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Abstract—Quantum neural networks are emerging as poten-
tial candidates to leverage noisy quantum processing units for
applications. Here we introduce hybrid quantum-classical au-
toencoders for end-to-end radio communication. In the physical
layer of classical wireless systems, we study the performance
of simulated architectures for standard encoded radio signals
over a noisy channel. We implement a hybrid model, where
a quantum decoder in the receiver works with a classical
encoder in the transmitter part. Besides learning a latent space
representation of the input symbols with good robustness against
signal degradation, a generalized data re-uploading scheme for
the qubit-based circuits allows to meet inference-time constraints
of the application.

Index Terms—variational quantum algorithms, quantum ma-
chine learning, quantum autoencoder, radio communication

I. INTRODUCTION

One of the most popular Quantum Machine Learning
(QML) methods are Quantum Neural Networks (QNNs) [1],
[2]. These are special variational quantum circuits, designed as
the quantum analogues of classical neural networks. QNNs can
be optimized with gradient-based or gradient-free optimization
algorithms forming hybrid quantum-classical training loops
[3], [4]. Various QNN architectures have been proposed such
as quantum convolutional neural networks [5], generative mod-
els [6], long short-term memories [7] and autoencoders [8]–
[10]. Beside the high activity in algorithmic research within
QML, their novel benchmarking and requirement setting ap-
plications are also motivating a wide variety of works [11].

Although QML is still in a phase of basic research with
many open questions, its early implementations in wireless
communication systems spark both scientific curiosity and
commercial interest [12]. However, high-performance, near
real-time applications might impose a new set of requirements
on these solutions.

Wireless communication has undergone tremendous evolu-
tion during the last decades. The increasing adoption of AI
and ML methods is opening up new development possibilities
in various parts of the radio stack. In the design of the sixth
generation (6G) wireless networks, AI and ML technologies
are considered to be tightly integrated into the system and
smart algorithms can be applied to all aspects of network

operations and procedures [13]. Considering the improvement
of quantum computers it is envisioned that quantum algorithms
and especially QML will play a significant role in future
networks [12].

The structure of this paper is as follows. In Sec. II, we
give a high-level overview of wireless communication systems
together with an autoencoder solution used in the radio phys-
ical layer. Our novel hybrid classical-quantum autoencoder
prototype is presented in Sec. III. We discuss our result in
Sec. IV. Finally, we conclude with an outlook in Sec. V.

II. AUTOENCODER ARCHITECTURE IN END-TO-END
COMMUNICATION
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Fig. 1: 16-QAM constellation diagrams. (a) Transmitted
symbols; (b) Received noisy signal.
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Fig. 2: High-level representation of a communication sys-
tem. A message is transmitted through a noisy communication
channel to be recovered by the receiver.

The components of communication networks are organized
in a layered architecture where each layer is responsible for
different communication aspects [14]. The physical layer is the
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Fig. 3: The proposed hybrid quantum-classical autoencoder embedded into the end-to-end communication architecture.
The transmitter maps each message s to a symbol, then sends it through the channel. The channel is represented by an
additive noise acting on the signal x. The receiver, realized by a quantum decoder, consists of a multi-layer QNN adapting
data re-uploading. It decodes the noisy signal and gives an estimate of the original message.

lowest layer. It provides the means of transmitting a stream of
raw bits over a data channel connecting the network elements.
The physical layer on the transmitter side converts data in
the form of bits to electromagnetic waves to be transmitted
wirelessly, while the receiver converts the electromagnetic
waves received by an antenna to binary data. The main
challenge in wireless data transmission is to overcome the
channel impairments so that the messages can be recovered
with small error rate.

The role of modulation is to convert digital data into radio
waves. It can be achieved in different ways, the informa-
tion can be encoded by varying (shifting) either amplitude,
frequency or phase of the electromagnetic wave. The more
states the modulation has, the more bits are transferred in one
symbol, resulting in higher data rate. However, with higher
order modulation the signal is more sensitive to channel errors,
so the applied modulation usually depends on the channel
quality. Fig. 1 shows a constellation diagram of the symbol
representation of 16-QAM modulation, where 4-bit strings
can be represented as complex numbers in a scheme resistant
to general noise patterns while achieving high data rate with
minimal channel uses.

Based on [15], we model a simple communications system,
shown in Fig. 2, consisting of a transmitter that modulates
message s ∈ M = {0, . . . ,M − 1} into a signal x and
sends it over a noisy channel to the receiver that tries to
decode the received signal y resulting in the received message
ŝ. The transmitted signal x suffers degradation due to the
noise present on the channel. In case of transmission over a
complex channel with n discrete channel uses, the transmitter
can be represented as the transformation f : M 7→ R2n,
mapping the message s to x ∈ R2n signal with certain
constraints imposed by the transmitting hardware (e.g., energy
constraint or average power constraint). The channel can be
modeled as a conditional probability density function p(y|x)
that produces the output signal y ∈ R2n given the input signal,
usually via some noise model (e.g., additive white Gaussian

noise (AWGN)). The receiver is represented as the mapping
g : R2n 7→ M that recovers some estimate ŝ of the original
message from the received signal. In this work, we focus on
the case of single channel use (n = 1), however, this model
can be easily adopted to cases of n > 1. Also, the number of
transmit-receive pairs can be increased to get a Multiple-Input
and Multiple-Output (MIMO) system [15], [16].

Both of f and g transformations can be created in various
ways. In case of simple noise models applied in the channel
the transformations can be designed as explicit mathematical
formulas. In the case of complex noise scenarios that are
difficult to describe with mathematical models, a possible way
is to train deep neural networks, especially autoencoders, to
solve the encoding and decoding tasks [15].

An autoencoder is a special type of deep neural network,
with the aim to compress or denoise data [17]–[19]. Autoen-
coders consist of an encoder function f : RD 7→ RL, and
a decoder function g : RL 7→ RD. The encoder transforms
its input χ into a latent space representation f(χ) ∈ RL,
whereas the decoder tries to reconstruct it: χ̂ = g(f(χ)).
Usually we have L < D, i.e., the encoder produces a compact
representation of the data. f and g are typically deep neural
networks trained jointly to minimize a loss function of the
form L(χ, g(f(χ)).

In telecommunication, opposite to the general compressing
and denoising interpretation, autoencoders can be effectively
used in the presented communication system to learn how to
represent input messages as signals [15]. This model differs
from the “typical” autoencoder concept in the sense that it does
not try to remove noise from the input, instead it learns how
to represent the input in a way that is robust against a given
noisy channel acting in the latent space of the autoencoder.
As a result of the training process, the latent space (or hidden
layer) of the autoencoder contains the learned constellation of
symbols (or codebook). The learned constellation is optimized
for best mapping of the input messages to signals that can be
accurately decoded with the largest success probability for the
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Fig. 4: Quantum decoder implementations with encoding schemes. Ansatz circuits with (a) simple data encoding; (b) simple
data re-uploading; (c) double data re-uploading; (d) weighted double data re-uploading.

specific channel model. Whereas the encoder learns how to
produce optimal symbols, the receiver learns how to decode
these symbols after they have been corrupted by the channel,
i.e., how to recover x after sampling from p(y|x).

III. HYBRID QUANTUM AUTOENCODER FOR RADIO
PHYSICAL LAYER

A. Hybrid quantum autoencoder overview

Quantum autoencoder architectures have previously been
proposed to compress as well as denoise quantum data [8],
[10]. Hybrid quantum-classical autoencoders enable many
variations for quantum or classical encoding/decoding or the
use of classical data. In this work, a hybrid quantum-classical
autoencoder is applied for processing classical information.
Building on the physical layer autoencoder presented in
Sec. II, we propose a hybrid quantum-classical autoencoder
with classical encoder on the transmitter side and a quantum
decoder on the receiver side – trained in an end-to-end
solution. The encoder projects the original message to a lower
dimensional representation, robust to the channel degradation
effect. Once the signal is passed to the quantum decoder, the
compressed information is mapped to a higher dimensional
Hilbert space of the qubits by a QNN that has been previously
shown to be efficient for classification tasks [20], [21].

In our model, the classical encoder consists of an embedding
followed by a normalization. A simple linear embedding is
used to produce the constellation, satisfying the average power
constraint by normalization. The decoder is realized by a
general strongly connected quantum neural network which

we refer to as a quantum decoder. By simulating increasing
levels of noise in the channel, we can present a performance
evaluation of the various neural network architectures.

B. Quantum decoder architectures

A general QNN architecture has three main components
as shown in Fig. 3: qubit encoding for embedding the input
data, the parameterized QNN layers, and the qubit readout
given as a probability distribution over the possible con-
stellation symbols obtained from suitable measurements with
high enough number of shots. To encode the output of the
channel, we choose angle embedding with parameterized Rx

rotations [22]. With this embedding, there are multiple ways
to encode two-dimensional feature vectors into four qubits. As
for the variational ansatz, we use strongly entangling layers
introduced in quantum classifiers as they are known to be
expressive reaching ‘wide corners of the Hilbert space’ [23].
The measurements are performed in the computational basis
and the obtained probability distribution over the 16 basis
states is the output of the decoder.

The simplest single-layer realization of such a QNN struc-
ture is presented in Fig. 4a. To improve this ansatz, we can
apply the data re-uploading trick recently introduced in [24].
This technique, as shown in Fig. 4b, repeats the input encoding
block before each layer of the QNN circuit. The intuition be-
hind the effectiveness of this method is that by re-introducing
the input before each layer, one can mimic the computational
structure of typical classical deep neural networks, where the
copying of the classical information is readily available, which



would be, without this trick, prohibited by the no-cloning
theorem in quantum machine learning. The expressivity of a
model can be further increased by applying the encoding on
different subsystems in parallel [25]. With this in mind, we
further enhance the ansatz by encoding the first feature into
both qubit no. 1 and no. 3 and the second input feature into
both qubit no. 2 and no. 4. This double data re-uploading
ansatz is presented in Fig. 4c. As a final improvement, we
considered the role of the number of trainable parameters. As
the expressive power of the ansatz is highly dependent on the
number of trainable parameters, one should try to include as
many parameters as possible. One way to increase the number
of parameters while keeping the circuit as shallow as possible
– to respect the limited hardware capabilities and the inference
time constraints of the application – is to introduce trainable
weights in the data re-uploading blocks, as shown in Fig. 4d.
This modification keeps the depth constant.

C. Training and fine-tuning

For our hybrid autoencoder to achieve low estimation errors,
the training of the end-to-end system requires to be further
improved via hyper-parameter tuning.

First, the training of the hybrid model is done on batches
uniformly sampled from the set of messages {0, . . . , 15}.
These are sent as two dimensional encoded symbols through
the AWGN channel with SNR of 15 dB and i.i.d. noise.

The accuracy of the model is measured by evaluating
the Symbol Error Rate (SER), a key performance indica-
tor commonly used in radio communication. The network
weight updates are calculated with the sparse categorical cross-
entropy of the distribution generated by the decoder and the
ground truth symbols. This loss function is used to calculate
gradients in a mini-batch gradient descent with batch size of 64
and Adam optimizer [26]. We simulate the hybrid autoencoder
using PennyLane [27], a quantum machine learning framework
with its TensorFlow [28] backend. Second, we evaluate the
reached model accuracy at various hyper-parameter settings.
The search is conducted by KerasTuner [29] after partitioning
the space as the simulator compute times are prohibitive of a
full grid search.

We start by first evaluating the learning rate parameter set
η ∈ {0.1, 0.01, 0.001} using the simple ansatz presented on
Fig. 4a with L = 8 layers with 1000-shot measurements and
1000 training steps. Based on these results, the only viable
value of η = 0.1 is set for the rest of this study.

We continue with evaluating modifications to the basic
ansatz but keeping the number of layers L = 8 and 1000
training steps fixed, to minimize the overall computation time.
The results are shown in Fig. 5. For the basic circuit, the SER
fluctuates around its initial value without showing convergence
to a desirable level. A significant accuracy improvement of
roughly 40% is achieved by implementing single data re-
uploading (Fig. 4b with ansatz of 1×DR). Introducing the
double data re-uploading layer (2×DR with ansatz of Fig. 4c)
leads to another 15% improvement. Finally, we can even fur-
ther increase the performance by another 20% when using the
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Fig. 5: Learning curves of circuit architectures. The number
of data re-uploading (none, single, double) and the weighted
data encoding have high impact on the convergence properties
of the quantum autoencoder.

weighted double data re-uploading technique (2×wDR with
ansatz Fig. 4d). Based on these results, the weighted double
data re-uploading ansatz is chosen for further experiments.

As a last step, we optimize the number of layers. The hybrid
autoencoder using the best performing ansatz is trained with
8 to 24 layers. Increasing the number of layers clearly shows
the improvement in SER as well as in convergence time as
seen in Fig. 6.

IV. PERFORMANCE EVALUATION

A. Validation

Comparing our hybrid architecture to the classical method is
crucial to validate the solution. Based on the learning curves
presented, the shallowest network reaching accuracy similar
to the classical solution contains L = 16 layers. Further
increasing the number of layers leads to small improvements
in accuracy but it is suboptimal in terms of circuit depth.

Although the hybrid quantum autoencoder models are
trained at SNR of 15 dB we further validate the results at
different values. The evaluation is shown in Fig. 7. We see
that the trained networks generalize well on previously unseen
SNR values, and reach performance similar to the classical
baseline.

In Fig. 8, the constellation diagrams produced by autoen-
coders having different numbers of layers are shown. If the
trained autoencoder has good performance, it is expected that
the symbols are uniformly distributed in the diagram, similarly
to Fig 1. We see that increasing the number of layers leads to
a more balanced distribution of symbols in the Q − I space,
which implies that the symbols can be well separated in case
of noisy channels.

B. Time characteristics

In radio telecommunication, the latency of the data trans-
mission is also an important performance metric. In some use
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Fig. 6: Learning curves of classical and hybrid autoen-
coders for a set of layer numbers. We find that that
the minimal number of layers necessary to achieve results
comparable to the classical baseline is 16. Throughout these
tests, we used ansatz according to Fig. 4d.

cases it is even critical that the end-to-end delay falls below a
certain threshold. In 5G networks, it is possible to achieve
ms level latency. Hence, in addition to the accuracy it is
inevitable to investigate the time characteristics of the autoen-
coder model. After transpiling [30] the circuit ansatz to IBM
QPU backend ibmq_belem and ibmq_santiago [31] and
constructing the pulse-level scheduling, we can calculate the
theoretical execution times on both QPUs. The transpiled
circuits are deeper than the original ansatz, because we need
SWAP gates due to limited qubit connectivity and the basis
gate-set of the device can differ from the one used in Fig 4.
In Table I, we present the circuit depth and the approximate
per shot execution times of quantum decoders depending on
the number of layers. The time values in the table suggest
the following feasibility considerations for running QNN in a
real-time system. The number of shots highly determines the
reliability of the result of the inference. When the quantum
decoder is executed with 1000 shots (a level already acceptable
in current systems for this problem size), the inference time
is the order of magnitude of 100ms which is higher than the
accepted level in real-time radio systems. However, this can
be reduced to the accepted level of below 10ms because the
probability distribution is expected to be highly peaked for
well-trained autoencoders.

V. CONCLUSION AND OUTLOOK

We presented a novel hybrid implementation of a quantum-
classical autoencoder for end-to-end radio communication.
The decoder was implemented as a variational quantum circuit.
We showed that the use of advanced double re-uploading
encoding schemes allows for the inference-time constraints of
the application to be met without losing accuracy required
from the autoencoder.

By implementing a combination of parallel encodings and
weighted data re-uploading, we showed how these schemes
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Fig. 7: Validation of inference accuracy of the trained
classical and hybrid autoencoders. With increasing SNR
values, hybrid models generalize to validation data on par with
the classical.

I

Q

0

1

2

34

5

6

7
8 9

10

11
12

13

1415

(a)

I

Q

01

2

3

4

5

67

8

910

11
12

13

1415

(b)

Fig. 8: Constellations (latent space representations) learned
by the hybrid autoencoder trained with SNR=15. (a) L = 8
layers (b) L = 24 layers.

TABLE I: Estimated execution times of the quantum
decoder. The circuit was run on the ibmq_belem and
ibmq_santiago depending on the number of layers, cal-
culated with Qiskit’s transpiler.

ibmq_belem ibmq_santiago

# layers depth time [µs/shot] depth time [µs/shot]

8 125 54.3 145 30.4
12 187 78.4 221 43.6
16 260 111.8 297 56.9
20 311 124.2 373 70.12
24 379 149.8 449 83.4

can improve not just the QNN expressivity but also the
performance of the whole autoencoder model. We expect these
quantum-enhanced models to outperform classical ones in
more complex channel noise scenarios, a direction for future
study.
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