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Abstract—Quantum and Classical computers continue to work
together in tight cooperation to solve difficult problems. The
combination is thus suggested in recent times for decoding
the Low Density Parity Check (LDPC) codes, for the next
generation Wireless Communication systems. In this paper we
have worked out the Quadratic Unconstrained Binary Optimiza-
tion (QUBO) formulation for Rayleigh Fading channels for two
different scenarios- channel state fully known and not known.
The resultant QUBO are solved using D-Wave 2000Q Quantum
Annealer and the outputs from the Annealer are classically
postprocessed, invoking the notion of diversity. Simple minimum
distance decoding of the available copies of the outputs led
to improved performance, compared to picking the minimum-
energy solution in terms of Bit Error Rate (BER). Apart from
providing these results and the comparisons to fully classical
Simulated Annealing (SA) and the traditional Belief Propagation
(BP) based strategies, some remarks about diversity due to
quantum processing are also spelt out.

Index Terms—LDPC code, Rayleigh Fading Channels, QUBO,
Quantum annealing, Simulated annealing, Minimum distance
decoding

I. INTRODUCTION

A key issue in communication over a wireless channel is
the protection of the transmitted message against corruption by
the noise in channel. This done by adding some redundancy
along with the transmitted message that ensures that even in
the presence of noise or interference, sufficient information
reaches the receiver to allow the recovery of the transmitted
message. This process of proofing the message by adding
redundancy in some form, is known as channel coding. Some
of the most popular channel codes in practical use today are
the Turbo Codes, and Low-Density Parity Check Codes (or
LDPC Codes). LDPC codes, first introduced by Gallagher in
1962, can perform close to Shannon limit. But, the decoding
of LDPC coded messages consume significant computation.
Currently, the most popular classical method to decode LDPC
coded messages is the Belief Propagation (BP) algorithm
and its variants. In Kasi et al [6], the authors introduce a
quantum annealer-based decoder solution, called the Quantum
Belief Propagation (QBP), formulating the decoding problem
as a Quantum Unconstrained Binary Optimization (QUBO)
problem and use commercial quantum annealer (D-Wave) to

† The author was with TCS Research and Innovation when the work was
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perform the decoding. They considered Bipolar Phase Shift
Keying (BPSK) symbols for the transmitted message and
restricted to Additive White Gaussian Noise (AWGN) noise
for the channel. In our earlier work [10] [11], we augmented
the QBP with a classical post-processing step, enhancing the
decoder performance.

In this paper, we consider the more realistic setting of
Rayleigh fading channels and suitable modifications towards
extending the existing AWGN formulation are presented. Both
coherent (Channel State Information is known) and non-
coherent (unknown CSI) scenarios are considered. To the best
of our knowledge, these extensions are novel. Further, carrying
over from our previous proposition, we have explored the
advantages of the post-processing in each of the said cases.
The notion of receive diversity we spelt out in is also examined
to certain detail in this paper considering both Rayleigh fading
and AWGN channels.

For brevity and to avoid repetitiveness, in this paper, we
have avoided the capturing of the well-known remarks on
LDPC, Sum-Product or BP Decoding algorithm, Quantum
Computing and Noisy Intermediate Scale Quantum (NISQ)
hardware, and others. See [5] [1] [4] and the references
there in for LDPC and the associated decoding. For Quantum
Computing and NISQ, [9], [8] and the references there in can
be consulted.

This paper is organized as follows: In Section II, just
enough supporting preliminaries is covered. Section III address
the QUBO formulations of LDPC decoding for Rayleigh
fading channels; Section IV provide results, where, classical
post processing is also adopted and the related discussions;
Conclusions occupy Section V.

II. SOME ESSENTIAL BACKGROUND

A. Low-Density Parity Check (LDPC) Coding

A (N,K) Low-Density Parity Check (LDPC) Code is a
linear block code constructed with a sparse parity matrix H
(therefore the Low-Density in name LDPC).

H = [hij ]N×K (1)

It is called a (db, dc)-regular code if every bit node bi, i ∈ [K]
participates in dc checks and every check ci, i ∈ [N ] is applied
to db bit nodes forming a check constraint. This relationship
can also be visualized with a Tanner graph: where in the first
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Fig. 1: A parity check matrix and its Tanner Graph represen-
tation, as described in [7]

row, all the bit nodes {bi} are placed, and in the second row all
the check nodes {ci} are placed; every bit node has an edge to
the check nodes whose check constraint it participates in, and
every check node as an edge with every node that participates
in its check constraint. See [7] and other standard references
for diagrammatic view of Tanner Graph and the involved Log
Likelihood Ratios (LLRs) for decoding (e.g., Fig.(1))

Also, in the parity matrix H, every row corresponds to a
check constraint and every column indicates which bit nodes
participate in the check constraint. A generator matrix G is
obtained from the parity matrix H. G is used to encode the
transmitted message u as,

c = u G (2)

where multiplication is mod-2.
LDPC coded messages are decoded at a receiver using an

appropriate decoding algorithm. Belief Propagation (BP), a
message-passing algorithm with numerous applications, is the
most popular choice to decode LDPC coded messages.

Consider the transmission of a symbol x. The channel
model and LLR calculation are partly derived from [3] for
the discrete-channel model. The received information y can
be expressed, assuming a channel gain h and additive noise
n, as,

y = hx + n (3)

A Rayleigh Faded channel assumes h ∈ CN (0, 1). Therefore,
hr, hi ∼ N (0, 1/2), where hr = Re{h} and hi = Im{h}.

The following aspect is implied in the channel model: the
transmitted symbol propagates through multiple paths. Each
path add its own fade and phase delay. However, summing
the effects of the numerous paths and obtaining the resultant
at the receiver, we arrive at the the complex Gaussian model
(as a result of the Central Limit Theorem).

We also assume in the Rayleigh Faded channel model,
an additive white Gaussian noise (AWGN): therefore, n ∼
CN (0, N0). n = nr+jni and therefore, nr, ni ∼ N (0, N0/2).
The magnitude of h, |h|, is distributed according to the
Rayleigh distribution (hence the name Rayleigh Faded). That
is, |h| ∼ re−r

2/2, r ≥ 0.

B. Quantum Annealing

Quantum Annealing is a meta-heuristic optimization tech-
nique that is used to find the global minima of an objective
function. A differentiating feature of Quantum Annealing
over its classical counterpart,the Simulated Annealing is the
presence of quantum tunnelling-type fluctuations. These fluc-
tuations allow the optimizer to escape local minima and find
global minima by ”tunnelling” through barriers that separate
such minima. A Quantum Annealer (QA) is an analog com-
puter, composed of physical qubits, that implements quantum
annealing.

QUBO. Utilization of a QA requires the formulation of
the target optimization problem as a Quadratic Unconstrained
Binary Optimization (QUBO) problem. A QUBO problem is
specified by a quadratic polynomial f(q̄) (called the QUBO
objective), where q̄ = [q1, q2, . . . , qn]T , with each qi ∈ B =
{0, 1}. Thereby, f : Bn → R is expressed as:

f =
∑
i

hiqi +
∑
i<j

Jijqiqj (4)

The linear terms hiqi are called the bias terms of the fQ.
hi is the linear bias of qi. The quadratic terms Jijqiqj are
called the coupler terms. Jij is the strength of the coupler
between qi and qj . An equivalent Ising form also exists
for every QUBO problem and can be obtained with the
transformation for each qi, xi := 2qi−1. The new polynomial
so obtained g(x1, . . . , xn) is equal to f , but its variables xi lie
in {−1,+1}. The QUBO problem involves finding q̄∗ ∈ Bn

such that
q̄∗ = argmin

q̄∈Bn

f(q̄) (5)

The objective is mapped to the qubits of the QA by a process
known as embedding. The qubits of the QA thereby form an
Ising system. By converging through quantum annealing, to the
ground state of this Ising system, the QA is able to solve the
embedded QUBO problem. The QA is designed to ”naturally”
solve the optimization, by seeking the natural low-energy state
of the physical system. In certain scenarios, quantum annealing
can be more efficient than a classical implementation for
solving QUBO problems, at least in principle. Recently, QAs
have been commercialized, most notably by DWave Systems
Inc. Current offerings by DWave include DWave 2000Q which
houses more than 2000 qubits, and DWave Advantage, which
houses more than 5000 qubits, at the time of writing.

C. Quantum Belief Propagation

In the paper by Kasi and Jamieson [6], they introduce
a quantum version of the BP algorithm called Quantum
Belief Propagation (QBP) and designed the algorithm for
implementation on quantum annealers. As discussed in the
section on quantum annealing, utilizing a quantum annealer
requires the formulation of the problem as a QUBO problem.
Therefore, the LDPC decoding problem is formulated as a
QUBO problem. The QUBO objective function comprises
two terms: an LDPC satisfier function,

∑
∀ci∈V Lsat(ci), to

prioritize solutions that satisfy the LDPC check constraints



Fig. 2: A schematic of the proposed approach

(Lsat(ci) = 0 if check constraint for check node ci is
satisfied), and a distance function

∑N
i=0 ∆i, to evaluate the

closeness of the solutions to the received information. A low
value for both these quantities are desirable. The entire QUBO
function is therefore a weighted combination of these two
quantities. Hence, the QUBO problem is expressed as:

min
qi

{
W1

∑
∀ci∈V

Lsat(ci) + W2

N∑
i=0

∆i

}
(6)

Let q1, q2, . . . , qn be the qubit variables in the QUBO
objective corresponding to the sent information x1, x2, . . . , xn.
qi yields an estimate for xi. This estimate is obtained by ap-
propriately processing the received information y1, y2, . . . , yn.

LDPC satisfier function. The LDPC satisfier function at
check node ci is 0 if the check constraint at ci is satisfied.
The only constraint for LDPC encoding is the modulo-2 sum
constraint. That is, the constraint is satisfied if the modulo-2
sum at ci is 0. Hence, Lsat is defined as:

Lsat(ci) =
((

Σ∀j:hij=1qj
)
− 2Le(ci)

)2

(7)

where Le(ci) is defined in terms of some additional ancilliary
qubits {qei}. The 2Le(ci) in Lsat(ci) represents an even
number. If there exists an even number 2Le(ci) such that the
check-sum at ci equals it, then the constraint is satisfied, and
expectedly Lsat(ci) is 0.

Distance function. A distance ∆i is defined that computes
the proximity of the received bit information yi with the qubit
qi:

∆i = (qi − Pr(qi = 1|yi))2 (8)

The probabilities Pr(qi = 1|yi) can be obtained from the log-
likelihood ratios (LLR) for the channel noise assumed.

III. QUBO FORMULATION FOR RAYLEIGH CHANNELS

In our earlier work [10] [11], we carried out studies related
LDPC decoding for AWGN channel, brought into the context
the classical post processing for improved performance. In
the present work, we extend the pipeline to Rayleigh Fading
channel scenario, which to the best of our knowledge is not
examined within the Quantum-Enhanced Processing. Again,
to reiterate, to the best of our knowledge, the extension
of quantum enhanced LDPC decoding to Rayleigh fading
scenario augmented with classical post processing does not
exist elsewhere.

For evaluating the performance of our simulation experi-
ment, we have used BER as the primary metric for received
signal quality. Bit Error Rate (BER) is the percentage of bits
that have errors relative to the total number of bits received in
a transmission, usually expressed as ten to a negative power.
Frame Error Rate (FER) is the ratio of data received with
errors to total data received and is used to determine the quality
of a signal connection.

In this section, we describe our method for decoding the
LDPC coded message, from the received information. We
assume propagation of the transmitted message through a
Rayleigh channel. We consider the two cases of channel-
state knowledge: coherent and non-coherent. We compare the
decoding performance in a range of noise levels. We have
given a brief outline of our strategy in form of a flowchart in
Fig. (2).

We assume transmission of Binary Phase-shift keying
(BPSK) symbols. Let x1, x2, . . . , xn be the transmitted sym-
bols. Then xi ∈ {−1,+1}. Channel is Rayleigh, therefore,
hi ∼ CN (0, 1), and ni ∼ N (0, N0). At the receiver, at time
instant i, we receive yi = hixi + ni. To construct the QUBO



objective for the QBP, we require the parity matrix H that
is used in the LDPC scheme, to construct the LDPC satisfier
function. To construct the distance function, we require the for
every i, pi = Pr(qi = 1|yi). Recall that the qi represents the
sent symbol xi. This can be computed from the log-likelihood
ratio (LLR)

li = log
Pr(xi = +1|yi)
Pr(xi = −1|yi)

(9)

where pi is calculated as,

pi =
(eli − 1)

(eli + 1)
(10)

The two cases of coherent and non-coherent are put across
in the following. These two cases are considered in a purely
classical setting for approximating the LLRs in [3].

A. Coherent

In the coherent case, we assume that the channel is known
to perfection at the receiver [12]. With hi at the receiver, a
sufficient statistic

ri = Re
{( hi

|hi|
)∗
yi

}
= |hi|xi + zi (11)

is computed, where |hi| ∼ rer
2/2 and zi ∼ N (0, N0/2); r is

an instance of the random variable corresponding to envelope
of the channel response. We obtain li as,

li = 2|hi|yi (12)

From li, we obtain pi = p(qi = 1|ri) = (eli−1)

(eli+1)
. These

quantities, pi, i = 1, . . . , n are used to construct the QUBO
objective.

B. Non-coherent

In the non-coherent case, we do not have any information
about the channel at the receiver [12]. To make the decoding in
this case possible, we follow an orthogonal mapping scheme
for transmission. In this scheme, the message symbols x ∈
{−1,+1} are mapped to t ∈ {(0, a), (a, 0)}, t = (t1, t2). At
the receiver, we obtain y1 = h1t1 + n1 and y2 = h2t2 + n2.
Therefore, we obtain a 2-symbol vector y = (y1, y2). Given
h1, h2 ∼ CN (0, 1) and n1, n2 ∼ CN (0, N0), we can compute
l = log Pr(x=+1|y)

Pr(x=−1|y) (mathematically similar to Equation. (9))
as:

l =

(
|y1|2 − |y2|2

)
a2

(a2 + N0)N0
(13)

Here we define the complex normal distribution given as, CN .
In probability theory, the family of complex normal distri-
butions, denoted CN or NC , characterizes complex random
variables whose real and imaginary parts are jointly normal
[2].

From this we obtain p = Pr(x = 1|y) = (el− 1)/(el + 1).
Hence, for a sequence of message symbols {xi}, the corre-
sponding {pi} can be computed and the QUBO objective is
constructed.

C. Optimization
The QUBO objective is input to the annealer. The annealer

performs Na anneals and thereby provides Na solutions
x̂1, x̂2, . . . , x̂Na

. Due to the probabilistic nature of annealing
and sampling from the low-energy state that results from the
annealing, the annealer ”naturally” provides a form of diver-
sity. This notion was spelt out in our recent work [10] [11];
more details available there. One of the obtained solutions is
highly likely to be close the transmitted message sequence
x = (x1, x2, . . . , xn). Rather than choosing the lowest energy
solution from the Na solutions obtained and discarding the
others, we obtain our estimate for the transmitted sequence x̂
from all the Na solutions as:

x̂ = argmin
x∈Rn

Na∑
i=1

‖x̂i − x‖2 (14)

That is, we have carried out simple minimum distance post-
processing to pick the right solution; can be linked to a kind of
selection diversity reception. We summarize again the classical
processing augmented decoding:

1) Application on D-Wave platform: Now, we obtain the
final QUBO expression as described in (6), which is to be
optimized for the lowest energy solution first, followed by
classical postprocessing. The QUBO is thus, passed to the
D-Wave quantum annealer. Several samples are collected by
running the annealer multiple times. A total of 20 candidate
solutions are retrieved over 106 iterations, and repeated for
each individual integral value of Signal-to-Noise Ratio (SNR)
in the range of [4, 10]. See Fig. 1 of [10] [11], and the related
details.

We finally check the constraints applied on the objective
function, and codewords that satisfy LDPC constraints, refered
to in Eq. (7), are selected out from the samples returned from
the D-Wave annealer.

2) Classical Postprocessing: Finally, minimum distance
decoding is performed with the received signal to obtain the
final decoded codeword.

20 shots were made by the quantum annealer and the unique
ground state solutions were stored. Then the solution with the
minimum Euclidean distance from the received codeword was
chosen as the final solution.

This classical post-processing strategy gave improved re-
sults over simply calculating the lowest energy solution re-
turned by the annealer.

As discussed in our previous work [10] [11], for both
simulated and quantum annealing schemes, message passing
iterations are not required, as the annealer settles the solu-
tions ”naturally”. The process described thus far is same for
both simulated annealing and quantum annealing approaches,
wherein simulated annealing runs on classical hardware with
a simulated annealer sampler, and quantum annealing sampler
runs on real quantum hardware.

IV. RESULTS

As a precursor to the simulation study of Raleigh fading
scenario, we produced result for a typical time-varying SNR



(a) BER vs SNR for codeword length of (22,11) for Rayleigh case (b) BER vs SNR for codeword length of (32,16) for Rayleigh case

(c) BER vs SNR for all codeword lengths in the Rayleigh channel
case

(d) BER vs SNR comparison for codeword length of (32,16) between
AWGN and Rayleigh Fading channels (as indicated in the legend)

Fig. 3: Results based on Bit Error Rate performance

channel in our earlier work [10] [11]. In this paper, we
consider the actual experimentation with Rayleigh fading,
where we have synthesized Rayleigh fading channels for signal
transmission and performed quantum and simulated annealing-
based decoding on the received signals. For our experiment
we have kept the number of anneals fixed at 20, for both
quantum and simulated annealing. We have conducted the
experiment for 106 Monte Carlo simulations and obtained the
results shown in fig. (3)

For our current simulation, we have used the shape param-
eter of the Rayleigh distribution as 1.

For simulated annealing, traditionally only one candidate
solution is picked up. But in order to provide a one to one
correspondence with the QA based post processing strategy,
we have considered set num reads parameter to 20 to obtain
20 solutions of varying energies in the same annealing run and
from these we eliminate the non-unique and non-constraint
satisfying solutions. Then, in the remaining pool of the valid
solutions, we pick that one which is the closest to the received

signal vector. This strategy may be useful in fully classical
processing when the Simulated Annealing meta heuristic is
used.

A. Observations

• Minimum distance postprocessing is performing better
than the lowest energy solutions from the solution set
as can be seen from Fig. (3a) and Fig. (3b)

• The BER performance curves show that the performance
of Annealer-based schemes is superior to that of tradi-
tional classical belief propagation, for both Rayleigh and
AWGN channels.

The result trends resemble the behaviour of received signals
in a Rayleigh fading channel. The Bit Error Rates (BERs)
of (32,16) codeword length signal transmitted in the coherent
case, as can be seen in Fig. (3b) remain between 10−1 and
10−3 for an SNR range of 4-10. Both quantum annealing and
simulated annealing have given comparable results throughout
the SNR range, with their results significantly improving



regardless of codeword length, in case of the minimum
distance postprocessing, as compared to the lowest energy
solutions from the annealer, most visibly illustrated in Fig.
(3a)(3b)(3c). Our strategy is quite similar to our earlier work
in [10] [11], with AWGN-infested channel resulting in more
accurately decoded signals than the Rayleigh fading channel,
as is expected.

As pointed in our earlier work [10] [11], the performance of
the SA and the QA are quite comparable, but, it is important
to note that the QA-based results are run on the actual
(noisy) hardware of the present NISQ era, and the devices
are continuously evolving. With improved devices in terms of
reducing different sources of noise, in future, apart from able
to run larger problems (in our context, decoding of longer code
lengths), we may get better performance from QA.

B. Additional Remarks on Diversity

The notion of diversity due to operational nature of QA
and exploiting it through classical post-processing is tested
for couple of small code lengths, as elaborated in the paper.
In order to provide a level-playing field even for fully classical
SA, we considered different outputs of SA and post-processed
them in a similar way, as mentioned earlier. Of course, results
captured in Figure (3), did not show up in useful improvement
of QA-based scheme compared to fully classical SA-based
scheme. Of course, there is an improvement over traditional
work horse of classical Sum-Product or BP decoding. As
pointed out in [10] [11], the usefulness of diversity because
of Quantum Computing is suggested based on the fact in
Quantum Computing, the probability amplitudes can interfere
unlike in classical probabilistic computing. Together with other
quantum effects, in principle, one can see a different potential
of Quantum compared to classical processing. The preliminary
results captured here suggest that further research is needed
in this direction, both experimental and theoretical. One can
consider experimenting with different annealers available, in-
cluding DWave Advantage. The quantum effects may be more
pronounced in Gate-Model Universal Quantum Computers,
and once the devices with enough number of qubits are
available, experimentation can be run on them. Of course, with
the improved noise and error characteristics of the Quantum
Computers in the coming years, studies through them may
provide better conclusions.The theoretical study of possible
diversity gain, in the context we have considered, to the best
of our knowledge is wide open. The whole idea is, even if
some gain due to diversity is available, why not use it? It
is worth noting at this juncture again that the quantum and
classical computers work together in solving difficult real-life
problems, not only in the NISQ era, but, even in the futuristic
fault-tolerant years. Quantum Computers may solve large-
sized optimization problems more comfortably and naturally
in future, and utilizing the diversity, even if the gain is small
in the quantum-classical pipeline, can be beneficial.

V. CONCLUSION

The paper brought out results of small-sized examples
of LDPC decoding, using Quantum Annealer and Classical
Computing pipeline, for Rayeligh fading channels. The post
processing was limited to simple minimum-distance based
selection of the candidate outputs from different runs. The
performance was superior to the widely adopted classical
Belief Propagation.

The paper addressed two popular cases of fully known
and unknown channel scenarios, and the work is underway
to formulate the algorithm for partially known channel case
and its performance. This may open up further avenue for
Classical Post-Processing in the whole decoding/inference pro-
cess. Apart from extending beyond simple minimum-distance
decoding, the idea can be taken further to other complex
baseband signal processing tasks, putting into play the tandem
working of classical and quantum computing. As discussed
in the last paragraph of the previous section, further study
is warranted for assessing the possible diversity benefit from
Quantum Processing. Studies based on simulation and hard-
ware execution on gate based universal quantum computing
also of importance as a future research thread.
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