantify the distance between data and
centroid vectors without adversely affecting the performance
of the algorithm [13].

In the subsequent subsections, the details of some quantum
algorithms that help calculate D2

E , along with their implemen-
tation details, advantages and disadvantages, have been spelt.

3) Swap Test: The Swap Test [14] is perhaps the most
famous method of quantifying the overlap between two quan-
tum states given by |x〉 and |y〉. The respective states are
first prepared from |0〉 by the application of appropriate
parametrized unitaries E(x) and E(y), respectively, which
encode the points x and y into quantum states. The circuit
in Fig. 4 gives an overview of the overall procedure.

|0〉 H • H

|0〉 E(x) ×

|0〉 E(y) ×

Fig. 4: Quantum Circuit to implement Swap Test.

The probability of measuring the first qubit in the state 0
in the computational basis is given by Eq. (2), can be used to
determine the value of 〈x|y〉, which can be retrofitted into Eq.
(1) to get D2

E .

P (0) =
1

2

(
1 + |〈x|y〉|2

)
(2)

However, the problem with using the Swap Test for determin-
ing an equivalent of Euclidean distance is multifold. The most
obvious one is that Eq. (2) gives the value of |〈x|y〉|2, whereas
Eq. (1) requires 〈x|y〉 to be evaluated. Further, the algorithm
uses a controlled-swapping operation, which can prohibitively
increase the depth of the circuit if the registers for |x〉 and |y〉
use multiple qubits.

4) Hadamard Test: Some of the difficulties faced in em-
ploying the Swap Test can be addressed through the use of
Hadamard Test [15], instead, the circuit depiction of which
can be found in Fig. 5. The latter also uses only about half
the qubits compared to the former. A quick and simple analysis
of the algorithm suggests that the Z expectation value of the
first qubit is:

〈Z〉0 = Re (〈ψ|U |ψ〉) (3)

The Hadamard test can be utilized to serve our purpose by
defining U = E(y)†E(x) and |ψ〉 = |0〉, which simplifies

Re (〈ψ|U |ψ〉) to 〈0|E(y)†E(x)|0〉. Similar to the Swap Test,
the Hadamard analogue faces the potential challenge of run-
ning into higher circuit depth due to the presence of the CU
gate. The Hadamard-Overlap test described in [16] partially
bypasses the problem of controlled unitaries at the cost of
using almost double the number of qubits in the circuit.

|0〉 H • H 〈Z〉

|ψ〉 U

Fig. 5: Quantum circuit to calculate Re (〈ψ|U |ψ〉) using
Hadamard Test.

5) Simple Overlap Calculation: The circuit in Fig. 6 show
perhaps the simplest and most economical algorithm that can
be used to calculate the similarity of two quantum statevectors.
The method estimates 〈y|x〉 = 〈0|E(y)†E(x)|0〉 by consecu-
tively applying the encoding unitaries E(x) and E(y)† to the
same set of qubits, without the application being controlled
by another qubit. The requisite value is then extracted by
finding the probability of measuring all the qubits in the
state 0 by running the circuit for multiple shots. Alternatively,
the expectation value of the zero-projector, |0〉n 〈0|n, also
provides equivalent results. Owing to the shallow depth and
low number of qubits required, this algorithm emerges as the
most conducive choice to find D2

E in the implementation of
q-means algorithm.

|0〉
E(x) E(y)† |0n〉 〈0n|

|0〉

Fig. 6: Simple circuit to compute similarity between two
quantum states.

The depicted circuits of all the algorithms described for
distance estimation or similarity evaluation must be run for
multiple shots to glean the requisite information from them.
Naturally, higher the number of shots used, better are the
results obtained. This acts as a NISQ-aligned alternative to
the use of amplitude estimation [17], or variants thereof [18],
[19], to extract the same information from the circuits, which
comes at the cost of higher number of qubits required and
much higher circuit depth, both of which are a bane of NISQ
processors.

B. Image Segmentation

Image Segmentation is typically used to locate objects and
boundaries (lines, curves, etc.) in images. More precisely,
image segmentation is the process of assigning a label to every
pixel in an image such that pixels with the same label share
certain characteristics [20]. A lot of research has been done
in the area of image segmentation using clustering. There are
a plethora of methods and one of the popular ones is to use
the k-means clustering algorithm. Although this algorithm was

not originally developed specifically for image processing, it
has been adopted by the computer vision community and is
used up to these days [21]. The k-means algorithm requires
the a priori knowledge of the number of clusters (k) into which
the image pixels should be grouped. Each pixel of the image
is repeatedly and iteratively assigned to the cluster whose
centroid is closest to the pixel.

The q-means algorithm has been leveraged for the purpose
of image clustering as follows: the images were converted to
grayscale, as the pixel-intensity was found to be the qualifying
feature to identify whether it belongs to a crack-region or
not. The number of available qubits being limited in the
NISQ-era, the images were also downscaled from 227 × 227
to a resolution of 50 × 50, post which a 5 × 5 Gaussian
blurring filter was applied to get rid of noise and somewhat
irrelevant high frequency components from the images. The
new resolution was chosen arbitrarily and was visually found
to retain the discriminating features between the cracks and
background regions. The complexity of the images in the data
set being low, the number of clusters has been set to two, i.e.,
k = 2; and the cluster-centroids are specified by 8-bit integers.
Henceforth, the intensities of the pixels, which range between
[0, 255], have been treated as single-featured vectors of a data
set.

|0〉 RY (piπ/255) RY (cjπ/255)
† |0〉 〈0|

Fig. 7: Circuit to find distance of ith pixel-intensity from jth

cluster-centroid.

The simple overlap calculation method, described in Sec
IV-A5 has been used to calculate the distances of the data
vectors from the cluster-centroids. Angle embedding using
RY gates has been used to encode the intensity and centroid
information, post appropriate scaling, into a single qubit per
pixel to preserve the simplicity of the procedure. If intensity
of the ith pixel is pi, and centroid of the jth cluster is cj , then
E(pi) = RY (piπ/255) and E(cj) = RY (cjπ/255), resulting in
a per-pixel circuit given in Fig. 7. Why this approach works
for our distance calculations and how it compares with the
classical calculations are captured in Appendix A; the results
reinforce the usability of the suggested distance.

The aforesaid process for image segmentation through q-
means was carried out by iterating over each of the 2500
pixels in the downscaled image and over the two cluster-
centroids. This implied the use of 2500× 2 = 5000 qubits to
find the Euclidean-equivalent distances per iteration of the q-
means algorithm. Presently, this is way beyond the number of
qubits that are available at our disposal through any vendor of
quantum processors. Also of note is the fact that most popular
vendors that provide the use of their quantum processors
through the cloud, charge per circuit and the number of shots
that the circuits are executed for, and not the overall width
of the circuit. Thus, the most economical option is to use
as many qubits per circuit as possible, a proposition which

(a) Original image from data set
containing cracks

(b) Result of q-means on down-
scaled image

(c) Result of k-means on down-
scaled image

(d) Result of q-means on original
image

Fig. 8: Results of k-means and q-means image segmentation on
50× 50 and 227× 227 versions of an image with cracks.

is not always advisable due to the reduced connectivity of
the qubits in a processor which may lead to great circuit
depths due to repeated swapping of the qubits. On fully-
connected devices like IonQ’s [22], however, this is easily
amenable. Since the proposed overlap-calculation circuit does
not use entanglement (which does not provide a quantum
advantage, but again, this is a place-holder approach until
such time a QRAM is available), the qubits are batched into
groups of n for pixel-centroid distance estimation, where n
is the number of qubits that are available. The results of q-
means image segmentation on AWS Braket Simulator of an
image with cracks (original resolution and downscaled) and
comparison with classical k-means based segmentation have
been portrayed in Fig. 8. It must be noted that the simulation
times for the q-means algorithm acting on downscaled images
ranged between 60− 90 seconds per image.

C. Quantum Classifier

Quantum machine learning has the potential for broad
industrial applications, and the development of quantum algo-
rithms for improving the performance of neural networks is of
particular interest given the central role they play in machine
learning today [23].

Feedforward neural networks play a key role in machine
learning, with applications ranging from computer vision and
speech recognition to data compression and recommendation
systems. In a supervised learning scenario, a network is trained

to recognize a set of labelled data by learning a hierarchy of
features that together capture the defining characteristics of
each label. Once trained, the network can then be used to
recognize unlabelled (test) data.

Quantum algorithms, i.e., algorithms that can be executed on
a quantum computer, have been investigated since the 1980s,
and have recently received increasing interest all around the
world. One of the main applications for quantum computing
is the development of new algorithms for machine learning
[24]. Variational quantum algorithms (VQAs) use classical
optimizers to train parametrized quantum circuits and rep-
resent an advancement in quantum computing running on
NISQ computers. Variational algorithms can be the basis for
numerous applications, including the design of a quantum
classifier.

In our proposed pipeline, we designed Variational Quantum
Classifiers (VQC) to carry out the requisite classification at
two places (see Fig. 3); the first classifier learns how to classify
the whole input image to pass for crack detection or not. These
images are segmented they are in turn tagged to cracks or not
by the second classifier. A VQC itself consists of three stages:

1) State Preparation, which also encodes the classical data
(feature vector) for further quantum processing,

2) A model circuit or Ansatz with optimizable parameters,
3) A measurement stage.

VQC generally consists of a number of one-qubit gates: the
Hadamard gate H , and rotational gates; plus some entangling
gates: the controlled-NOT and the controlled-Z. Very specif-
ically, in our work we used angle encoding for the classical
features and incorporated strongly entangling layers [25] in
the Ansatz. The classical counterpart, completing the hybrid
nature of VQC utilize the measurement outputs to evaluate a
appropriately chosen cost function and further minimizing it
either through the use of gradients or invoking non-gradient
approaches (see also [26]).

Some of the advantages of Variational Quantum Classifiers
include - A VQC can outperform a classical model using far
less free parameters and, thus, being more efficient. Further, a
complex classification task requires deeper quantum circuits,
which nevertheless grow at a slower pace than the number of
neurons needed in a Classical Neural Network for the same
task [26]. Also, in some cases, VQCs can perform similar to
(classical) classifiers with a lesser number of training samples.

1) Data Dimensionality Reduction: Large data sets are in-
creasingly widespread in many disciplines. In order to interpret
such data sets, methods are required to drastically reduce
their dimensionality in an interpretable way, such that most
of the information in the data is preserved. Many techniques
have been developed for this purpose, but principal component
analysis (PCA) is one of the oldest and most widely used. Its
idea is simple—reduce the dimensionality of a data set, while
preserving as much ‘variability’ (i.e.statistical information) as
possible [27]. The latter translates into finding new variables
that are linear functions of those in the original data set, that
successively maximize variance and that are uncorrelated with

each other. Finding such new variables, the principal com-
ponents (PCs), reduces to solving an eigenvalue/eigenvector
problem [27].

As depicted in our pipeline, PCA is used as a dimension-
ality reducing preprocessing stage, whose output are used as
“classical” features input to the VQC. The rationale is rather
simple: since the dimension of the data corresponds to the
number of qubits required in order to encode the data, and
further, we can handle limited number of qubits both in the
simulators and the NISQ computers, reduction in dimension
is inevitable.

Needless to say, we have considered classical PCA for our
purpose. (Classical) PCA involves a computational cost of
O(N2), where, N is the size of the data vector, and the n×N
covariance matrix of data is subjected to eigen-decomposition.
It is useful to note that a Quantum PCA exists which has the
computational cost of O((logN)2) [28]. In future, when there
is a progress in quantum computing hardware, including a
form of QRAM, one can utilize the Quantum PCA for further
speed up of the proposed pipeline execution.

|0〉 H RZ(x0)

|0〉 H RZ(x1)

|0〉 H RZ(x2)

|0〉 H RZ(x3)

Fig. 9: RZ encoding that encodes the features represented by
xis into the phases of quantum states.

2) Encoding: Of the myriad techniques available for
classical-to-quantum data conversion and embedding them
into circuits, the most simple method, i.e., angle-encoding
was selected. More specifically, H gates followed by RZ
gates with the features as parameters have been used, which
incorporates the said features as phases into the quantum
states. The combination of H and RZ , as in Fig. 9, was found
to work slightly better than the other rotation gates available
for angle-encoding, namely the RX and RY gates. Basis-
encoding would not have been conducive for embedding image
features as it caters only to binary data. Amplitude encoding,
on the other hand, would have been suitable for the task and
advantageous due to the lower number of qubits required, but
was neglected in favour of angle-encoding due to the overall
difficulty and increased circuit-depth of the process.

3) Ansatzes: An ansatz is a block of gates with optimizable
parameters that selects a basis of measurement appropriate
for the problem at hand by iterating over the training inputs
for multiple epochs and trying to match the post-processed
measurements with the ground-truth values corresponding to
each example. Similar to the bias-variance conundrum in
classical machine and deep learning, an ansatz may provide
a better expressibility or may choose to increase the entan-

glement capability of the qubits in a circuit [29]. Similarly,
an ansatz may be constructed to be efficiently implementable
on processors with a certain kind of qubit-connectivity, or
hardware-agnostic versions of it can be created with just the
complexity of the problem in mind.

To address the problem of image and segment classification,
the three ansatzes (only single layers of which are displayed
in Fig. 10) have been utilized. The ansatz in Fig. 10a, has the
highest circuit depth of the three and uses three parametrized
gates per qubit, per layer of the ansatz [25]. It is widely known
that any single-qubit unitary can be expressed as a combination
of RYRZRY gates, up to a global phase. The rotation gates
are followed by multiple CNOT gates, the target qubit of each
gate is determined using the relation t = (c + l + 1) mod n,
where c and t are the control and target qubit numbers, l
is the ansatz-layer being constructed and n is the number of
qubits the ansatz operates on. An L-layer ansatz avails 3nL
optimizable parameters.

The ansatz in Fig. 10b is similar in nature, but uses only an
RY gate per qubit, which reduces the number of parameters to
just nL. In contrast to the previous two, the third ansatz in Fig.
10c (employed in [30]) is constructed using a fixed topology
of entangling gates. Since the CNOT gates appear before the
rotation ones in each layer, this ansatz is incompatible with
phase-encoding through RZ gates, and hence has been used in
conjunction with angle-encoding in the form of RY rotations,
instead.

4) Measurement: Post the application of the encoding and
the ansatz layers, the quantum information must be brought
back to the classical world through the process of measure-
ment. In an otherwise linear manipulation of data by the
various gates in the circuit, measurement provides the requisite
non-linearity to the VQC [4]. Various measurement and post-
processing techniques have been to glean information from the
circuits - using the parity of qubit-readout [7], measuring the
expectation values in a certain basis and passing them along
to another classical neural network for inference [4], etc., are
among the popular approaches.

The expectation value with respect to the Pauli-Z operator
of the first qubit, which lies in the range of [−1, 1], has been
used in this work as the feature that segregates each data point
into either of the two classes in the binary-classification task.
If the measured value is beyond a certain threshold, that is
determined by the classical optimizer, then the data point is
assigned to a particular class; otherwise, the other class is
chosen for the given input.

5) Classical Optimizer: To accrue some benefit out of
Noisy Intermediate-Scale Quantum computers that are plagued
with limited number of qubits, noisy and decoherence, the use
of hybrid quantum algorithms has been suggested. In such
algorithms, certain tasks that are amenable on quantum are
offloaded to quantum processors, and classical and quantum
counterparts work in tandem to solve a larger problem. In
variational quantum algorithms, more often than not, the opti-
mization of parameters is entrusted to the classical processors.

Within the scope of this work, the gradient-free COBY LA

RY (θ0) RZ(θ4) RY (θ8) •

RY (θ1) RZ(θ5) RY (θ9) •

RY (θ2) RZ(θ6) RY (θ10) •

RY (θ3) RZ(θ7) RY (θ11) •

(a)

RY (θ0) •

RY (θ1) •

RY (θ2) •

RY (θ3) •

(b)

• RY (θ0)

• RY (θ1)

• RY (θ2)

RY (θ3)

(c)

Fig. 10: (a) First layer of the Strongly Entangling Layers ansatz. The subsequent layers feature parametrized RYRZRY gates
followed by CNOT gates with skip connections, with the skip-level depending on the layer-number. (b) First layer of the
Basic Entangling Layers ansatz. Similar to the Strongly Entangling ansatz, the subsequent layers feature parametrized RY
gates followed by CNOT gates with skip connections, with the skip-level depending on the layer-number. (c) A single layer
of the ansatz used in the Pennylane tutorial. The dashed boxes include rotational gates with optimizable parameters.

optimizer from the Scipy python package has been employed.
The calculation of quantum gradients using methods like the
parameter-shift rule [31] was avoided to keep the number of
shots and circuit simulation times in check. To the best of the
authors’ knowledge, AWS Braket SDK does not provide an
interface to TensorFlow, PyTorch, or any of the popular deep
learning libraries. This hinders the creation of computational
graphs from the circuits, rendering the advanced optimizers
from the aforesaid libraries unusable. The classical optimizer
was tasked with minimizing the Mean Squared Error (MSE)
between the ground-truth values and the predictions from the
VQC.

D. Image Classification

As illustrated in Sec. II, a classifier is run on each image
to qualify whether it contains a crack or not. The rest of the
inference pipeline is executed only if it is determined that
the image does indeed have crack(s) in it. Over the following
subsections, the training process for such a pipeline has been
described in detail.

1) Data set and Preprocessing: The data set described in
Sec. III is a balanced one, i.e., it contains an even 20, 000
images for each category. However, in an industrial setting,
anomalous data is more difficult to come by. With an exterme
dearth of data for a particular task, the training of efficient
classifiers is a precarious affair. This is a peril for which
quantum classifiers seem to provide an anticipation of a
remedy [32]. A similar impediment has been simulated by
selecting a subset of the data with a modest imbalance. 1000
images were randomly chosen from the overall data set, with
the precondition that only 25% of which would be images
that have cracks in them. The dimensionality-reduced VGG16
features of the 1000 images were further preprocessed by
scaling them to the range of [0, π]. 25% of these reduced
and scaled feature vectors were set aside for testing, and of
the remaining 75%, a further 25% were utilized only for the
purpose of validation. As a result, the training was performed
on only about 563 images.

2) Training: The variational quantum model for image clas-
sification was trained with the data set described above using
phase-encoding, the three Ansatzes in Fig. 10 individually with
n = 4, L = 3, 1000 shots per circuit, and the MSE loss
was reduced using the COBYLA optimizer. Without gradient-
calculation and with 36, 12 and 12 parameters, each, the loss
from the circuits with the three ansatzes converged in about 90,
15 and 15 minutes, respectively. In keeping with the number of
parameters to be optimized, the first circuit ran for about 450
epochs before convergence, while the other two required only
about 150 iterations, each. A typical plot of the training and
validation losses against the corresponding iteration numbers
can be found in Fig. 11. Again, in the absence of gradient-
based optimizers, the optimizer blindly bounces around in
the loss landscape, taking larger steps initially. Gradually, it
converges to a value, but continues to run further iterations
before finally terminating the optimization procedure. Having
fewer parameters to optimize significantly reduces the jitter in
loss, along with the number of epochs and time required to
converge.

(a) Losses for circuit with the
ansatz in Fig. 10a.

(b) Typical losses for circuits with
ansatzes from Figs. 10b and 10c.

Fig. 11: Plot of training and validation loss per iteration encountered
while training the image classification circuit.

The testing accuracy metrics for the VQC models with the
three different types of ansatzes for the test data set have been
reported in table I. The number of misclassifications although
being low, were mostly false negatives, which are detrimental
because the subsequent pipeline does not get triggered for

those images. This is an artefact of the artificial imbalance
introduced in the data set, the effect of which can be offset
through the use of more sophisticated loss functions, such as
Focal Loss, that are more sensitive to imbalanced data.

E. Segment Classification

The images that are adjudges by the image classification
model to contain cracks are passed to the segmentation al-
gorithm in Sec. IV-B. The segmented images exemplified in
Fig. 8 have multiple regions that may either be cracks, or may
belong to the other aberrations discussed about in Sec III and
shown in Fig. 2a. Each such region is passed along to another
variational quantum classification model that has been dubbed
segment classifier.

(a) Original image (b) Manual annotation of cracks

(c) Image with only region 1 (d) Image with only region 2

Fig. 12: Figures show the original image considered, the masks
created manually for the crack-regions, a blank image containing only
the crack-region, and another blank image with only the background.

1) Data set and Preprocessing: To create the data set to
train the segment classifier, a corpus of 150 images with
cracks was created through random selection and the cracked
regions were manually annotated. The different regions of the
annotated images were identified through contour detection,
and each region (including the background) were extracted out
separately, as shown in Fig. 12. The VGG16 features of all
such region-images was obtained and stored along with their
labels to identify whether the regions correspond to cracks
or not. Further preprocessing in the form of dimensionality-
reduction, scaling, and splitting for training, validation and
testing were carried out as described before, considering the
same percentages.

2) Training: Training for the segment classifier was carried
out with the same circuits and methods described in Sec.
IV-D2. The segment classifiers with the ansatzes in Fig.
10, being trained on a more balanced data set, and on a
considerably lesser number of examples, took only about 20,
5 and 5 minutes, each. The plots of loss vs epochs also were
similar to those in Fig. 11 for the three ansaetze. The segment
classification accuracy metrics for the three trained models on
the test data set are captured in table I.

3) Post-processing: Unlike the image classifier, the seg-
ment classifier is plagued with the problem of false-positives.
Many regions of the images which are not cracks, get misiden-
tified as such. Fig. 13a shows an image where although the
crack is segmented properly, many additional regions are
also denoted as cracks by the classifier. The difficulty may
be remedied by enclosing the regions identified as cracks
in oriented bounding boxes and finding the aspect ratio of
the latter. A plot of the aspect ratios for crack and non-
crack regions can be found in Fig. 13b. The fairly-separable
distribution of ratio-values in the plot suggests that a simple
classical or quantum classifier can be trained to filter out the
non-crack regions getting identified as cracks, though at the
cost of increased false-negatives.

(a) (b)

Fig. 13: (a) Result of segment classification on an image with false-
positives. (b) Plot of aspect ratios of oriented bounding boxes for
crack and non-crack regions.

V. CLASSICAL APPROACHES

To benchmark the performance of the quantum approaches
discussed to solve the problem of crack-detection, it was
compared against two classical solutions. One of the solu-
tions was devised by replacing the quantum blocks (i.e., the
quantum classifier and the q-means algorithm) in the pipeline
detailed in Sec. IV with their direct classical counterparts.
The 4-dimensional PCA-reduced VGG16 features from an
image were passed to a simple fully-connected layer to get
binary, categorical output, and the binary cross entropy loss
was minimised using the Adam optimizer. The other approach
involved trials with a home-brewed deep learning model called
SCNet [33] built specifically for surface crack detection. The
models were trained, validated and tested against the same set
of data as their quantum analogues, although for SCNet, the
images had to be augmented. The performance metrics of the
classical approaches have also been briefed in table I.

VI. OVERALL RESULTS AND ACCURACY

A further 150 images were annotated to test the accuracy
of the end-to-end pipeline, which was quantified using Inter-
section over Union (IoU) of the segmented cracks with the
ground-truth annotations. Along with the accuracy value of
various classical and quantum classification models (without
downscaling of images), the respective IoU scores of the
overall pipeline have also been included in table I. The
segmentation results from some of the approaches for the
image in Fig. 8a are shown in Fig. 14.

(a) (b)

(c) (d)

Fig. 14: (a) shows the results from a classical counterpart of the
same pipeline used for quantum. (b) and (c) show the results obtained
from the quantum models with the Strongly Entangling Layers ansatz,
without any post-processing. For (a) and (b), the original image
was downscaled to speed up the process of image segmentation. (d)
portrays the results from the in-house classical crack-segmentation
model, SCNet.

Image Classification Segmentation Classification IoU

Ansatz in Fig. 10c 97.6 98.7 72.76

Basic Entangling Layers 94.8 97.4 73.14

Strongly Entangling Layers 99.2 98.7 73.33

Classical pipeline 100 100 75.21

SCNet N/A N/A 91.36

TABLE I: Accuracy values for image and segment classifica-
tion along with IoU scores for various methods.

The low accuracy values reported for the quantum models
may be due to the drastic reduction in dimensionality to fit the
contemporary quantum simulators and hardware. Of course,
further research is also possible in terms of data encoding,
etc. It is also noteworthy that the explored quantum models

use around 12 − 36 parameters and get trained in a fraction
of the time compared to SCNet which depends on about 30
million trainable parameters!

VII. FUTURE WORK

The work carried out for this paper opened up many threads
for explorations. As mentioned in the previous section, one
immediate thing to consider is arrive at other suitable data
encoding schemes, say, dense angle encoding which facilitates
encoding two features per qubit [3]. Since we have carried out
only simulations in AWS, running on different hardware is
another task, including comparative performance and bench-
marking.

Within the context of classification and segmentation, ex-
tending the research to multi-class scenario is another useful
and challenging direction. In this paper, we considered a data
set with a number of examples; in case, if only few images
are available, generating a sized number of images [34] for
training is a practical and an important issue to address.

Going tangentially off, since the Deep Learning based
technique of [33] performed well for segmentation, ways to
“quantize” it can be considered as well.

VIII. QUANTUM SOFTWARE ENGINEERING

The increasing complexity involved in the solutions devel-
oped using quantum computing has mandated the formulation
and formalisation of a Quantum Software Development Life
Cycle [35], which is formed by the interweaving of quantum,
machine learning and software engineering life cycles. None
of the components can be considered independently, and a
holistic view of the system is necessary for proper functioning.
Such a life cycle involves all of the machine learning and
software engineering life cycle steps, in addition to certain-
quantum specific parts such as selection of data-encoding
strategies, quantum-models etc., among others.

While experimenting with Quantum Machine Learning
models (which are invariably a mix of classical and quantum
techniques), keeping tabs on all the classical options is a
daunting task in itself, which is augmented by the plethora
of quantum options, rendering manual tracking of the models,
parameters, metrics, performance indicators, version-tracking,
and the permutations and combinations thereof, an unsur-
mountable feat. Further, quantum computing being at a nascent
stage, is nowhere close to being productionized. As a result,
most practitioners train, validate and test their developed mod-
els within the same file or jupyter notebook. The possibility
of saving quantum models for future inferencing and use is
rarely considered or discussed.

Trained QML models which consist mostly of the optimized
weights, along with the helper functions, in the form of
objects, can be easily stored in the form of pickle or dill files
if the quantum SDK being used is python-based. Additionally,
to address non-functional aspects of the problem like per-
formance and experiment tracking, reproducibility, orchestra-
tion, distributed execution etc., Cognitive Model Management
(CMM) was used, which is a framework, intended to help the

user manage the lifecycle of the quantum and (or) classical
models. CMM provides modular API-based architecture to ob-
tain maximum agility and scalability along with orchestration
facility where the user can orchestrate workflows from tasks
and execute them in a distributed and clustered environment.
Finally, when the models were trained, another self-developed
tool called OpSense was leveraged to track the experiments
and deploy the model that had the best metrics.

CONCLUSION

Set out to solve the image classification and segmentation,
which can be of great use across domains, the paper brought
out a generic hybrid quantum-classical pipeline. Each quantum
block was worked out in a systematic manner and the entire
pipeline was assessed for its functionality and performance
by considering Kaggle Surface Crack Detection data. Com-
parison with other fully classical pipelines and the associated
metrics were captured. In order to systematically handle the
software-engineering aspects, we also adopted the Cognitive
Model Management framework as well as another tool called
OpSense, and successfully put into action the entire work flow
involved.

ACKNOWLEDGEMENT

The authors would like to sincerely thank Mr. Anil Sharma,
Head of TCS Incubation, and Dr. J. Gubbi, Senior Scientist,
TCS Research, for their constructive feedback and support,
without which this work would not have been possible.

REFERENCES

[1] Surface crack detection dataset
[2] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” arXiv:1409.1556.
[3] R. LaRose and B. Coyle, “Robust data encodings for quantum classi-

fiers,” Physical Review A, vol. 103, number 3, September 2020.
[4] A. Mari, T. R. Bromley, J. Izaac, M. Schuld and N. Killoran, “Transfer

learning in hybrid classical-quantum neural networks,” Quantum, vol. 4,
2020, p. 340.

[5] I. Cong, S. Choi and M. D. Lukin, “Quantum convolutional neural
networks,” Nat. Phys. 15, 1273–1278 (2019).

[6] M. Henderson, S. Shakya, S. Pradhan and T. Cook, “Quanvolutional
neural networks: powering image recognition with quantum circuits,”
arXiv:1904.04767.

[7] V. Havlicek, A. D. Córcoles, K. Temme, A. W. Harrow, A. Kandala,
J. M. Chow and J. M. Gambetta, “Supervised learning with quantum
enhanced feature spaces,” Nature, vol. 567, March 2019.

[8] I. Kerenidis, J. Landman, A. Luongo and A. Prakash, “q-means: a quan-
tum algorithm for unsupervised machine learning,” arXiv:1812.03584.

[9] L. Tse, P. Mountney, P. Klein and S. Severini, “Graph cut segmentation
methods revisited with a quantum algorithm,” arXiv:1812.03050.

[10] X. Yao, et al., “Quantum image processing and its application to
edge detection: theory and experiment,” Phys. Rev. X, vol. 7, issue 3,
September 2017.

[11] V. Giovannetti, S. Lloyd and L. Maccone, “Quantum random access
memory,” Physical Review Letters, vol. 100, number 16, April 2008.

[12] J. Preskill, “Quantum computing in the NISQ era and beyond,” Quan-
tum, vol. 2, August 2019.

[13] S. Johri, S. Debnath, A. Mocherla, et al. “Nearest centroid classification
on a trapped ion quantum computer,” npj Quantum Inf 7, 122 (2021).

[14] H. Buhrman, R. Cleve, J. Watrous and R. de Wolf, “Quantum finger-
printing,” Physical Review Letters, vol. 87, number 16, September 2001.

[15] D. Aharonov, V. Jones and Z. Landau, “A polynomial quantum algorithm
for approximating the jones polynomial,” Algorithmica, vol. 55, number
3, 2009.

[16] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio and P. J.
Coles, “Variational quantum linear solver,” arXiv:1909.05820.

[17] G. Brassard, P. Hoyer, M. Mosca and A. Tapp, “Quantum amplitude
amplification and estimation,” Quantum Computation and Information,
p. 53-74, 2002.

[18] D. Grinko, J. Gacon, C. Zoufal, et al. “Iterative quantum amplitude
estimation,” npj Quantum Inf 7, 52 (2021).

[19] Y. Suzuki, S. Uno, R. Raymond, et al. “Amplitude estimation without
phase estimation,” Quantum Inf Process 19, 75 (2020).

[20] https://morioh.com/p/dcdc9957bc1c
[21] J. Gaura, E. Sojka and M. Krumnikl, “Image segmentation based on

k-means clustering and energy-transfer proximity,” 7th International
Symposium, ISVC2011.

[22] K. Wright, K. M. Beck, S. Debnath, et al. “Benchmarking an 11-qubit
quantum computer,” Nat Commun 10, 5464 (2019).

[23] J. Allcock, C. Hsieh, I. Kerenidis, and Shengyu Zhang, “Quantum
algorithms for feedforward neural networks,” arXiv:1812.03089.

[24] I. Griol-Barres, S. Milla, A. Cebrián, Y. Mansoori and J. Millet,
“Variational quantum circuits for machine learning: an application for
the detection of weak signals,” MDPI Applied Sciences, July 2021.

[25] M. Schuld, A. Bocharov, K. Svore and N. Wiebe, “Circuit-centric
quantum classifiers,” Physical Review A, vol. 101, number 3, March
2020.

[26] E. M. G. Fuster, “Variational quantum classifier,”
http://diposit.ub.edu/dspace/bitstream/2445/140318/1/GIL FUSTER
Elies Miquel.pdf

[27] I. T. Jolliffe and J. Cadima, ”Principal component analysis: a review and
recent developments,” DOI: 10.1098/rsta.2015.0202

[28] S. Lloyd, M. Mohseni and P. Rebentrost, ”Quantum principal component
analysis,” Nat. Phys. 10, 631 (2014).

[29] S. Sim, P. D. Johnson and A. Aspuru-Guzik, “Expressibility and entan-
gling capability of parameterized quantum circuits for hybrid quantum-
classical algorithms,” Advanced Quantum Technologies, vol. 2, number
12, October 2019.

[30] Quantum Transfer Learning
[31] M. Schuld, V. Bergholm, C. Gogolin, J. Izaac and N. Killoran, “Evalu-

ating analytic gradients on quantum hardware,” Physical Review A, vol.
99, number 3, March 2019.

[32] S. L. Wu, et al., “Application of quantum machine learning using the
quantum kernel algorithm on high energy physics analysis at the LHC,”
Physical Review Research, vol. 3, number 3, September 2021.

[33] H. Sharma, P. Pradhan, P. Balamuralidhar, “SCNet: a generalized
attention-based model for crack fault segmentation,” arXiv:2112.01426.

[34] M. S. Rudolph, N. B. Toussaint, A. Katabarwa, S. Johri, B. Peropadre, A.
Perdomo-Ortiz, “Generation of high-resolution handwritten digits with
an ion-trap quantum computer,” arXiv:2012.03924.

[35] B. Weder, J. Barzen, F. Leymann and D. Vietz, “Quantum software
development lifecycle,” arXiv:2106.09323.

[36] B. Eastin and S. T. Flammia, “Q-circuit tutorial,” arXiv:quant-
ph/0406003v2.

APPENDIX A
CLASSICAL VS QUANTUM DISTANCE CALCULATION

Fig. 15: Comparison of quantum and classical distance esti-
mations for cj = 200 and pi ranging from 0 to 255, at unit
intervals.

https://www.kaggle.com/arunrk7/surface-crack-detection
https://morioh.com/p/dcdc9957bc1c
http://diposit.ub.edu/dspace/bitstream/2445/140318/1/GIL%20FUSTER%20Elies%20Miquel.pdf
http://diposit.ub.edu/dspace/bitstream/2445/140318/1/GIL%20FUSTER%20Elies%20Miquel.pdf
https://pennylane.ai/qml/demos/tutorial_quantum_transfer_learning.html

(a) 10 shots (b) 100 shots

(c) 1000 shots (d) 10000 shots

Fig. 16: The average and standard deviation of errors in Euclidean
distance calculation for various number of shots, with various values
of cj on the x-axis.

The suitability of the distance-calculation approach can be
verified by the plot in Fig. 15, which compares the distances
estimated using simulated quantum circuits against scaled clas-
sical distances (pi−cj/255)

2. The number of shots considered
for this validation exercise was 1000 per circuit. A comparative
study of the results against the number of shots can be found
in the plots of Fig. 16, where both pi and cj were varied from
0 to 255 and the average error per value of cj has been shown
as the baseline, surrounded by ± standard deviation of errors.
As expected, the curves become smoother and error reduces
as the number of shots is increased, due to better estimation
of expectation values.

	I Introduction
	II Overall Pipeline
	III The Dataset
	IV Detailed Pipeline and Intermittent Results
	IV-A Segmentation by Quantized k-means
	IV-A1 q-means
	IV-A2 Distance Metrics
	IV-A3 Swap Test
	IV-A4 Hadamard Test
	IV-A5 Simple Overlap Calculation

	IV-B Image Segmentation
	IV-C Quantum Classifier
	IV-C1 Data Dimensionality Reduction
	IV-C2 Encoding
	IV-C3 Ansatzes
	IV-C4 Measurement
	IV-C5 Classical Optimizer

	IV-D Image Classification
	IV-D1 Data set and Preprocessing
	IV-D2 Training

	IV-E Segment Classification
	IV-E1 Data set and Preprocessing
	IV-E2 Training
	IV-E3 Post-processing

	V Classical Approaches
	VI Overall Results and Accuracy
	VII Future Work
	VIII Quantum Software Engineering
	References
	Appendix A: Classical vs Quantum Distance Calculation

